Reducibility and Degree*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

^{*} Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

Outline

Reduction and Degree

- Many-One Reduction
- Degrees
- m-Complete r.e. Set

Many-One Reduction Degrees m-Complete r.e. Set

Outline

Reduction and Degree

- Many-One Reduction
- Degrees
- m-Complete r.e. Set

2 Relative Computability

< 1 →

Many-One Reduction Degrees m-Complete r.e. Set

General Remark

A problem is a set of numbers.

(日)

-

Reduction and Degree

Many-One Reduction

General Remark

A problem is a set of numbers.

A reduction is a way of defining a solution of a problem with the help of the solutions of another problem.

Image: Image:

Many-One Reduction Degrees m-Complete r.e. Set

General Remark

A problem is a set of numbers.

A reduction is a way of defining a solution of a problem with the help of the solutions of another problem.

There are several inequivalent ways of reducing a problem to another problem.

Image: A matrix and a matrix

General Remark

A problem is a set of numbers.

A reduction is a way of defining a solution of a problem with the help of the solutions of another problem.

There are several inequivalent ways of reducing a problem to another problem.

The differences between different reductions consists in the manner and extent to which information about B is allowed to settle questions about A.

• □ ▶ • • □ ▶ • □ ▶

Many-One Reduction Degrees m-Complete r.e. Set

Many-One Reduction

The set *A* is many-one reducible (m-reducible) to the set *B* if there is a total computable function *f* such that $x \in A$ iff $f(x) \in B$ for all *x*.

Image: A matrix and a matrix

∃ >

Many-One Reduction

Many-One Reduction

The set A is many-one reducible (m-reducible) to the set B if there is a total computable function *f* such that $x \in A$ iff $f(x) \in B$ for all *x*.

We shall write $A \leq_m B$ or more explicitly $f : A \leq_m B$.

Many-One Reduction Degrees m-Complete r.e. Set

Many-One Reduction

The set *A* is many-one reducible (m-reducible) to the set *B* if there is a total computable function *f* such that $x \in A$ iff $f(x) \in B$ for all *x*.

We shall write $A \leq_m B$ or more explicitly $f : A \leq_m B$.

If f is injective, then we are talking about one-one reducibility.

Many-One Reduction Degrees m-Complete r.e. Set

Examples

1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$

< ロト < 同ト < ヨト < ヨ

Reduction and Degree Many-One Reduction Turing Reducibility

Examples

1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$ $f_{\mathbb{N}}(x,y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$ $f_{\mathbf{0}}(x, y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$

(日)

 Reduction and Degree
 Many-One Reduction

 Relative Computability
 Degrees

 Turing Reducibility
 m-Complete r.e. Set

Examples

- 1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$ $f_{\mathbf{0}}(x, y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad f_{\mathbb{N}}(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$
- 2. Rice Theorem is proved by showing that $K \leq_m \{x \mid \phi_x \in \mathscr{B}\}$.

 Reduction and Degree
 Many-One Reduction

 Relative Computability
 Degrees

 Turing Reducibility
 m-Complete r.e. Set

Examples

- 1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$
- $f_{\mathbf{0}}(x,y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad f_{\mathbb{N}}(x,y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$
- 2. Rice Theorem is proved by showing that $K \leq_m \{x \mid \phi_x \in \mathscr{B}\}$.
- $f_g(x,y) = \begin{cases} g(y) & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad \begin{array}{c} x \in W_x \Rightarrow \phi_k(x) = g \in \mathscr{B} \\ x \notin W_x \Rightarrow \phi_k(x) = f_{\varnothing} \notin \mathscr{B} \end{cases}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Reduction and Degree Many-One Reduction Relative Computability Turing Reducibility

Examples

- 1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$
- $f_{\mathbf{0}}(x,y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad f_{\mathbb{N}}(x,y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$
- 2. Rice Theorem is proved by showing that $K \leq_m \{x \mid \phi_x \in \mathcal{B}\}$. $f_g(x,y) = \begin{cases} g(y) & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad \begin{array}{c} x \in W_x \Rightarrow \phi_k(x) = g \in \mathscr{B} \\ x \notin W_x \Rightarrow \phi_k(x) = f_{\varnothing} \notin \mathscr{B} \end{cases}$
- 3. $\{x \mid \phi_x \text{ is total}\} \leq_m \{x \mid \phi_x = \mathbf{0}\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

 Reduction and Degree
 Many-One Reduction

 Relative Computability
 Degrees

 Turing Reducibility
 m-Complete r.e. Set

Examples

- 1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$
- $f_{\mathbf{0}}(x,y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad f_{\mathbb{N}}(x,y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$
- 2. Rice Theorem is proved by showing that $K \leq_m \{x \mid \phi_x \in \mathscr{B}\}.$
- $f_g(x,y) = \begin{cases} g(y) & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad \begin{array}{c} x \in W_x \Rightarrow \phi_k(x) = g \in \mathscr{B} \\ x \notin W_x \Rightarrow \phi_k(x) = f_{\varnothing} \notin \mathscr{B} \end{cases}$
- 3. $\{x \mid \phi_x \text{ is total}\} \leq_m \{x \mid \phi_x = \mathbf{0}\}.$ $\phi_{k(x)} = \mathbf{0} \circ \phi_x$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. \leq_m is reflexive: $A \leq_m A$.

• • • • • • • •

-

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. \leq_m is reflexive: $A \leq_m A$.

 $f: A \leq_m A$ is the identity function.

47 ▶

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. \leq_m is reflexive: $A \leq_m A$.

 $f: A \leq_m A$ is the identity function.

2. \leq_m transitive: $A \leq_m B, B \leq_m C \Rightarrow A \leq_m C$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. \leq_m is reflexive: $A \leq_m A$.

 $f: A \leq_m A$ is the identity function.

2. \leq_m transitive: $A \leq_m B, B \leq_m C \Rightarrow A \leq_m C$. Let $f : A \leq_m B, g : B \leq_m C$, then $g \circ f : A \leq_m C$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. \leq_m is reflexive: $A \leq_m A$.

 $f: A \leq_m A$ is the identity function.

- 2. \leq_m transitive: $A \leq_m B, B \leq_m C \Rightarrow A \leq_m C$. Let $f : A \leq_m B, g : B \leq_m C$, then $g \circ f : A \leq_m C$.
- 3. $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. \leq_m is reflexive: $A \leq_m A$.

 $f: A \leq_m A$ is the identity function.

- 2. \leq_m transitive: $A \leq_m B, B \leq_m C \Rightarrow A \leq_m C$. Let $f : A \leq_m B, g : B \leq_m C$, then $g \circ f : A \leq_m C$.
- 3. $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.

If $g : A \leq_m B$, then $x \in A \Leftrightarrow f(x) \in B$; so $x \in \overline{A} \Leftrightarrow g(x) \in \overline{B}$. Hence $g : \overline{A} \leq_m \overline{B}$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (2)

4. If *A* is recursive and $B \leq_m A$, then *B* is recursive.

Image: A matrix of the second seco

∃ >

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (2)

4. If *A* is recursive and $B \leq_m A$, then *B* is recursive.

 $g: B \leq_m A$; then $c_B(x) = c_A(g(x))$. So c_B is computable.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (2)

4. If *A* is recursive and $B \leq_m A$, then *B* is recursive.

 $g: B \leq_m A$; then $c_B(x) = c_A(g(x))$. So c_B is computable.

5. If *A* is recursive and $B \neq \emptyset$, \mathbb{N} , then $A \leq_m B$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (2)

4. If *A* is recursive and $B \leq_m A$, then *B* is recursive.

 $g: B \leq_m A$; then $c_B(x) = c_A(g(x))$. So c_B is computable.

5. If *A* is recursive and $B \neq \emptyset$, \mathbb{N} , then $A \leq_m B$.

Let $b \in B$, $c \notin B$, $f(x) = \begin{cases} b & \text{if } x \in A; \\ c & \text{if } x \notin A. \end{cases}$; then f is computable.

 $x \in A \Leftrightarrow f(x) \in B.$

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (2)

4. If *A* is recursive and $B \leq_m A$, then *B* is recursive.

 $g: B \leq_m A$; then $c_B(x) = c_A(g(x))$. So c_B is computable.

5. If *A* is recursive and $B \neq \emptyset$, \mathbb{N} , then $A \leq_m B$.

Let $b \in B$, $c \notin B$, $f(x) = \begin{cases} b & \text{if } x \in A; \\ c & \text{if } x \notin A. \end{cases}$; then f is computable.

 $x \in A \Leftrightarrow f(x) \in B.$

6. If A is r.e. and $B \leq_m A$, then B is r.e.

Many-One Reduction

Elementary Properties (2)

4. If *A* is recursive and $B \leq_m A$, then *B* is recursive.

 $g: B \leq_m A$; then $c_B(x) = c_A(g(x))$. So c_B is computable.

5. If *A* is recursive and $B \neq \emptyset$, \mathbb{N} , then $A \leq_m B$.

Let $b \in B$, $c \notin B$, $f(x) = \begin{cases} b & \text{if } x \in A; \\ c & \text{if } x \notin A. \end{cases}$; then f is computable.

 $x \in A \Leftrightarrow f(x) \in B.$

6. If A is r.e. and $B \leq_m A$, then B is r.e.

Let $g: B \leq_m A, A = Dom(h), (h \in \mathcal{C}_1)$; then $B = Dom(h \circ g)$ (B is r.e.)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (3)

7. (i). $A \leq_m \mathbb{N}$ iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$.

(日)

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (3)

7. (i).
$$A \leq_m \mathbb{N}$$
 iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$.

(i)." \Leftarrow ": By reflexivity, $\mathbb{N} \leq_m \mathbb{N}$. (i)." \Rightarrow ": Let $f : A \leq_m \mathbb{N}$, then $x \in A \Leftrightarrow f(x) \in \mathbb{N}$. Thus $A = \mathbb{N}$. (ii). $A \leq_m \emptyset \Leftrightarrow \overline{A} \leq_m \mathbb{N} \Leftrightarrow \overline{A} = \mathbb{N} \Leftrightarrow A = \emptyset$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (3)

7. (i).
$$A \leq_m \mathbb{N}$$
 iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$.

(i)." \Leftarrow ": By reflexivity, $\mathbb{N} \leq_m \mathbb{N}$. (i)." \Rightarrow ": Let $f : A \leq_m \mathbb{N}$, then $x \in A \Leftrightarrow f(x) \in \mathbb{N}$. Thus $A = \mathbb{N}$. (ii). $A \leq_m \emptyset \Leftrightarrow \overline{A} \leq_m \mathbb{N} \Leftrightarrow \overline{A} = \mathbb{N} \Leftrightarrow A = \emptyset$.

8. (i). $\mathbb{N} \leq_m A$ iff $A \neq \emptyset$; (ii). $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.

Many-One Reduction Degrees m-Complete r.e. Set

Elementary Properties (3)

7. (i).
$$A \leq_m \mathbb{N}$$
 iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$.

(i)." \Leftarrow ": By reflexivity, $\mathbb{N} \leq_m \mathbb{N}$. (i)." \Rightarrow ": Let $f : A \leq_m \mathbb{N}$, then $x \in A \Leftrightarrow f(x) \in \mathbb{N}$. Thus $A = \mathbb{N}$. (ii). $A \leq_m \emptyset \Leftrightarrow \overline{A} \leq_m \mathbb{N} \Leftrightarrow \overline{A} = \mathbb{N} \Leftrightarrow A = \emptyset$.

8. (i). $\mathbb{N} \leq_m A$ iff $A \neq \emptyset$; (ii). $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.

(i). " \Rightarrow ": Let $f : \mathbb{N} \leq_m A$, then A = Ran(f), so $A \neq \emptyset$ (f is total).

(i). " \Leftarrow ": If $A \neq \emptyset$, choose $c \in A$. If g(x) = c, we have $g : \mathbb{N} \leq_m A$. (ii). $\emptyset \leq_m A \Leftrightarrow \mathbb{N} \leq_m \overline{A} \Leftrightarrow \overline{A} \neq \emptyset \Leftrightarrow A = \mathbb{N}$.

< 日 > < 同 > < 三 > < 三

Many-One Reduction Degrees m-Complete r.e. Set

Corollary

Corollary. Neither $\{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \text{ is not total}\}$ is *m*-reducible to *K*.

< ロト < 同ト < ヨト < ヨ

Corollary. Neither $\{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \text{ is not total}\}$ is *m*-reducible to *K*.

Proof. By contradiction, if $\{x \mid \phi_x \text{ is total}\} \leq_m K$, and *K* is r.e., then $\{x \mid \phi_x \text{ is total}\}$ is r.e. (same as $\{x \mid \phi_x \text{ is not total}\}$).

However, by Rice-Shapiro Theorem, Neither $\{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \text{ is not total}\}$ is r.e.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many-One Reduction Degrees m-Complete r.e. Set

Fact. If *A* is r.e. and is not recursive, then $\overline{A} \leq_m A$ and $A \leq_m \overline{A}$.

< □ > < 同 > < 回 > <
Fact. If *A* is r.e. and is not recursive, then $\overline{A} \not\leq_m A$ and $A \not\leq_m \overline{A}$.

Proof. " $\overline{A} \not\leq_m A$ ": By contradiction, if $\overline{A} \leq_m A$, then \overline{A} is r.e., then A is recursive!

" $A \not\leq_m \overline{A}$ ": By contradiction, if $A \leq_m \overline{A}$, then $\overline{A} \leq_m A$, then A is recursive!

Fact. If *A* is r.e. and is not recursive, then $\overline{A} \not\leq_m A$ and $A \not\leq_m \overline{A}$.

Proof. " $\overline{A} \not\leq_m A$ ": By contradiction, if $\overline{A} \leq_m A$, then \overline{A} is r.e., then A is recursive!

" $A \not\leq_m \overline{A}$ ": By contradiction, if $A \leq_m \overline{A}$, then $\overline{A} \leq_m A$, then A is recursive!

Notation: It contradicts to our intuition that *A* and \overline{A} are equally difficult.

(日)

Many-One Reduction Degrees m-Complete r.e. Set

Theorem

Theorem. A is r.e. iff $A \leq_m K$.

*ロト *部ト * ヨト * ヨ

æ

Theorem. *A* is r.e. iff $A \leq_m K$.

Proof. " \Leftarrow ". Since $A \leq_m K$, and K is r.e., then A is r.e.

Suppose *A* is r.e. Let
$$f(x, y)$$
 be $f(x, y) = \begin{cases} 1, & \text{if } x \in A, \\ \uparrow, & \text{if } x \notin A. \end{cases}$

By s-m-n Theorem $\exists s(x) : \mathbb{N} \to \mathbb{N}$ such that $f(x, y) = \phi_{s(x)}(y)$. It is clear that $x \in A$ iff $\phi_{s(x)}(s(x))$ is defined iff $s(x) \in K$. Hence

 $A \leq_m K.$

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. *A* is r.e. iff $A \leq_m K$.

Proof. " \Leftarrow ". Since $A \leq_m K$, and K is r.e., then A is r.e.

Suppose *A* is r.e. Let f(x, y) be $f(x, y) = \begin{cases} 1, & \text{if } x \in A, \\ \uparrow, & \text{if } x \notin A. \end{cases}$

By s-m-n Theorem $\exists s(x) : \mathbb{N} \to \mathbb{N}$ such that $f(x, y) = \phi_{s(x)}(y)$. It is clear that $x \in A$ iff $\phi_{s(x)}(s(x))$ is defined iff $s(x) \in K$. Hence $A \leq_m K$.

Notation. *K* is the most difficult partially decidable problem.

4 日 2 4 同 2 4 三 2 4 4

Many-One Reduction Degrees m-Complete r.e. Set

Many-One Equivalence

Definition. Two sets *A*, *B* are many-one equivalent, notation $A \equiv_m B$ (abbreviated *m*-equivalent), if $A \leq_m B$ and $B \leq_m A$.

Image: A matrix of the second seco

Degrees

Many-One Equivalence

Definition. Two sets A, B are many-one equivalent, notation $A \equiv_m B$ (abbreviated *m*-equivalent), if $A \leq_m B$ and $B \leq_m A$.

Theorem. \equiv_m is an equivalence relation.

Many-One Reduction Degrees m-Complete r.e. Set

Many-One Equivalence

Definition. Two sets *A*, *B* are many-one equivalent, notation $A \equiv_m B$ (abbreviated *m*-equivalent), if $A \leq_m B$ and $B \leq_m A$.

Theorem. \equiv_m is an equivalence relation.

Proof. (1). Reflexivity: $A \leq_m A \Rightarrow A \equiv_m A$. (2). Symmetry: $A \equiv_m B \Rightarrow B \leq_m A$, $A \leq_m B \Rightarrow B \equiv_m A$. (3). Transitivity: $A \equiv_m B$, $B \equiv_m C \Rightarrow A \leq_m C$, $C \leq_m A \Rightarrow A \equiv_m C$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many-One Reduction Degrees m-Complete r.e. Set

Examples

1.
$$\{x \mid c \in W_x\} \equiv_m K.$$

æ

Degrees

Examples

1.
$$\{x \mid c \in W_x\} \equiv_m K$$
.
" \Leftarrow ": $f_{\mathbb{N}}(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \Rightarrow K \leq_m \{x \mid c \in W_x\}$
" \Rightarrow ": $\{x \mid c \in W_x\}$ is r.e., so $\{x \mid c \in W_x\} \leq_m K$.
Thus $\{x \mid c \in W_x\} \equiv_m K$.

*ロト *部ト * ヨト * ヨ

æ

Many-One Reduction Degrees m-Complete r.e. Set

Examples

1.
$$\{x \mid c \in W_x\} \equiv_m K.$$

" \Leftarrow ": $f_{\mathbb{N}}(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \Rightarrow K \leq_m \{x \mid c \in W_x\}$
" \Rightarrow ": $\{x \mid c \in W_x\}$ is r.e., so $\{x \mid c \in W_x\} \leq_m K.$
Thus $\{x \mid c \in W_x\} \equiv_m K.$

2. If *A* is recursive, $A \neq \emptyset$, \mathbb{N} , then $A \equiv_m \overline{A}$.

(日)

Many-One Reduction Degrees m-Complete r.e. Set

Examples

1.
$$\{x \mid c \in W_x\} \equiv_m K.$$

" \Leftarrow ": $f_{\mathbb{N}}(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \Rightarrow K \leq_m \{x \mid c \in W_x\}$
" \Rightarrow ": $\{x \mid c \in W_x\}$ is r.e., so $\{x \mid c \in W_x\} \leq_m K.$
Thus $\{x \mid c \in W_x\} \equiv_m K.$

2. If *A* is recursive, $A \neq \emptyset$, \mathbb{N} , then $A \equiv_m \overline{A}$. $A \neq \emptyset$, $\mathbb{N} \Rightarrow \overline{A} \neq \emptyset$, \mathbb{N} . *A* is recursive, by previous theorem $A \leq_m \overline{A}$. Similarly, $\overline{A} \leq_m A$.

(日)

Many-One Reduction Degrees m-Complete r.e. Set

3. If *A* is r.e. but not recursive, then $A \not\equiv_m \overline{A}$.

(日)

э

Many-One Reduction Degrees m-Complete r.e. Set

Example (2)

3. If *A* is r.e. but not recursive, then $A \not\equiv_m \overline{A}$.

A is r.e. but not recursive $\Rightarrow A \leq_m \overline{A}, \overline{A} \leq_m A$.

Image: A matrix of the second seco

-

Many-One Reduction Degrees m-Complete r.e. Set

Example (2)

3. If *A* is r.e. but not recursive, then $A \not\equiv_m \overline{A}$.

A is r.e. but not recursive $\Rightarrow A \not\leq_m \overline{A}, \overline{A} \not\leq_m A$.

4.
$$\{x \mid \phi_x = \mathbf{0}\} \equiv_m \{x \mid \phi_x \text{ is total}\}.$$

Image: A matrix of the second seco

-

Many-One Reduction Degrees m-Complete r.e. Set

Example (2)

3. If *A* is r.e. but not recursive, then $A \not\equiv_m \overline{A}$.

A is r.e. but not recursive $\Rightarrow A \not\leq_m \overline{A}, \overline{A} \not\leq_m A$.

4.
$$\{x \mid \phi_x = \mathbf{0}\} \equiv_m \{x \mid \phi_x \text{ is total}\}.$$

" \Leftarrow ": $\phi_{k(x)} = \mathbf{0} \circ \phi_x \Rightarrow \{x \mid \phi_x \text{ is total}\} \leq_m \{x \mid \phi_x = \mathbf{0}\}.$
" \Rightarrow ": Let $\phi_{k(x)}(y) = \begin{cases} 0 & \text{if } \phi_x(y) = 0; \\ \uparrow & \text{if } \phi_x(y) \neq 0. \end{cases}$
Then $\phi_x = \mathbf{0} \Leftrightarrow \phi_{k(x)}$ is total $\Rightarrow \{x \mid \phi_x = \mathbf{0}\} \leq_m \{x \mid \phi_x \text{ is total}\}.$

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many-One Reduction Degrees m-Complete r.e. Set

Definition. Let $d_m(A)$ be $\{B \mid A \equiv_m B\}$.

*ロト *部ト * ヨト * ヨ

Reduction and Degree Turing Reducibility

Degrees

m-Degree

Definition. Let $d_m(A)$ be $\{B \mid A \equiv_m B\}$.

Definition. An m-degree is an equivalence class of sets under the relation \equiv_m . It is any class of sets of the form $d_m(A)$ for some set A.

Image: A matrix of the second seco

Many-One Reduction Degrees m-Complete r.e. Set

m-Degree

Definition. Let $d_m(A)$ be $\{B \mid A \equiv_m B\}$.

Definition. An m-degree is an equivalence class of sets under the relation \equiv_m . It is any class of sets of the form $d_m(A)$ for some set *A*.

A recursive m-degree is an m-degree that contains a recursive set. An r.e. m-degree is an m-degree that contains an r.e. set.

Many-One Reduction Degrees m-Complete r.e. Set

Expression

Definition. The set of *m*-degrees is ranged over by **a**, **b**, **c**,

<ロ> < 回 > < 回 > < 回 > <

Definition. The set of *m*-degrees is ranged over by **a**, **b**, **c**,

Definition (Partial Order on *m***-Degree)**. Let **a**, **b** be *m*-degrees.

- (1). $\mathbf{a} \leq_m \mathbf{b}$ iff $A \leq_m B$ for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$.
- (2). $\mathbf{a} \leq_m \mathbf{b}$ iff $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \not\leq_m \mathbf{a}$ ($\mathbf{a} \neq \mathbf{b}$).

The relation $<_m$ is a partial order.

• □ ▶ • • □ ▶ • □ ▶

Definition. The set of *m*-degrees is ranged over by **a**, **b**, **c**,

Definition (Partial Order on *m*-Degree). Let **a**, **b** be *m*-degrees.

- (1). $\mathbf{a} \leq_m \mathbf{b}$ iff $A \leq_m B$ for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$.
- (2). $\mathbf{a} \leq_m \mathbf{b}$ iff $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \not\leq_m \mathbf{a}$ ($\mathbf{a} \neq \mathbf{b}$).

The relation $<_m$ is a partial order.

Notation. From the definition of \equiv_m , $\mathbf{a} \leq_m \mathbf{b} \Leftrightarrow \forall A \in \mathbf{a}, B \in \mathbf{b}, A \leq_m B$.

▲ 🖓 ▶ < ⊑ ▶</p>

Many-One Reduction Degrees m-Complete r.e. Set

Theorem

Theorem. The relation $<_m$ is a partial ordering of *m*-degrees.

(日)

Theorem. The relation $<_m$ is a partial ordering of *m*-degrees.

Proof.

(1) By transitivity $\mathbf{a} \leq_m \mathbf{b}$, $\mathbf{b} \leq_m \mathbf{c}$ implies $\mathbf{a} \leq_m \mathbf{c}$. If $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \leq_m \mathbf{a}$, we have to prove that $\mathbf{a} = \mathbf{b}$.

(2) Irreflexivity: Let $A \in \mathbf{a}$ and $B \in \mathbf{b}$, then we have $A \leq_m B$ and $B \leq_m A$, so $A \equiv_m B$. Hence $\mathbf{a} = \mathbf{b}$.

Consequently, $<_m$ is partial ordering.

• □ ▶ • • □ ▶ • □ ▶

Many-One Reduction Degrees m-Complete r.e. Set

Some Facts

- 1. **o** and **n** are respectively the recursive m-degrees $\{\emptyset\}$ and $\{\mathbb{N}\}$.
 - $A \leq_m \mathbf{N} \Leftrightarrow A = \mathbf{N}; A \leq_m \emptyset \Leftrightarrow A = \emptyset.$

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many-One Reduction Degrees m-Complete r.e. Set

Some Facts

1. **o** and **n** are respectively the recursive m-degrees $\{\emptyset\}$ and $\{\mathbb{N}\}$.

 $A \leq_m \mathbf{N} \Leftrightarrow A = \mathbf{N}; A \leq_m \emptyset \Leftrightarrow A = \emptyset.$

2. The recursive m-degree $\mathbf{0}_m$ consists of all the recursive sets except \emptyset, \mathbb{N} .

 $\mathbf{0}_m \leq_m \mathbf{a}$ for any *m*-degree \mathbf{a} other than \mathbf{o} and \mathbf{n} .

A is recursive, $B \leq_m A \Rightarrow B$ is recursive;

A is recursive and $B \neq \emptyset$, $\mathbb{N} \Rightarrow A \leq_m B$.

Many-One Reduction Degrees m-Complete r.e. Set

Some Facts

- 1. **o** and **n** are respectively the recursive m-degrees $\{\emptyset\}$ and $\{\mathbb{N}\}$.
 - $A \leq_m \mathbf{N} \Leftrightarrow A = \mathbf{N}; A \leq_m \emptyset \Leftrightarrow A = \emptyset.$
- 2. The recursive m-degree $\mathbf{0}_m$ consists of all the recursive sets except \emptyset, \mathbb{N} .
 - $\mathbf{0}_m \leq_m \mathbf{a}$ for any *m*-degree \mathbf{a} other than \mathbf{o} and \mathbf{n} .
 - A is recursive, $B \leq_m A \Rightarrow B$ is recursive;
 - A is recursive and $B \neq \emptyset$, $\mathbb{N} \Rightarrow A \leq_m B$.
- 3. \forall *m*-degree **a**, **o** \leq_m **a** provided **a** \neq **n**; **n** \leq_m **a** provided **a** \neq **o**. $\mathbb{N} \leq_m A \Leftrightarrow A \neq \emptyset; \emptyset \leq_m A \Leftrightarrow A \neq \mathbb{N}.$

Many-One Reduction Degrees m-Complete r.e. Set

4. An r.e. *m*-degree consists of only r.e. sets. If A is r.e. and $B \leq_m A$, then B is r.e.

< □ > < 🗗 > <

- 4. An r.e. *m*-degree consists of only r.e. sets. If A is r.e. and $B \leq_m A$, then B is r.e.
- 5. If $\mathbf{a} \leq_m \mathbf{b}$ and \mathbf{b} is an r.e. *m*-degree, then \mathbf{a} is also an r.e. *m*-degree. If *A* is r.e. and $B \leq_m A$, then *B* is r.e.

- 4. An r.e. *m*-degree consists of only r.e. sets. If A is r.e. and $B \leq_m A$, then B is r.e.
- 5. If $\mathbf{a} \leq_m \mathbf{b}$ and \mathbf{b} is an r.e. *m*-degree, then \mathbf{a} is also an r.e. *m*-degree. If *A* is r.e. and $B \leq_m A$, then *B* is r.e.
- 6. The maximum r.e. *m*-degree $d_m(K)$ is denoted by $\mathbf{0}'_m$. A set *A* is r.e. iff $A \leq_m K$.

Many-One Reduction Degrees m-Complete r.e. Set

Illumination

CSC363-Computability Theory@SJTU

Many-One Reduction Degrees m-Complete r.e. Set

Facts about r.e. *m*-Degrees

1. Excluding **o** and **n**, there is a minimum r.e. *m*-degree $\mathbf{0}_m$ (in fact $\mathbf{0}_m$ is minimum among all *m*-degrees).

Image: Image:

Many-One Reduction Degrees m-Complete r.e. Set

Facts about r.e. *m*-Degrees

- 1. Excluding **o** and **n**, there is a minimum r.e. *m*-degree $\mathbf{0}_m$ (in fact $\mathbf{0}_m$ is minimum among all *m*-degrees).
- 2. The r.e. *m*-degrees form an initial segment of the *m*-degrees; i.e., anything below an r.e. *m*-degree is also r.e.

Many-One Reduction Degrees m-Complete r.e. Set

Facts about r.e. *m*-Degrees

- 1. Excluding **o** and **n**, there is a minimum r.e. *m*-degree $\mathbf{0}_m$ (in fact $\mathbf{0}_m$ is minimum among all *m*-degrees).
- 2. The r.e. *m*-degrees form an initial segment of the *m*-degrees; i.e., anything below an r.e. *m*-degree is also r.e.
- 3. There is a maximum r.e. *m*-degree $\mathbf{0}'_m$.

Many-One Reduction Degrees m-Complete r.e. Set

Facts about r.e. *m*-Degrees

- 1. Excluding **o** and **n**, there is a minimum r.e. *m*-degree $\mathbf{0}_m$ (in fact $\mathbf{0}_m$ is minimum among all *m*-degrees).
- 2. The r.e. *m*-degrees form an initial segment of the *m*-degrees; i.e., anything below an r.e. *m*-degree is also r.e.
- 3. There is a maximum r.e. *m*-degree $\mathbf{0}'_m$.
- 4. While there are uncountably many *m*-degrees, only countably many of these are r.e.

Many-One Reduction Degrees m-Complete r.e. Set

Algebraic Structure

Theorem. The *m*-degrees form an upper semi-lattice.

CSC363-Computability Theory@SJTU

• □ > • □ > • □ > •
Many-One Reduction Degrees m-Complete r.e. Set

Group

In mathematics, a group is an algebraic structure consisting of a set together with an operation (G, \bullet) that combines any two of its elements to form a third element.

< 口 > < 同 > <

Many-One Reduction Degrees m-Complete r.e. Set

Group

In mathematics, a group is an algebraic structure consisting of a set together with an operation (G, \bullet) that combines any two of its elements to form a third element.

To qualify as a group, the set and the operation must satisfy four conditions (group axioms), namely closure, associativity, identity and invertibility.

Many-One Reduction Degrees m-Complete r.e. Set

Group

In mathematics, a group is an algebraic structure consisting of a set together with an operation (G, \bullet) that combines any two of its elements to form a third element.

To qualify as a group, the set and the operation must satisfy four conditions (group axioms), namely closure, associativity, identity and invertibility.

closure: $a, b \in G \Rightarrow a \bullet b \in G$. associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c)$. identity: $\forall a \in G, \exists$ identity element $e \in G$, s.t. $e \bullet a = a \bullet e = a$. invertibility: $\forall a \in G, \exists$ inverse $b \in G$ s.t. $a \bullet b = b \bullet a = e \ (b = a^{-1})$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Many-One Reduction Degrees m-Complete r.e. Set

Lattice

In mathematics, a lattice is a partially ordered set (poset) (L, \leq) in which any two elements have a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

To qualify as a lattice, the set and the operation must satisfy tow conditions: join-semilattice, meet-semilattice.

join-semilattice:	$\forall a, b \in L$, the set $\{a, b\}$ has a join $a \lor b$. (the least upper bound)
meet-semilattice:	$\forall a, b \in L$, the set $\{a, b\}$ has a meet $a \wedge b$. (the greatest lower bound)

Many-One Reduction Degrees m-Complete r.e. Set

The Name "Lattice"

The name "lattice" is suggested by the form of the Hasse diagram depicting it. I.e., the right picture is the lattice of partitions of a four-element set $\{1, 2, 3, 4\}$, ordered by the relation "is a refinement of".

Degrees

Upper Semi-lattice

Theorem. Any pair of *m*-degrees **a**, **b** have a least upper bound; i.e. there is an *m*-degree **c** such that

(i). $\mathbf{a} \leq_m \mathbf{c}$ and $\mathbf{b} \leq_m \mathbf{c}$ (c is an upper bound);

(ii). $\mathbf{c} \leq_m$ any other upper bound of \mathbf{a}, \mathbf{b} .

Many-One Reduction Degrees m-Complete r.e. Set

Proof

(i). Pick $A \in \mathbf{a}, B \in \mathbf{b}$, and let $C = A \oplus B$, i.e.,

$$C = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$$

Then

$$x \in A \Leftrightarrow 2x \in C \Longrightarrow A \leq_m C;$$
$$x \in B \Leftrightarrow 2x + 1 \in C \Longrightarrow B \leq_m C;$$

Thus **c** is an upper bound of **a**, **b**.

(日)

(ii). Let **d** is an *m*-degree such that $\mathbf{a} \leq_m \mathbf{d}$, and $\mathbf{b} \leq_m \mathbf{d}$. $\forall D \in \mathbf{d}$, suppose $f : A \leq_m D$ and $g : B \leq_m D$. Then

$$x \in C \quad \Leftrightarrow \quad (x \text{ is even } \& \frac{x}{2} \in A) \lor (x \text{ is odd } \& \frac{x-1}{2} \in B)$$
$$\Leftrightarrow \quad (x \text{ is even } \& f(\frac{x}{2}) \in D) \lor (x \text{ is odd } \& g(\frac{x-1}{2}) \in D)$$

Thus we have $h: C \leq_m D$ if we define $h = \begin{cases} f(\frac{x}{2}) & \text{if } x \text{ is even;} \\ g(\frac{x-1}{2}) & \text{if } x \text{ is odd.} \end{cases}$ Hence $\mathbf{c} \leq_m \mathbf{d}$.

< □ > < 同 > < 回 > <

Many-One Reduction Degrees m-Complete r.e. Set

Definition

Definition. An r.e. set is m-complete if every r.e. set is m-reducible to it.

Image: A matrix of the second seco

-

Many-One Reduction Degrees m-Complete r.e. Set

Definition

Definition. An r.e. set is m-complete if every r.e. set is m-reducible to it.

Notation. $\mathbf{0}'_m$, the *m*-degree of *K* is maximum among all r.e. *m*-degrees, and thus *K* is *m*-complete r.e. set (or just called *m*-complete set).

Many-One Reduction Degrees m-Complete r.e. Set

Theorem

Theorem. The following statements are valid.

- (i) K is m-complete.
- (ii) *A* is *m*-complete iff $A \equiv_m K$ iff *A* is r.e. and $K \leq_m A$.
- (iii) $\mathbf{0}'_m$ consists exactly of all the *m*-complete sets.

< 口 > < 同 >

Many-One Reduction Degrees m-Complete r.e. Set

Examples

The following sets are m-complete.

-

Many-One Reduction Degrees m-Complete r.e. Set

Examples

The following sets are m-complete.

(i) $\{x \mid c \in W_x\}$.

∃ >

Many-One Reduction Degrees m-Complete r.e. Set

Examples

The following sets are m-complete.

(i) $\{x \mid c \in W_x\}$.

(ii) Every non-trivial r.e. set of the form $\{x \mid \phi_x \in \mathscr{B}\}$.

Image: A matrix of the second seco

-

Reduction and Degree Turing Reducibility m-Complete r.e. Set

Examples

The following sets are m-complete.

(i) $\{x \mid c \in W_x\}$.

(ii) Every non-trivial r.e. set of the form $\{x \mid \phi_x \in \mathscr{B}\}$. (iii) $\{x \mid \phi_x(x) = 0\}.$

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many-One Reduction Degrees m-Complete r.e. Set

Examples

The following sets are m-complete.

(i) $\{x \mid c \in W_x\}$.

(ii) Every non-trivial r.e. set of the form $\{x \mid \phi_x \in \mathscr{B}\}$.

(iii)
$$\{x \mid \phi_x(x) = 0\}$$
.

(iv). $\{x \mid x \in E_x\}$.

Many-One Reduction Degrees m-Complete r.e. Set

Creative Set

Theorem. Any *m*-complete set is creative.

(日)

-

Many-One Reduction Degrees m-Complete r.e. Set

Creative Set

Theorem. Any *m*-complete set is creative.

Proof. If A is *m*-complete, A is r.e. set. Also, $K \leq_m A$, so $\overline{K} \leq_m \overline{A}$. Thus \overline{A} is productive.

Many-One Reduction Degrees m-Complete r.e. Set

Myhill's Theorem

Myhill's Theorem. A set is m-complete iff it is creative.

CSC363-Computability Theory@SJTU

Image: A matrix and a matrix

-

Many-One Reduction Degrees m-Complete r.e. Set

m-Complete r.e. Sets

Corollary. If **a** is the *m*-degree of any simple set, then $\mathbf{0}_m <_m \mathbf{a} <_m \mathbf{0}'_m$ (Simple sets are not *m*-complete).

< A >

Many-One Reduction Degrees m-Complete r.e. Set

m-Complete r.e. Sets

Corollary. If **a** is the *m*-degree of any simple set, then $\mathbf{0}_m <_m \mathbf{a} <_m \mathbf{0}'_m$ (Simple sets are not *m*-complete).

Proof. Simple sets are designed to be neither recursive nor creative.

Outline

Reduction and Degree

- Many-One Reduction
- Degrees
- m-Complete r.e. Set

2 Relative Computability

合▶

m-reducibility has two unsatisfactory features:

Image: A matrix and a matrix

Comparison

m-reducibility has two unsatisfactory features:

(i) The exceptional behavior of \varnothing and \mathbb{N} .

Comparison

m-reducibility has two unsatisfactory features:

- (i) The exceptional behavior of \varnothing and \mathbb{N} .
- (ii) The invalidity of $A \not\equiv_m \overline{A}$ in general.

Comparison

m-reducibility has two unsatisfactory features:

- (i) The exceptional behavior of \varnothing and \mathbb{N} .
- (ii) The invalidity of $A \not\equiv_m \overline{A}$ in general.

The problem is due to the restricted use of oracles.

E.g. $x \in \overline{A}$ iff $x \notin A$

Relative Computability

Suppose χ is a total unary function.

< 1 →

Relative Computability

Suppose χ is a total unary function.

Informally a function f is computable relative to χ , or χ -computable, if f can be computed by an algorithm that is effective in the usual sense, except from time to time during computations f is allowed to consult the oracle function χ .

Relative Computability

Suppose χ is a total unary function.

Informally a function f is computable relative to χ , or χ -computable, if f can be computed by an algorithm that is effective in the usual sense, except from time to time during computations f is allowed to consult the oracle function χ .

Such an algorithm is called a χ -algorithm.

A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every $n \ge 1$.

A > 4

A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every $n \ge 1$.

If χ is the oracle, then the effect of O(n) is to replace the content r_n of R_n by $\chi(r_n)$.

A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every $n \ge 1$.

If χ is the oracle, then the effect of O(n) is to replace the content r_n of R_n by $\chi(r_n)$.

 P^{χ} denote the program P when used with the function χ in the oracle.

A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every $n \ge 1$.

If χ is the oracle, then the effect of O(n) is to replace the content r_n of R_n by $\chi(r_n)$.

 P^{χ} denote the program P when used with the function χ in the oracle.

 $P^{\chi}(\mathbf{a}) \downarrow b$ means the computation $P^{\chi}(\mathbf{a})$ with initial configuration $a_1, a_2, \cdots, a_n, 0, 0, \cdots$ stops with the number *b* is register R_1 .

(日)

Illumination

With resulting configuration

Э

URMO-Computable

Let χ be a unary total function, and suppose the f is a partial function from \mathbb{N}^n to \mathbb{N} .

- (a) Let *P* be a URMO program, then *P* URMO-computes *f* relative to χ (or *f* is χ -computed by *P*) if, for every $\mathbf{a} \in \mathbb{N}^n$ and $b \in \mathbb{N}$, $P^{\chi}(\mathbf{a}) \downarrow b$ iff $f(\mathbf{a}) \simeq b$.
- (b) The function *f* is URMO-computable relative to χ (or χ-computable) if there is a URMO program that URMO-computes it relative to χ.

URMO-Computable

Let χ be a unary total function, and suppose the f is a partial function from \mathbb{N}^n to \mathbb{N} .

- (a) Let *P* be a URMO program, then *P* URMO-computes *f* relative to χ (or *f* is χ -computed by *P*) if, for every $\mathbf{a} \in \mathbb{N}^n$ and $b \in \mathbb{N}$, $P^{\chi}(\mathbf{a}) \downarrow b$ iff $f(\mathbf{a}) \simeq b$.
- (b) The function *f* is URMO-computable relative to χ (or χ-computable) if there is a URMO program that URMO-computes it relative to χ.

 \mathscr{C}^{χ} is the set of all χ -computable functions.
(i) $\chi \in \mathscr{C}^{\chi}$. Use URMO program O(1).

・ロト ・ 日 ・ ・ 目 ・ ・

(i) $\chi \in \mathscr{C}^{\chi}$.

Use URMO program O(1).

(ii) $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

Any URM program is a URMO program.

• • • • • • • •

-

(i) $\chi \in \mathscr{C}^{\chi}$.

Use URMO program O(1).

(ii) $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

Any URM program is a URMO program.

(iii) If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.

Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$, we need to prove $\mathscr{C}^{\chi} \subseteq \mathscr{C}$. χ is computable, then whenever a value of χ is requested simply compute it by the algorithm for χ . By Church's thesis, *f* is computable.

(i) $\chi \in \mathscr{C}^{\chi}$.

Use URMO program O(1).

(ii) $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

Any URM program is a URMO program.

(iii) If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.

Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$, we need to prove $\mathscr{C}^{\chi} \subseteq \mathscr{C}$. χ is computable, then whenever a value of χ is requested simply compute it by the algorithm for χ . By Church's thesis, *f* is computable.

(iv) \mathscr{C}^{χ} is closed under substitution, recursion and minimalisation.

Construct corresponding URMO programs.

• □ ▶ • • □ ▶ • □ ▶

(i) $\chi \in \mathscr{C}^{\chi}$.

Use URMO program O(1).

(ii) $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

Any URM program is a URMO program.

(iii) If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.

Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$, we need to prove $\mathscr{C}^{\chi} \subseteq \mathscr{C}$. χ is computable, then whenever a value of χ is requested simply compute it by the algorithm for χ . By Church's thesis, *f* is computable.

(iv) \mathscr{C}^{χ} is closed under substitution, recursion and minimalisation.

Construct corresponding URMO programs.

(v) If ψ is a total unary function that is χ -computable, then $\mathscr{C}^{\psi} \subseteq \mathscr{C}^{\chi}$. By Church's thesis.

Partial Recursive Function

The class \mathscr{R}^{χ} of χ -partial recursive functions is the smallest class of functions such that

- (a) the basic functions are in \mathscr{R}^{χ} .
- (b) $\chi \in \mathscr{R}^{\chi}$.
- (c) \mathscr{R}^{χ} is closed under substitution, recursion, and minimalisation.

Partial Recursive Function

The class \mathscr{R}^{χ} of χ -partial recursive functions is the smallest class of functions such that

- (a) the basic functions are in \mathscr{R}^{χ} .
- (b) $\chi \in \mathscr{R}^{\chi}$.
- (c) \mathscr{R}^{χ} is closed under substitution, recursion, and minimalisation.
- χ -recursive, χ -primitive recursive are defined in the obvious way.

Partial Recursive Function

The class \mathscr{R}^{χ} of χ -partial recursive functions is the smallest class of functions such that

- (a) the basic functions are in \mathscr{R}^{χ} .
- (b) $\chi \in \mathscr{R}^{\chi}$.
- (c) \mathscr{R}^{χ} is closed under substitution, recursion, and minimalisation.

 χ -recursive, χ -primitive recursive are defined in the obvious way.

Theorem. For any χ , $\mathscr{R}^{\chi} = \mathscr{C}^{\chi}$.

Numbering URMO programs

Let's fix an effective enumeration of all URMO programs

 Q_0, Q_1, Q_2, \ldots

Image: A matrix and a matrix

Numbering URMO programs

Let's fix an effective enumeration of all URMO programs

Q_0, Q_1, Q_2, \ldots

Let $\phi_m^{\chi,n}$ be the *n*-ary function χ -computed by Q_m . Let ϕ_m^{χ} be $\phi_m^{\chi,1}$.

Numbering URMO programs

Let's fix an effective enumeration of all URMO programs

 Q_0, Q_1, Q_2, \ldots

Let $\phi_m^{\chi,n}$ be the *n*-ary function χ -computed by Q_m . Let ϕ_m^{χ} be $\phi_m^{\chi,1}$.

 W_m^{χ} is $Dom(\phi_m^{\chi})$ and E_m^{χ} is $Ran(\phi_m^{\chi})$.

Numbering URMO programs

S-m-n Theorem. For each $m, n \ge 1$ there is a total computable (m + 1)-ary function $s_n^m(e, \mathbf{x})$ such that for any χ

$$\phi_e^{\chi,m+n}(\mathbf{x},\mathbf{y})\simeq\phi_{s_n^m(e,\mathbf{x})}^{\chi,n}(\mathbf{y}).$$

< A >

Numbering URMO programs

S-m-n Theorem. For each $m, n \ge 1$ there is a total computable (m + 1)-ary function $s_n^m(e, \mathbf{x})$ such that for any χ

$$\phi_e^{\chi,m+n}(\mathbf{x},\mathbf{y})\simeq\phi_{s_n^m(e,\mathbf{x})}^{\chi,n}(\mathbf{y}).$$

Notice that $s_n^m(e, \mathbf{x})$ does not refer to χ .

Universal Programs for Relative Computability

Universal Function Theorem. For each *n*, the universal function $\psi_U^{\chi,n}$ for *n*-ary χ -computable functions given by

$$\psi_U^{\chi,n}(e,\mathbf{x}) \simeq \phi_e^{\chi,n}(\mathbf{x})$$

is χ -computable.

Relativization

Once we have the S-m-n Theorem and the Universal Function Theorem, we can do the recursion theory relative to an oracle.

χ -Recursive and χ -r.e. Sets

Let A be a set

(a) A is χ -recursive if c_A is χ -computable.

(b) *A* is
$$\chi$$
-r.e. if the partial characteristic function
$$f(x) = \begin{cases} 1 & \text{if } x \in A, \\ \uparrow & \text{if } x \notin A \end{cases} \text{ is } \chi\text{-computable.}$$

χ -Recursive and χ -r.e. Sets

Theorem. The following statements are valid.

(i) For any set A, A is χ -recursive iff A and \overline{A} are χ -r.e.

χ -Recursive and χ -r.e. Sets

Theorem. The following statements are valid.

- (i) For any set A, A is χ -recursive iff A and \overline{A} are χ -r.e.
- (ii) For any set A, the following are equivalent.
 - A is χ -r.e.
 - $A = W_m^{\chi}$ for some *m*.
 - $A = E_m^{\chi}$ for some *m*.
 - $A = \emptyset$ or A is the range of a total χ -computable function.
 - For some χ -decidable predicate $R(x, y), x \in A$ iff $\exists y.R(x, y)$.

χ -Recursive and χ -r.e. Sets

Theorem. The following statements are valid.

- (i) For any set A, A is χ -recursive iff A and \overline{A} are χ -r.e.
- (ii) For any set A, the following are equivalent.
 - A is χ -r.e.
 - $A = W_m^{\chi}$ for some *m*.
 - $A = E_m^{\chi}$ for some *m*.
 - $A = \emptyset$ or A is the range of a total χ -computable function.
 - For some χ -decidable predicate $R(x, y), x \in A$ iff $\exists y.R(x, y)$.

(iii) $K^{\chi} \stackrel{\text{def}}{=} \{x \mid x \in W_x^{\chi}\}$ is χ -r.e. but not χ -recursive.

Computability Relative to a Set

Computability relative to a set *A* means computability relative to its characteristic function c_A .

Image: Image:

Computability Relative to a Set

Computability relative to a set *A* means computability relative to its characteristic function c_A .

```
For example:
P^A for P^{c_A} (if P is a URMO program),
\mathscr{C}^A for \mathscr{C}^{c_A}.
\phi_m^A for \phi_m^{c_A}.
W_m^A for W_m^{c_A},
E_m^A for E_m^{c_A},
K^A for K^{c_A}.
A-recursive for c_A-recursive
A-r.e. for c_A-r.e.
```

. . .

Outline

Reduction and Degree

- Many-One Reduction
- Degrees
- m-Complete r.e. Set

2 Relative Computability

3 Turing Reducibility

合▶

Turing Reducibility and Turing Degrees

The set *A* is Turing reducible to *B*, notation $A \leq_T B$, if *A* has a *B*-computable characteristic function c_A .

Image: A matrix and a matrix

Turing Reducibility and Turing Degrees

The set *A* is Turing reducible to *B*, notation $A \leq_T B$, if *A* has a *B*-computable characteristic function c_A .

The sets *A*, *B* are Turing equivalent, notation $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

• □ ▶ • • □ ▶ • □ ▶

Notation

Suppose $A \leq_T B$ and P is the URMO program that computes c_A relative to B. Then $\forall x, P^B(x)$ converges and

 $P^{B}(x) \downarrow 1 \text{ if } x \in A$ $P^{B}(x) \downarrow 0 \text{ if } x \notin A$

When calculating $P^B(x)$ there will be a finite number of requests to the oracle for a value $c_B(n)$ of c_B . These requests amount to a finite number of questions of the form ' $n \in B$?'.

So for any *x*, ' $x \in A$?' is settled in a mechanical way by answering a finite number of questions about *B*.

(i) \leq_T is reflexive and transitive.

 $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

- (i) \leq_T is reflexive and transitive.
 - $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;
- (ii) \equiv_T is an equivalence relation.

< / → <

- (i) \leq_T is reflexive and transitive.
 - $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;
- (ii) \equiv_T is an equivalence relation.

 $A \equiv_T B$ iff $\mathscr{C}^A = \mathscr{C}^B$;

▲ 同 ▶ ▲ 国 ▶

- (i) \leq_T is reflexive and transitive.
 - $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;
- (ii) \equiv_T is an equivalence relation.
 - $A \equiv_T B$ iff $\mathscr{C}^A = \mathscr{C}^B$;
- (iii) If $A \leq_m B$ then $A \leq_T B$.

AP ► < = ►

- (i) \leq_T is reflexive and transitive.
 - $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;
- (ii) \equiv_T is an equivalence relation.

 $A \equiv_T B$ iff $\mathscr{C}^A = \mathscr{C}^B$;

(iii) If $A \leq_m B$ then $A \leq_T B$.

If $f : A \leq_m B$ and P is URM program to compute f, then the URMO program P, O(1) is B-compute c_A .

- (i) \leq_T is reflexive and transitive.
 - $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;
- (ii) \equiv_T is an equivalence relation.

 $A \equiv_T B$ iff $\mathscr{C}^A = \mathscr{C}^B$;

(iii) If $A \leq_m B$ then $A \leq_T B$.

If $f : A \leq_m B$ and P is URM program to compute f, then the URMO program P, O(1) is B-compute c_A .

(iv) $A \equiv_T \overline{A}$ for all A.

- (i) \leq_T is reflexive and transitive.
 - $A \leq_T B$ iff $\mathscr{C}^A \subseteq \mathscr{C}^B$;
- (ii) \equiv_T is an equivalence relation.

 $A \equiv_T B$ iff $\mathscr{C}^A = \mathscr{C}^B$;

(iii) If $A \leq_m B$ then $A \leq_T B$.

If $f : A \leq_m B$ and P is URM program to compute f, then the URMO program P, O(1) is B-compute c_A .

(iv)
$$A \equiv_T \overline{A}$$
 for all A .
 $c_{\overline{A}} = \overline{sg} \circ c_A, \overline{A}$ is A -recursive $\Longrightarrow \overline{A} \leq_T A$. (Similarly $A \leq_T \overline{A}$.)

(v) If *A* is recursive, then $A \leq_T B$ for all *B*.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

(v) If A is recursive, then $A \leq_T B$ for all B.

Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

▲□▶ ▲圖▶ ▲厘▶

(v) If A is recursive, then $A \leq_T B$ for all B. Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

(vi) If *B* is recursive and $A \leq_T B$, then *A* is recursive.

Image: A matrix of the second seco

-

(v) If A is recursive, then $A \leq_T B$ for all B. Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.

(vi) If *B* is recursive and $A \leq_T B$, then *A* is recursive. If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.

< 17 ► <

- (v) If A is recursive, then $A \leq_T B$ for all B. Since $\mathscr{C} \subset \mathscr{C}^{\chi}$.
- (vi) If *B* is recursive and $A \leq_T B$, then *A* is recursive. If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.
- (vii) If A is r.e. then $A \leq_T K$.

1 ▶ ▲

- (v) If A is recursive, then $A \leq_T B$ for all B. Since $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.
- (vi) If *B* is recursive and $A \leq_T B$, then *A* is recursive. If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.
- (vii) If A is r.e. then $A \leq_T K$. If $A \leq_m B$ then $A \leq_T B$; A set A is r.e. iff $A \leq_m K$.

Reduction and Degree Relative Computability Turing Reducibility

A set *A* is **T-complete** if *A* is r.e. and $B \leq_T A$ for every r.e. set *B*.

Image: A matrix and a matrix

Turing Degrees

A set *A* is **T**-complete if *A* is r.e. and $B \leq_T A$ for every r.e. set *B*.

The equivalence class $d_T(A) = \{B \mid A \equiv_T A\}$ is called Turing degree of *A*, or T-degree of *A*.

- A set *A* is **T-complete** if *A* is r.e. and $B \leq_T A$ for every r.e. set *B*.
- The equivalence class $d_T(A) = \{B \mid A \equiv_T A\}$ is called Turing degree of *A*, or T-degree of *A*.

A T-degree containing a recursive set is called a recursive T-degree.

Turing Degrees

- A set *A* is **T-complete** if *A* is r.e. and $B \leq_T A$ for every r.e. set *B*.
- The equivalence class $d_T(A) = \{B \mid A \equiv_T A\}$ is called Turing degree of *A*, or T-degree of *A*.
- A T-degree containing a recursive set is called a recursive T-degree.
- A T-degree containing an r.e. set is called an r.e. T-degree.

Reduction and Degree Relative Computability Turing Reducibility

Turing Reducibility and Turing Degrees

The set of degrees is ranged over by **a**, **b**, **c**,

A > 4

Turing Reducibility and Turing Degrees

The set of degrees is ranged over by **a**, **b**, **c**,

 $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$.

< 17 ► <

Turing Reducibility and Turing Degrees

The set of degrees is ranged over by **a**, **b**, **c**,

- $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$.
- $\mathbf{a} < \mathbf{b}$ iff $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$.

< 1 → <

Turing Reducibility and Turing Degrees

The set of degrees is ranged over by **a**, **b**, **c**,

- $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$.
- $\mathbf{a} < \mathbf{b}$ iff $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$.

The relation \leq is a partial order.

Theorem

(i) There is precisely one recursive degree **0**, which consists of all the recursive sets and is the unique minimal degree.

If *A* is recursive, then $A \leq_T B$ for all *B*; If *B* is recursive and $A \leq_T B$, then *A* is recursive.

Theorem

(i) There is precisely one recursive degree **0**, which consists of all the recursive sets and is the unique minimal degree.

If *A* is recursive, then $A \leq_T B$ for all *B*; If *B* is recursive and $A \leq_T B$, then *A* is recursive.

(ii) Let 0' be the degree of *K*. Then 0 < 0' and 0' is a maximum among all r.e. degrees.

From (i), $0 \le 0'$; $0 \ne 0'$ since *K* is not recursive. Since *A* is r.e. $\Rightarrow A \le_T K$, we have if **a** is any r.e. degree, $\mathbf{a} \le 0'$.

Theorem

(i) There is precisely one recursive degree **0**, which consists of all the recursive sets and is the unique minimal degree.

If *A* is recursive, then $A \leq_T B$ for all *B*; If *B* is recursive and $A \leq_T B$, then *A* is recursive.

(ii) Let 0' be the degree of *K*. Then 0 < 0' and 0' is a maximum among all r.e. degrees.

From (i), $0 \le 0'$; $0 \ne 0'$ since *K* is not recursive. Since *A* is r.e. $\Rightarrow A \le_T K$, we have if **a** is any r.e. degree, $\mathbf{a} \le 0'$.

(iii)
$$d_m(A) \subseteq d_T(A)$$
; and if $d_m(A) \leq_m d_m(B)$ then $d_T(A) \leq d_T(B)$.
If $A \leq_m B$ then $A \leq_T B$.

Theorem. The following statements are valid.

(i)
$$K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$$
 is A-r.e.
Since K^{χ} is χ -r.e.

• □ > • □ > • □ > •

э

Theorem. The following statements are valid.

- (i) $K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$ is A-r.e. Since K^{χ} is χ -r.e.
- (ii) If *B* is *A*-r.e., then $B \leq_T K^A$.

By relativised s-m-n theorem, if *B* is *A*-r.e., then $B \leq_m K^A$.

Theorem. The following statements are valid.

- (i) $K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$ is A-r.e. Since K^{χ} is χ -r.e.
- (ii) If *B* is *A*-r.e., then $B \leq_T K^A$.

By relativised s-m-n theorem, if *B* is *A*-r.e., then $B \leq_m K^A$.

(iii) If *A* is recursive then $K^A \equiv_T K$.

" \Leftarrow " $K \leq_T K^A$ since K is A-r.e. for any A;

"⇒" If *A* is recursive then *A*-computable partial characteristic function of K^A is actually computable (if χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$). Hence K^A is r.e., and $K^A \leq_T K$.

Theorem. The following statements are valid.

- (i) $K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$ is A-r.e. Since K^{χ} is χ -r.e.
- (ii) If *B* is *A*-r.e., then $B \leq_T K^A$.

By relativised s-m-n theorem, if *B* is *A*-r.e., then $B \leq_m K^A$.

(iii) If *A* is recursive then $K^A \equiv_T K$.

" \Leftarrow " $K \leq_T K^A$ since K is A-r.e. for any A;

"⇒" If *A* is recursive then *A*-computable partial characteristic function of K^A is actually computable (if χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$). Hence K^A is r.e., and $K^A \leq_T K$.

(iv) $A <_T K^A$.

" $A \leq_T K^A$ " is given by (ii). " $A \not\equiv_T K^A$ " is given by " K^{χ} is χ -r.e. but not χ -recursive."

CSC363-Computability Theory@SJTU

Relativization

(v) If $A \leq_T B$ then $K^A \leq_T K^B$. If $A \leq_T B$, then since K^A is A-r.e. it is also B-r.e., so $K^A \leq_T K^B$.

Relativization

(v) If $A \leq_T B$ then $K^A \leq_T K^B$. If $A \leq_T B$, then since K^A is A-r.e. it is also B-r.e., so $K^A \leq_T K^B$. (vi) If $A \equiv_T B$ then $K^A \equiv_T K^B$. Follows immediately from (v).

 K^A is a T-complete A-r.e. set. Also called the completion of A, or the jump of A, and denoted as A'.

< A >

 K^A is a T-complete A-r.e. set. Also called the completion of A, or the jump of A, and denoted as A'.

Definition. The jump of **a**, denoted \mathbf{a}' , is the degree of K^A for any $A \in \mathbf{a}$.

 K^A is a T-complete A-r.e. set. Also called the completion of A, or the jump of A, and denoted as A'.

Definition. The jump of **a**, denoted \mathbf{a}' , is the degree of K^A for any $A \in \mathbf{a}$.

Notation (1). By Relativization jump is a valid definition because the degree of K^A is the same for every $A \in \mathbf{a}$.

Notation (2). The new definition of 0' as the jump of 0 accords with our earlier definition of 0' as the degree of *K*.

Basic Properties

Theorem. For any degree a and b, the following statements are valid.
(i) a < a'.

```
(ii) If \mathbf{a} < \mathbf{b} then \mathbf{a}' < \mathbf{b}'
```

(iii) If $B \in \mathbf{b}$, $A \in \mathbf{a}$ and B is A-r.e. then $\mathbf{b} \leq \mathbf{a}'$.

Important Results

Theorem. Any degrees **a**, **b** have a unique least upper bound.

Theorem. Any non-recursive r.e. degree contains a simple set.

Theorem. There are r.e. sets A, B s.t. $A \not\leq_T B$ and $B \not\leq_T A$. Hence, if **a**, **b** are $d_T(A)$, $d_T(B)$ respectively, $\mathbf{a} \not\leq \mathbf{b}$ and $\mathbf{b} \not\leq \mathbf{a}$, and thus $\mathbf{0} < \mathbf{a} < \mathbf{0}'$ and $\mathbf{0} < \mathbf{b} < \mathbf{0}'$.

Degrees **a**, **b** such that $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{a}$ are called incomparable degrees, denoted as $\mathbf{a} \mid \mathbf{b}$.

Theorem. For any r.e. degree $\mathbf{a} > \mathbf{0}$, there is an r.e. degree \mathbf{b} such that $\mathbf{b} \mid \mathbf{a}$.

• □ ▶ • • □ ▶ • □ ▶

Important Results (2)

Sack's Density Theorem. For any r.e. degrees a < b there is an r.e. degree c with a < c < b.

Sack's Splitting Theorem. For any r.e. degrees a > 0 there are r.e. degrees b, c such that b < a c < a and $a = b \cup c$ (hence $b \mid c$).

Lachlan, Yates Theorem.

(a). \exists r.e. degrees a, b > 0 such that 0 is the greatest lower bound of a and b.

(b). \exists r.e. degrees **a**, **b** having no greatest lower bound (either among all degrees or among r.e. degrees).

Shoenfield Theorem. There is a non-r.e. degree $\mathbf{a} < \mathbf{0}'$.

Spector Theorem. There is a minimal degree. (A minimal degree is a degree m > 0 such that there is no degree a with 0 < a < m).

Theorem. For any r.e. m-degree $\mathbf{a} >_m \mathbf{0}_m$, \exists an r.e. m-degree \mathbf{b} s.t. $\mathbf{b} \mid \mathbf{a}$. CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree