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General Remark

A problem is a set of numbers.

A reduction is a way of defining a solution of a problem with thehelp
of the solutions of another problem.

There are several inequivalent ways of reducing a problem toanother
problem.

The differences between different reductions consists in the manner
and extent to which information aboutB is allowed to settle questions
aboutA.
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Many-One Reduction

The setA is many-one reducible(m-reducible) to the setB if there is a
total computable functionf such thatx ∈ A iff f (x) ∈ B for all x.
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Many-One Reduction

The setA is many-one reducible(m-reducible) to the setB if there is a
total computable functionf such thatx ∈ A iff f (x) ∈ B for all x.

We shall writeA ≤m B or more explicitlyf : A ≤m B.
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Many-One Reduction

The setA is many-one reducible(m-reducible) to the setB if there is a
total computable functionf such thatx ∈ A iff f (x) ∈ B for all x.

We shall writeA ≤m B or more explicitlyf : A ≤m B.

If f is injective, then we are talking aboutone-one reducibility.
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Examples

1. K is m-reducible to{x | φx = 0}, {x | c ∈ Wx} and{x | φx is total}.
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Examples

1. K is m-reducible to{x | φx = 0}, {x | c ∈ Wx} and{x | φx is total}.

f0(x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx
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Examples

1. K is m-reducible to{x | φx = 0}, {x | c ∈ Wx} and{x | φx is total}.

f0(x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx

2. Rice Theorem is proved by showing thatK ≤m {x | φx ∈ B}.
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1. K is m-reducible to{x | φx = 0}, {x | c ∈ Wx} and{x | φx is total}.

f0(x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx

2. Rice Theorem is proved by showing thatK ≤m {x | φx ∈ B}.

fg(x, y) =

{

g(y) if x ∈ Wx

↑ if x 6∈ Wx

x ∈ Wx ⇒ φk(x) = g ∈ B

x 6∈ Wx ⇒ φk(x) = f∅ 6∈ B
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{

0 if x ∈ Wx

↑ if x 6∈ Wx
fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx

2. Rice Theorem is proved by showing thatK ≤m {x | φx ∈ B}.

fg(x, y) =

{

g(y) if x ∈ Wx

↑ if x 6∈ Wx

x ∈ Wx ⇒ φk(x) = g ∈ B

x 6∈ Wx ⇒ φk(x) = f∅ 6∈ B

3. {x | φx is total} ≤m {x | φx = 0}.
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Examples

1. K is m-reducible to{x | φx = 0}, {x | c ∈ Wx} and{x | φx is total}.

f0(x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx

2. Rice Theorem is proved by showing thatK ≤m {x | φx ∈ B}.

fg(x, y) =

{

g(y) if x ∈ Wx

↑ if x 6∈ Wx

x ∈ Wx ⇒ φk(x) = g ∈ B

x 6∈ Wx ⇒ φk(x) = f∅ 6∈ B

3. {x | φx is total} ≤m {x | φx = 0}.

φk(x) = 0 ◦ φx
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1. ≤m is reflexive:A ≤m A.

f : A ≤m A is the identity function.
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Elementary Properties

Let A, B, C be sets.

1. ≤m is reflexive:A ≤m A.

f : A ≤m A is the identity function.

2. ≤m transitive:A ≤m B, B ≤m C ⇒ A ≤m C.

Let f : A ≤m B, g : B ≤m C, theng ◦ f : A ≤m C.
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Elementary Properties

Let A, B, C be sets.

1. ≤m is reflexive:A ≤m A.

f : A ≤m A is the identity function.

2. ≤m transitive:A ≤m B, B ≤m C ⇒ A ≤m C.

Let f : A ≤m B, g : B ≤m C, theng ◦ f : A ≤m C.

3. A ≤m B iff A ≤m B.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 7/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Elementary Properties

Let A, B, C be sets.

1. ≤m is reflexive:A ≤m A.

f : A ≤m A is the identity function.

2. ≤m transitive:A ≤m B, B ≤m C ⇒ A ≤m C.

Let f : A ≤m B, g : B ≤m C, theng ◦ f : A ≤m C.

3. A ≤m B iff A ≤m B.

If g : A ≤m B, thenx ∈ A ⇔ f (x) ∈ B; sox ∈ A ⇔ g(x) ∈ B.
Henceg : A ≤m B.
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Elementary Properties (2)

4. If A is recursive andB ≤m A, thenB is recursive.
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Elementary Properties (2)

4. If A is recursive andB ≤m A, thenB is recursive.

g : B ≤m A; thencB(x) = cA(g(x)). SocB is computable.
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4. If A is recursive andB ≤m A, thenB is recursive.

g : B ≤m A; thencB(x) = cA(g(x)). SocB is computable.

5. If A is recursive andB 6= ∅,N, thenA ≤m B.
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Elementary Properties (2)

4. If A is recursive andB ≤m A, thenB is recursive.

g : B ≤m A; thencB(x) = cA(g(x)). SocB is computable.

5. If A is recursive andB 6= ∅,N, thenA ≤m B.

Let b ∈ B, c 6∈ B, f (x) =

{

b if x ∈ A;
c if x 6∈ A.

; thenf is

computable.

x ∈ A ⇔ f (x) ∈ B.
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4. If A is recursive andB ≤m A, thenB is recursive.

g : B ≤m A; thencB(x) = cA(g(x)). SocB is computable.

5. If A is recursive andB 6= ∅,N, thenA ≤m B.

Let b ∈ B, c 6∈ B, f (x) =

{

b if x ∈ A;
c if x 6∈ A.

; thenf is

computable.

x ∈ A ⇔ f (x) ∈ B.

6. If A is r.e. andB ≤m A, thenB is r.e.
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Elementary Properties (2)

4. If A is recursive andB ≤m A, thenB is recursive.

g : B ≤m A; thencB(x) = cA(g(x)). SocB is computable.

5. If A is recursive andB 6= ∅,N, thenA ≤m B.

Let b ∈ B, c 6∈ B, f (x) =

{

b if x ∈ A;
c if x 6∈ A.

; thenf is

computable.

x ∈ A ⇔ f (x) ∈ B.

6. If A is r.e. andB ≤m A, thenB is r.e.

Let g : B ≤m A, A = Dom(h), (h ∈ C1); thenB = Dom(h ◦ g)
(B is r.e.)
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Elementary Properties (3)

7. (i). A ≤m N iff A = N; (ii). A ≤m ∅ iff A = ∅.
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Elementary Properties (3)

7. (i). A ≤m N iff A = N; (ii). A ≤m ∅ iff A = ∅.

(i).“⇐": By reflexivity, N ≤m N.
(i).“⇒": Let f : A ≤m N, thenx ∈ A ⇔ f (x) ∈ N. ThusA = N.
(ii). A ≤m ∅ ⇔ A ≤m N ⇔ A = N ⇔ A = ∅.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 9/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Elementary Properties (3)

7. (i). A ≤m N iff A = N; (ii). A ≤m ∅ iff A = ∅.

(i).“⇐": By reflexivity, N ≤m N.
(i).“⇒": Let f : A ≤m N, thenx ∈ A ⇔ f (x) ∈ N. ThusA = N.
(ii). A ≤m ∅ ⇔ A ≤m N ⇔ A = N ⇔ A = ∅.

8. (i). N ≤m A iff A 6= ∅; (ii). ∅ ≤m A iff A 6= N.
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Elementary Properties (3)

7. (i). A ≤m N iff A = N; (ii). A ≤m ∅ iff A = ∅.

(i).“⇐": By reflexivity, N ≤m N.
(i).“⇒": Let f : A ≤m N, thenx ∈ A ⇔ f (x) ∈ N. ThusA = N.
(ii). A ≤m ∅ ⇔ A ≤m N ⇔ A = N ⇔ A = ∅.

8. (i). N ≤m A iff A 6= ∅; (ii). ∅ ≤m A iff A 6= N.

(i). “⇒": Let f : N ≤m A, thenA = Ran(f ), soA 6= ∅ (f is
total).

(i). “⇐": If A 6= ∅, choosec ∈ A. If g(x) = c, we have
g : N ≤m A.

(ii). ∅ ≤m A ⇔ N ≤m A ⇔ A 6= ∅ ⇔ A = N.
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Corollary

Corollary . Neither{x | φx is total} nor{x | φx is not total} is
m-reducible toK.
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Corollary

Corollary . Neither{x | φx is total} nor{x | φx is not total} is
m-reducible toK.

Proof. By contradiction, if{x | φx is total} ≤m K, andK is r.e., then
{x | φx is total} is r.e. (same as{x | φx is not total}).

However, by Rice-Shapiro Theorem, Neither{x | φx is total} nor
{x | φx is not total} is r.e.
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Corollary (2)

Fact. If A is r.e. and is not recursive, thenA 6≤m A andA 6≤m A.
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Corollary (2)

Fact. If A is r.e. and is not recursive, thenA 6≤m A andA 6≤m A.

Proof. “A 6≤m A": By contradiction, ifA ≤m A, thenA is r.e., thenA is
recursive!

“A 6≤m A": By contradiction, ifA ≤m A, thenA ≤m A, thenA is
recursive!
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Corollary (2)

Fact. If A is r.e. and is not recursive, thenA 6≤m A andA 6≤m A.

Proof. “A 6≤m A": By contradiction, ifA ≤m A, thenA is r.e., thenA is
recursive!

“A 6≤m A": By contradiction, ifA ≤m A, thenA ≤m A, thenA is
recursive!

Notation: It contradicts to our intuition thatA andA are equally
difficult.
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Theorem. A is r.e. iff A ≤m K.
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Theorem

Theorem. A is r.e. iff A ≤m K.

Proof. “⇐". SinceA ≤m K, andK is r.e., thenA is r.e.

SupposeA is r.e. Letf (x, y) be f (x, y) =

{

1, if x ∈ A,
↑, if x /∈ A.

By s-m-n Theorem∃s(x) : N → N such thatf (x, y) = φs(x)(y).

It is clear thatx ∈ A iff φs(x)(s(x)) is defined iffs(x) ∈ K. Hence
A ≤m K.
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Theorem

Theorem. A is r.e. iff A ≤m K.

Proof. “⇐". SinceA ≤m K, andK is r.e., thenA is r.e.

SupposeA is r.e. Letf (x, y) be f (x, y) =

{

1, if x ∈ A,
↑, if x /∈ A.

By s-m-n Theorem∃s(x) : N → N such thatf (x, y) = φs(x)(y).

It is clear thatx ∈ A iff φs(x)(s(x)) is defined iffs(x) ∈ K. Hence
A ≤m K.

Notation. K is the most difficult partially decidable problem.
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Many-One Equivalence

Definition. Two setsA,B aremany-one equivalent, notationA ≡m B
(abbreviatedm-equivalent), ifA ≤m B andB ≤m A.
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Definition. Two setsA,B aremany-one equivalent, notationA ≡m B
(abbreviatedm-equivalent), ifA ≤m B andB ≤m A.

Theorem. ≡m is an equivalence relation.
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Many-One Equivalence

Definition. Two setsA,B aremany-one equivalent, notationA ≡m B
(abbreviatedm-equivalent), ifA ≤m B andB ≤m A.

Theorem. ≡m is an equivalence relation.

Proof.
(1). Reflexivity:A ≤m A ⇒ A ≡m A.

(2). Symmetry:A ≡m B ⇒ B ≤m A, A ≤m B ⇒ B ≡m A.

(3). Transitivity: A ≡m B, B ≡m C ⇒ A ≤m C, C ≤m A ⇒ A ≡m C.
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Examples

1. {x | c ∈ Wx} ≡m K.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 14/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Examples

1. {x | c ∈ Wx} ≡m K.

“⇐": fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx
⇒ K ≤m {x | c ∈ Wx}

“⇒": {x | c ∈ Wx} is r.e., so{x | c ∈ Wx} ≤m K.

Thus{x | c ∈ Wx} ≡m K.
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Examples

1. {x | c ∈ Wx} ≡m K.

“⇐": fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx
⇒ K ≤m {x | c ∈ Wx}

“⇒": {x | c ∈ Wx} is r.e., so{x | c ∈ Wx} ≤m K.

Thus{x | c ∈ Wx} ≡m K.

2. If A is recursive,A 6= ∅,N, thenA ≡m A.
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Examples

1. {x | c ∈ Wx} ≡m K.

“⇐": fN(x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx
⇒ K ≤m {x | c ∈ Wx}

“⇒": {x | c ∈ Wx} is r.e., so{x | c ∈ Wx} ≤m K.

Thus{x | c ∈ Wx} ≡m K.

2. If A is recursive,A 6= ∅,N, thenA ≡m A.

A 6= ∅,N ⇒ A 6= ∅,N.

A is recursive, by previous theoremA ≤m A. Similarly, A ≤m A.
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Example (2)

3. If A is r.e. but not recursive, thenA 6≡m A.
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Example (2)

3. If A is r.e. but not recursive, thenA 6≡m A.

A is r.e. but not recursive⇒ A 6≤m A, A 6≤m A.
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Example (2)

3. If A is r.e. but not recursive, thenA 6≡m A.

A is r.e. but not recursive⇒ A 6≤m A, A 6≤m A.

4. {x | φx = 0} ≡m {x | φx is total}.
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Example (2)

3. If A is r.e. but not recursive, thenA 6≡m A.

A is r.e. but not recursive⇒ A 6≤m A, A 6≤m A.

4. {x | φx = 0} ≡m {x | φx is total}.

“⇐": φk(x) = 0 ◦ φx ⇒ {x | φx is total} ≤m {x | φx = 0}.

“⇒": Let φk(x)(y) =

{

0 if φx(y) = 0;
↑ if φx(y) 6= 0.

.

Thenφx = 0 ⇔ φk(x) is total ⇒ {x | φx = 0} ≤m {x | φx is total}.
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Definition. Let dm(A) be{B | A ≡m B}.
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m-Degree

Definition. Let dm(A) be{B | A ≡m B}.

Definition. An m-degreeis an equivalence class of sets under the
relation≡m. It is any class of sets of the formdm(A) for some setA.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 16/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

m-Degree

Definition. Let dm(A) be{B | A ≡m B}.

Definition. An m-degreeis an equivalence class of sets under the
relation≡m. It is any class of sets of the formdm(A) for some setA.

A recursive m-degreeis an m-degree that contains a recursive set.
An r.e. m-degreeis an m-degree that contains an r.e. set.
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Degrees
m-Complete r.e. Set

Expression

Definition. The set ofm-degrees is ranged over bya,b, c, . . ..

Definition (Partial Order on m-Degree). Let a, b bem-degrees.

(1). a ≤m b iff A ≤m B for someA ∈ a andB ∈ b.

(2). a<m b iff a ≤m b andb 6≤m a (a 6= b).

The relation<m is a partial order.
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Many-One Reduction
Degrees
m-Complete r.e. Set

Expression

Definition. The set ofm-degrees is ranged over bya,b, c, . . ..

Definition (Partial Order on m-Degree). Let a, b bem-degrees.

(1). a ≤m b iff A ≤m B for someA ∈ a andB ∈ b.

(2). a<m b iff a ≤m b andb 6≤m a (a 6= b).

The relation<m is a partial order.

Notation. From the definition of≡m,
a ≤m b ⇔ ∀A ∈ a,B ∈ b,A ≤m B.
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Theorem

Theorem. The relation<m is a partial ordering ofm-degrees.
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Theorem

Theorem. The relation<m is a partial ordering ofm-degrees.

Proof.

(1) By transitivitya ≤m b, b ≤m c impliesa ≤m c.

If a ≤m b andb ≤m a, we have to prove thata = b.

(2) Irreflexivity: Let A ∈ a andB ∈ b, then we haveA ≤m B and
B ≤m A, soA ≡m B. Hencea = b.

Consequently,<m is partial ordering.
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Some Facts

1. o andn are respectively the recursive m-degrees{∅} and{N}.

A ≤m N ⇔ A = N; A ≤m ∅ ⇔ A = ∅.
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Many-One Reduction
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m-Complete r.e. Set

Some Facts

1. o andn are respectively the recursive m-degrees{∅} and{N}.

A ≤m N ⇔ A = N; A ≤m ∅ ⇔ A = ∅.

2. Therecursive m-degree0m consists of all the recursive sets except
∅,N.

0m ≤m a for anym-degreea other thano andn.

A is recursive,B ≤m A ⇒ B is recursive;
A is recursive andB 6= ∅,N ⇒ A ≤m B.
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Some Facts

1. o andn are respectively the recursive m-degrees{∅} and{N}.

A ≤m N ⇔ A = N; A ≤m ∅ ⇔ A = ∅.

2. Therecursive m-degree0m consists of all the recursive sets except
∅,N.

0m ≤m a for anym-degreea other thano andn.

A is recursive,B ≤m A ⇒ B is recursive;
A is recursive andB 6= ∅,N ⇒ A ≤m B.

3. ∀ m-degreea, o ≤m a provideda 6= n; n ≤m a provideda 6= o.

N ≤m A ⇔ A 6= ∅; ∅ ≤m A ⇔ A 6= N.
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Facts (2)

4. An r.e.m-degree consists of only r.e. sets.

If A is r.e. andB ≤m A, thenB is r.e.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 20/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Facts (2)

4. An r.e.m-degree consists of only r.e. sets.

If A is r.e. andB ≤m A, thenB is r.e.

5. If a ≤m b andb is an r.e.m-degree, thena is also an r.e.m-degree.

If A is r.e. andB ≤m A, thenB is r.e.
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Many-One Reduction
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m-Complete r.e. Set

Facts (2)

4. An r.e.m-degree consists of only r.e. sets.

If A is r.e. andB ≤m A, thenB is r.e.

5. If a ≤m b andb is an r.e.m-degree, thena is also an r.e.m-degree.

If A is r.e. andB ≤m A, thenB is r.e.

6. The maximum r.e.m-degreedm(K) is denoted by0′m.

A setA is r.e. iff A ≤m K.
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Illumination
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Facts about r.e.m-Degrees

1. Excludingo andn, there is a minimum r.e.m-degree0m (in fact 0m

is minimum among allm-degrees).
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Facts about r.e.m-Degrees

1. Excludingo andn, there is a minimum r.e.m-degree0m (in fact 0m

is minimum among allm-degrees).

2. The r.e.m-degrees form aninitial segmentof them-degrees; i.e.,
anything below an r.e.m-degree is also r.e.
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Facts about r.e.m-Degrees

1. Excludingo andn, there is a minimum r.e.m-degree0m (in fact 0m

is minimum among allm-degrees).

2. The r.e.m-degrees form aninitial segmentof them-degrees; i.e.,
anything below an r.e.m-degree is also r.e.

3. There is a maximum r.e.m-degree0′m.
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Many-One Reduction
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m-Complete r.e. Set

Facts about r.e.m-Degrees

1. Excludingo andn, there is a minimum r.e.m-degree0m (in fact 0m

is minimum among allm-degrees).

2. The r.e.m-degrees form aninitial segmentof them-degrees; i.e.,
anything below an r.e.m-degree is also r.e.

3. There is a maximum r.e.m-degree0′m.

4. While there are uncountably manym-degrees, only countably
many of these are r.e.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 22/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Algebraic Structure

Theorem. Them-degrees form anupper semi-lattice.
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Group

In mathematics, agroupis an algebraic structure consisting of a set
together with an operation(G, •) that combines any two of its
elements to form a third element.
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Group

In mathematics, agroupis an algebraic structure consisting of a set
together with an operation(G, •) that combines any two of its
elements to form a third element.

To qualify as a group, the set and the operation must satisfy four
conditions (group axioms), namelyclosure, associativity, identity and
invertibility.
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Group

In mathematics, agroupis an algebraic structure consisting of a set
together with an operation(G, •) that combines any two of its
elements to form a third element.

To qualify as a group, the set and the operation must satisfy four
conditions (group axioms), namelyclosure, associativity, identity and
invertibility.

closure: a, b ∈ G ⇒ a • b ∈ G.

associativity: (a • b) • c = a • (b • c).

identity: ∀a ∈ G, ∃ identity elemente ∈ G, s.t.e • a = a • e = a.

invertibility: ∀a ∈ G, ∃inverseb ∈ G s.t. a • b = b • a = e (b = a−1).
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Lattice

In mathematics, alatticeis apartially ordered set(poset)(L,≤) in
which any two elements have a uniquesupremum(also called a least
upper bound or join) and a uniqueinfimum (also called a greatest
lower bound or meet).

To qualify as a lattice, the set and the operation must satisfy tow
conditions:join-semilattice, meet-semilattice.

join-semilattice: ∀a, b ∈ L, the set{a, b} has ajoin a ∨ b.
(the least upper bound)

meet-semilattice: ∀a, b ∈ L, the set{a, b} has ameeta ∧ b.
(the greatest lower bound)

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 25/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

The Name “Lattice"

The name "lattice" is suggested
by the form of theHasse diagram
depicting it. I.e., the right pic-
ture is the lattice of partitions of
a four-element set{1,2,3,4}, or-
dered by the relation "is a refine-
ment of".
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Upper Semi-lattice

Theorem. Any pair ofm-degreesa, b have a least upper bound; i.e.
there is anm-degreec such that

(i). a ≤m c andb ≤m c (c is an upper bound);

(ii). c ≤m any other upper bound ofa, b.
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Proof

(i). Pick A ∈ a, B ∈ b, and letC = A ⊕ B, i.e.,

C = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.

Then
x ∈ A ⇔ 2x ∈ C =⇒ A ≤m C;

x ∈ B ⇔ 2x + 1 ∈ C =⇒ B ≤m C;

Thusc is an upper bound ofa, b.
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Proof (2)

(ii). Let d is anm-degree such thata ≤m d, andb ≤m d.

∀D ∈ d, supposef : A ≤m D andg : B ≤m D. Then

x ∈ C ⇔ (x is even&
x
2
∈ A) ∨ (x is odd&

x − 1
2

∈ B)

⇔ (x is even&f (
x
2
) ∈ D) ∨ (x is odd&g(

x − 1
2

) ∈ D)

Thus we haveh : C ≤m D if we defineh =

{

f ( x
2) if x is even;

g( x−1
2 ) if x is odd.

Hencec ≤m d.
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Definition

Definition. An r.e. set ism-completeif every r.e. set is m-reducible to
it.
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Definition

Definition. An r.e. set ism-completeif every r.e. set is m-reducible to
it.

Notation. 0′m, them-degree ofK is maximum among all r.e.
m-degrees, and thusK is m-complete r.e. set(or just called
m-complete set).
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Theorem

Theorem. The following statements are valid.

(i) K is m-complete.

(ii) A is m-complete iffA ≡m K iff A is r.e. andK ≤m A.

(iii) 0′m consists exactly of all them-complete sets.
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Examples

The following sets are m-complete.
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Examples

The following sets are m-complete.

(i) {x | c ∈ Wx}.
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Examples

The following sets are m-complete.

(i) {x | c ∈ Wx}.

(ii) Every non-trivial r.e. set of the form{x | φx ∈ B}.
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m-Complete r.e. Set

Examples

The following sets are m-complete.

(i) {x | c ∈ Wx}.

(ii) Every non-trivial r.e. set of the form{x | φx ∈ B}.

(iii) {x | φx(x) = 0}.
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Many-One Reduction
Degrees
m-Complete r.e. Set

Examples

The following sets are m-complete.

(i) {x | c ∈ Wx}.

(ii) Every non-trivial r.e. set of the form{x | φx ∈ B}.

(iii) {x | φx(x) = 0}.

(iv). {x | x ∈ Ex}.
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Creative Set

Theorem. Any m-complete set iscreative.
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Creative Set

Theorem. Any m-complete set iscreative.

Proof. If A is m-complete,A is r.e. set.

Also, K ≤m A, soK ≤m A. ThusA is productive.
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Myhill’s Theorem

Myhill’s Theorem . A set is m-complete iff it is creative.
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m-Complete r.e. Sets

Corollary . If a is them-degree of any simple set, then
0m <m a<m 0′m (Simple sets are notm-complete).
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m-Complete r.e. Sets

Corollary . If a is them-degree of any simple set, then
0m <m a<m 0′m (Simple sets are notm-complete).

Proof. Simple sets are designed to be neither recursive nor creative.
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Outline

1 Reduction and Degree
Many-One Reduction
Degrees
m-Complete r.e. Set

2 Relative Computability

3 Turing Reducibility
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m-reducibility has two unsatisfactory features:
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m-reducibility has two unsatisfactory features:

(i) The exceptional behavior of∅ andN.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 37/64



Reduction and Degree
Relative Computability

Turing Reducibility

Comparison

m-reducibility has two unsatisfactory features:

(i) The exceptional behavior of∅ andN.

(ii) The invalidity of A 6≡m A in general.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 37/64



Reduction and Degree
Relative Computability

Turing Reducibility

Comparison

m-reducibility has two unsatisfactory features:

(i) The exceptional behavior of∅ andN.

(ii) The invalidity of A 6≡m A in general.

The problem is due to the restricted use of oracles.

E.g. x ∈ A iff x 6∈ A
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Relative Computability

Supposeχ is atotal unary function.
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Relative Computability

Supposeχ is atotal unary function.

Informally a functionf is computable relative toχ, orχ-computable,
if f can be computed by an algorithm that is effective in the usual
sense, except from time to time during computationsf is allowed to
consult theoracle functionχ.
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Relative Computability

Supposeχ is atotal unary function.

Informally a functionf is computable relative toχ, orχ-computable,
if f can be computed by an algorithm that is effective in the usual
sense, except from time to time during computationsf is allowed to
consult theoracle functionχ.

Such an algorithm is called aχ-algorithm.
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URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of
instruction,O(n), for everyn ≥ 1.
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URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of
instruction,O(n), for everyn ≥ 1.

If χ is the oracle, then the effect ofO(n) is to replace the contentrn of
Rn by χ(rn).
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URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of
instruction,O(n), for everyn ≥ 1.

If χ is the oracle, then the effect ofO(n) is to replace the contentrn of
Rn by χ(rn).

Pχ denote the programP when used with the functionχ in the oracle.
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URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of
instruction,O(n), for everyn ≥ 1.

If χ is the oracle, then the effect ofO(n) is to replace the contentrn of
Rn by χ(rn).

Pχ denote the programP when used with the functionχ in the oracle.

Pχ(a) ↓ b means the computationPχ(a) with initial configuration
a1, a2, · · · , an,0,0, · · · stops with the numberb is registerR1.
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URMO-Computable

Let χ be a unary total function, and suppose thef is a partial function
from N

n to N.

(a) Let P be a URMO program, thenP URMO-computesf relative
to χ (or f is χ-computed byP) if, for everya ∈ N

n andb ∈ N,
Pχ(a) ↓ b iff f (a) ≃ b.

(b) The functionf is URMO-computable relative toχ (or
χ-computable) if there is a URMO program that
URMO-computes it relative toχ.
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URMO-Computable

Let χ be a unary total function, and suppose thef is a partial function
from N

n to N.

(a) Let P be a URMO program, thenP URMO-computesf relative
to χ (or f is χ-computed byP) if, for everya ∈ N

n andb ∈ N,
Pχ(a) ↓ b iff f (a) ≃ b.

(b) The functionf is URMO-computable relative toχ (or
χ-computable) if there is a URMO program that
URMO-computes it relative toχ.

C χ is the set of allχ-computable functions.
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Facts

(i) χ ∈ C χ.

Use URMO programO(1).
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Any URM program is a URMO program.
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Facts

(i) χ ∈ C χ.

Use URMO programO(1).

(ii) C ⊆ C χ.

Any URM program is a URMO program.

(iii) If χ is computable, thenC = C χ.

SinceC ⊆ C χ, we need to proveC χ ⊆ C . χ is computable, then
whenever a value ofχ is requested simply compute it by the
algorithm forχ. By Church’s thesis,f is computable.
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(iii) If χ is computable, thenC = C χ.

SinceC ⊆ C χ, we need to proveC χ ⊆ C . χ is computable, then
whenever a value ofχ is requested simply compute it by the
algorithm forχ. By Church’s thesis,f is computable.

(iv) C χ is closed under substitution, recursion and minimalisation.

Construct corresponding URMO programs.
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Facts

(i) χ ∈ C χ.

Use URMO programO(1).

(ii) C ⊆ C χ.

Any URM program is a URMO program.

(iii) If χ is computable, thenC = C χ.

SinceC ⊆ C χ, we need to proveC χ ⊆ C . χ is computable, then
whenever a value ofχ is requested simply compute it by the
algorithm forχ. By Church’s thesis,f is computable.

(iv) C χ is closed under substitution, recursion and minimalisation.

Construct corresponding URMO programs.

(v) If ψ is a total unary function that isχ-computable, thenC ψ ⊆ C χ.

By Church’s thesis.
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Partial Recursive Function

The classRχ of χ-partial recursive functionsis the smallest class of
functions such that

(a) the basic functions are inRχ.

(b) χ ∈ Rχ.

(c) Rχ is closed under substitution, recursion, and minimalisation.
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χ-recursive, χ-primitive recursiveare defined in the obvious way.
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Turing Reducibility

Partial Recursive Function

The classRχ of χ-partial recursive functionsis the smallest class of
functions such that

(a) the basic functions are inRχ.

(b) χ ∈ Rχ.

(c) Rχ is closed under substitution, recursion, and minimalisation.

χ-recursive, χ-primitive recursiveare defined in the obvious way.

Theorem. For anyχ, Rχ = C χ.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 43/64



Reduction and Degree
Relative Computability

Turing Reducibility

Numbering URMO programs

Let’s fix an effective enumeration of all URMO programs

Q0,Q1,Q2, . . . .
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Numbering URMO programs

Let’s fix an effective enumeration of all URMO programs

Q0,Q1,Q2, . . . .

Let φχ,nm be then-ary functionχ-computed byQm.

Let φχm beφχ,1m .
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Turing Reducibility

Numbering URMO programs

Let’s fix an effective enumeration of all URMO programs

Q0,Q1,Q2, . . . .

Let φχ,nm be then-ary functionχ-computed byQm.

Let φχm beφχ,1m .

Wχ
m is Dom(φχm) andEχm is Ran(φχm).
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Numbering URMO programs

S-m-n Theorem. For eachm, n ≥ 1 there is a total computable
(m + 1)-ary functionsm

n (e, x) such that for anyχ

φχ,m+n
e (x, y) ≃ φχ,nsm

n (e,x)
(y).
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Numbering URMO programs

S-m-n Theorem. For eachm, n ≥ 1 there is a total computable
(m + 1)-ary functionsm

n (e, x) such that for anyχ

φχ,m+n
e (x, y) ≃ φχ,nsm

n (e,x)
(y).

Notice thatsm
n (e, x) does not refer toχ.
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Universal Programs for Relative Computability

Universal Function Theorem. For eachn, the universal function
ψχ,nU for n-aryχ-computable functions given by

ψχ,nU (e, x) ≃ φχ,ne (x)

is χ-computable.
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Relativization

Once we have the S-m-n Theorem and the Universal Function
Theorem, we can do the recursion theoryrelative toan oracle.
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χ-Recursive andχ-r.e. Sets

Let A be a set

(a) A is χ-recursive ifcA is χ-computable.

(b) A is χ-r.e. if the partial characteristic function

f (x) =

{

1 if x ∈ A,
↑ if x 6∈ A

is χ-computable.
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χ-Recursive andχ-r.e. Sets

Theorem. The following statements are valid.

(i) For any setA, A is χ-recursive iffA andA areχ-r.e.
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χ-Recursive andχ-r.e. Sets

Theorem. The following statements are valid.

(i) For any setA, A is χ-recursive iffA andA areχ-r.e.

(ii) For any setA, the following are equivalent.

A is χ-r.e.

A = Wχ
m for somem.

A = Eχm for somem.

A = ∅ or A is the range of a totalχ-computable function.

For someχ-decidable predicateR(x, y), x ∈ A iff ∃y.R(x, y).
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χ-Recursive andχ-r.e. Sets

Theorem. The following statements are valid.

(i) For any setA, A is χ-recursive iffA andA areχ-r.e.

(ii) For any setA, the following are equivalent.

A is χ-r.e.

A = Wχ
m for somem.

A = Eχm for somem.

A = ∅ or A is the range of a totalχ-computable function.

For someχ-decidable predicateR(x, y), x ∈ A iff ∃y.R(x, y).

(iii) Kχ def
= {x | x ∈ Wχ

x } is χ-r.e. but notχ-recursive.
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Computability Relative to a Set

Computability relative to asetA means computability relative to its
characteristic functioncA.
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Computability Relative to a Set

Computability relative to asetA means computability relative to its
characteristic functioncA.

For example:

PA for PcA (if P is a URMO program),

C A for C cA ,

φA
m for φcA

m .

WA
m for WcA

m ,

EA
m for EcA

m ,

KA for KcA ,

A-recursive forcA-recursive

A-r.e. forcA-r.e.

· · ·
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Outline

1 Reduction and Degree
Many-One Reduction
Degrees
m-Complete r.e. Set

2 Relative Computability

3 Turing Reducibility
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Turing Reducibility and Turing Degrees

The setA is Turing reducibleto B, notationA ≤T B, if A has a
B-computablecharacteristic functioncA.
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Turing Reducibility

Turing Reducibility and Turing Degrees

The setA is Turing reducibleto B, notationA ≤T B, if A has a
B-computablecharacteristic functioncA.

The setsA,B areTuring equivalent, notationA ≡T B, if A ≤T B and
B ≤T A.
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Notation

SupposeA ≤T B andP is the URMO program that computescA

relative toB. Then∀x, PB(x) converges and

PB(x) ↓ 1 if x ∈ A
PB(x) ↓ 0 if x 6∈ A

When calculatingPB(x) there will be a finite number of requests to
the oracle for a valuecB(n) of cB. These requests amount to a finite
number of questions of the form ‘n ∈ B?’.

So for anyx, ‘x ∈ A?’ is settled in a mechanical way by answering a
finite number of questions aboutB.
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Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;
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Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.
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Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.

A ≡T B iff C A = C B;
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Turing Reducibility

Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.

A ≡T B iff C A = C B;

(iii) If A ≤m B thenA ≤T B.
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Turing Reducibility

Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.

A ≡T B iff C A = C B;

(iii) If A ≤m B thenA ≤T B.

If f : A ≤m B andP is URM program to computef , then the
URMO programP, O(1) is B-computecA.
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(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.

A ≡T B iff C A = C B;

(iii) If A ≤m B thenA ≤T B.

If f : A ≤m B andP is URM program to computef , then the
URMO programP, O(1) is B-computecA.

(iv) A ≡T A for all A.
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Turing Reducibility

Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.

A ≡T B iff C A = C B;

(iii) If A ≤m B thenA ≤T B.

If f : A ≤m B andP is URM program to computef , then the
URMO programP, O(1) is B-computecA.

(iv) A ≡T A for all A.

cA = sg ◦ cA, A is A-recursive=⇒ A ≤T A. (Similarly A ≤T A.)
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Turing Reducibility

Facts. (2)

(v) If A is recursive, thenA ≤T B for all B.
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Facts. (2)

(v) If A is recursive, thenA ≤T B for all B.

SinceC ⊆ C χ.
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SinceC ⊆ C χ.

(vi) If B is recursive andA ≤T B, thenA is recursive.
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Turing Reducibility

Facts. (2)

(v) If A is recursive, thenA ≤T B for all B.

SinceC ⊆ C χ.

(vi) If B is recursive andA ≤T B, thenA is recursive.

If χ is computable, thenC = C χ.
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Turing Reducibility

Facts. (2)

(v) If A is recursive, thenA ≤T B for all B.

SinceC ⊆ C χ.

(vi) If B is recursive andA ≤T B, thenA is recursive.

If χ is computable, thenC = C χ.

(vii) If A is r.e. thenA ≤T K.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 55/64



Reduction and Degree
Relative Computability

Turing Reducibility

Facts. (2)

(v) If A is recursive, thenA ≤T B for all B.

SinceC ⊆ C χ.

(vi) If B is recursive andA ≤T B, thenA is recursive.

If χ is computable, thenC = C χ.

(vii) If A is r.e. thenA ≤T K.

If A ≤m B thenA ≤T B; A setA is r.e. iff A ≤m K.
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Turing Degrees

A setA is T-completeif A is r.e. andB ≤T A for every r.e. setB.
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Turing Degrees

A setA is T-completeif A is r.e. andB ≤T A for every r.e. setB.

The equivalence classdT(A) = {B | A ≡T A} is calledTuring degree
of A, or T-degree ofA.
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Turing Degrees

A setA is T-completeif A is r.e. andB ≤T A for every r.e. setB.

The equivalence classdT(A) = {B | A ≡T A} is calledTuring degree
of A, or T-degree ofA.

A T-degree containing a recursive set is called arecursive T-degree.
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Turing Reducibility

Turing Degrees

A setA is T-completeif A is r.e. andB ≤T A for every r.e. setB.

The equivalence classdT(A) = {B | A ≡T A} is calledTuring degree
of A, or T-degree ofA.

A T-degree containing a recursive set is called arecursive T-degree.

A T-degree containing an r.e. set is called anr.e. T-degree.
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Turing Reducibility and Turing Degrees

The set of degrees is ranged over bya,b, c, . . ..
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Turing Reducibility and Turing Degrees

The set of degrees is ranged over bya,b, c, . . ..

a ≤ b iff A ≤T B for all A ∈ a andB ∈ b.
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Turing Reducibility and Turing Degrees

The set of degrees is ranged over bya,b, c, . . ..

a ≤ b iff A ≤T B for all A ∈ a andB ∈ b.

a< b iff a ≤ b anda 6= b.
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Turing Reducibility

Turing Reducibility and Turing Degrees

The set of degrees is ranged over bya,b, c, . . ..

a ≤ b iff A ≤T B for all A ∈ a andB ∈ b.

a< b iff a ≤ b anda 6= b.

The relation≤ is a partial order.
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Turing Reducibility

Theorem

(i) There isprecisely onerecursive degree0, which consists of all the
recursive sets and is the unique minimal degree.

If A is recursive, thenA ≤T B for all B; If B is recursive and
A ≤T B, thenA is recursive.
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Turing Reducibility

Theorem

(i) There isprecisely onerecursive degree0, which consists of all the
recursive sets and is the unique minimal degree.

If A is recursive, thenA ≤T B for all B; If B is recursive and
A ≤T B, thenA is recursive.

(ii) Let 0′ be the degree ofK. Then0< 0′ and0′ is a maximum
among all r.e. degrees.

From (i),0 ≤ 0′; 0 6= 0′ sinceK is not recursive. SinceA is r.e.⇒
A ≤T K, we have ifa is any r.e. degree,a ≤ 0′.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 58/64



Reduction and Degree
Relative Computability

Turing Reducibility

Theorem

(i) There isprecisely onerecursive degree0, which consists of all the
recursive sets and is the unique minimal degree.

If A is recursive, thenA ≤T B for all B; If B is recursive and
A ≤T B, thenA is recursive.

(ii) Let 0′ be the degree ofK. Then0< 0′ and0′ is a maximum
among all r.e. degrees.

From (i),0 ≤ 0′; 0 6= 0′ sinceK is not recursive. SinceA is r.e.⇒
A ≤T K, we have ifa is any r.e. degree,a ≤ 0′.

(iii) dm(A) ⊆ dT(A); and if dm(A) ≤m dm(B) thendT(A) ≤ dT(B).

If A ≤m B thenA ≤T B.
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Turing Reducibility

Jump Operation

Theorem. The following statements are valid.

(i) KA def
= {x | x ∈ WA

x } is A-r.e.

SinceKχ is χ-r.e.
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Turing Reducibility

Jump Operation

Theorem. The following statements are valid.

(i) KA def
= {x | x ∈ WA

x } is A-r.e.

SinceKχ is χ-r.e.

(ii) If B is A-r.e., thenB ≤T KA.

By relativised s-m-n theorem, ifB is A-r.e., thenB ≤m KA.
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Turing Reducibility

Jump Operation

Theorem. The following statements are valid.

(i) KA def
= {x | x ∈ WA

x } is A-r.e.

SinceKχ is χ-r.e.

(ii) If B is A-r.e., thenB ≤T KA.

By relativised s-m-n theorem, ifB is A-r.e., thenB ≤m KA.

(iii) If A is recursive thenKA ≡T K.

“⇐" K ≤T KA sinceK is A-r.e. for anyA;
“⇒" If A is recursive thenA-computable partial characteristic

function ofKA is actually computable (ifχ is computable, then
C = C χ). HenceKA is r.e., andKA ≤T K.
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Turing Reducibility

Jump Operation

Theorem. The following statements are valid.

(i) KA def
= {x | x ∈ WA

x } is A-r.e.

SinceKχ is χ-r.e.

(ii) If B is A-r.e., thenB ≤T KA.

By relativised s-m-n theorem, ifB is A-r.e., thenB ≤m KA.

(iii) If A is recursive thenKA ≡T K.

“⇐" K ≤T KA sinceK is A-r.e. for anyA;
“⇒" If A is recursive thenA-computable partial characteristic

function ofKA is actually computable (ifχ is computable, then
C = C χ). HenceKA is r.e., andKA ≤T K.

(iv) A <T KA.

“A ≤T KA" is given by (ii). “A 6≡T KA" is given by “Kχ is χ-r.e.
but notχ-recursive."
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Turing Reducibility

Relativization

(v) If A ≤T B thenKA ≤T KB.

If A ≤T B, then sinceKA is A-r.e. it is alsoB-r.e., soKA ≤T KB.
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Turing Reducibility

Relativization

(v) If A ≤T B thenKA ≤T KB.

If A ≤T B, then sinceKA is A-r.e. it is alsoB-r.e., soKA ≤T KB.

(vi) If A ≡T B thenKA ≡T KB.

Follows immediately from (v).
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Turing Reducibility

Jump Operation

KA is aT-completeA-r.e. set. Also called thecompletionof A, or the
jump of A, and denoted asA′.
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Turing Reducibility

Jump Operation

KA is aT-completeA-r.e. set. Also called thecompletionof A, or the
jump of A, and denoted asA′.

Definition. Thejump of a, denoteda′, is the degree ofKA for any
A ∈ a.
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Turing Reducibility

Jump Operation

KA is aT-completeA-r.e. set. Also called thecompletionof A, or the
jump of A, and denoted asA′.

Definition. Thejump of a, denoteda′, is the degree ofKA for any
A ∈ a.

Notation (1). By Relativization jump is a valid definition because the
degree ofKA is the same for everyA ∈ a.

Notation (2). The new definition of0′ as the jump of0 accords with
our earlier definition of 0′ as the degree ofK.
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Turing Reducibility

Basic Properties

Theorem. For any degreea andb, the following statements are valid.

(i) a< a′.

(ii) If a< b thena′ < b′

(iii) If B ∈ b, A ∈ a andB is A-r.e. thenb ≤ a′.
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Important Results

Theorem. Any degreesa,b have a unique least upper bound.

Theorem. Any non-recursive r.e. degree contains a simple set.

Theorem. There are r.e. setsA, B s.t. A 6≤T B andB 6≤T A. Hence, if
a, b aredT(A), dT(B) respectively,a 6≤ b andb 6≤ a, and thus
0< a< 0′ and0< b < 0′.

Degreesa, b such thata 6≤ b andb 6≤ a are called incomparable
degrees, denoted asa | b.

Theorem. For any r.e. degreea> 0, there is an r.e. degreeb such
thatb | a.
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Important Results (2)

Sack’s Density Theorem. For any r.e. degreesa< b there is an r.e.
degreec with a< c< b.

Sack’s Splitting Theorem. For any r.e. degreesa> 0 there are r.e.
degreesb, c such thatb < a c< a anda = b ∪ c (henceb | c).

Lachlan, Yates Theorem.
(a). ∃ r.e. degreesa, b > 0 such that0 is the greatest lower bound ofa
andb.
(b). ∃ r.e. degreesa, b having no greatest lower bound (either among
all degrees or among r.e. degrees).

Shoenfield Theorem. There is a non-r.e. degreea< 0′.

Spector Theorem. There is a minimal degree. (A minimal degree is a
degreem > 0 such that there is no degreea with 0< a< m).

Theorem. For any r.e. m-degreea>m 0m, ∃ an r.e. m-degreeb s.t.
b | a.
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