Recursive and Recursively Enumerable Sets

Xiaofeng Gao

Department of Computer Science and Engineering
Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

* Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.
Outline

1. Recursive Sets
 - Decidable Predicate
 - Reduction
 - Rice Theorem

2. Recursively Enumerable Set
 - Partial Decidable Predicates
 - Theorems

3. Special Sets
 - Productive Sets
 - Creative Set
 - Simple Sets
Recursive Sets
- Decidable Predicate
- Reduction
- Rice Theorem

Recursively Enumerable Set
- Partial Decidable Predicates
- Theorems

Special Sets
- Productive Sets
- Creative Set
- Simple Sets
The following emphasizes the importance of the subsets of \mathbb{N}:

$$\text{Decision Problems} \iff \text{Predicates on Number} \iff \text{Sets of Numbers}$$

A central theme of recursion theory is to look for sensible classification of number sets.

Classification is often done with the help of reduction.
Recursive Set

Let A be a subset of \mathbb{N}. The characteristic function of A is given by

$$c_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

A is recursive if $c_A(x)$ is computable.
A recursive set is (the domain of) a **solvable** problem.

It is important to know if a problem is solvable.
Examples

The following sets are recursive.

(a) \mathbb{N}.

(b) \mathbb{E} (the even numbers).

(c) Any finite set.

(d) The set of prime numbers.
Unsolvable Problem

Here are some important unsolvable problems:

\[
K = \{x \mid x \in W_x\},
\]
\[
Fin = \{x \mid W_x \text{ is finite}\},
\]
\[
Inf = \{x \mid W_x \text{ is infinite}\},
\]
\[
Cof = \{x \mid W_x \text{ is cofinite}\},
\]
\[
Rec = \{x \mid W_x \text{ is recursive}\},
\]
\[
Tot = \{x \mid \phi_x \text{ is total}\},
\]
\[
Ext = \{x \mid \phi_x \text{ is extensible to a total recursive function}\}.
\]
Cofinite

\[\text{Cof} = \{ x \mid W_x \text{ is cofinite} \} \text{ means the set whose complement is finite.} \]
Cofinite

\[\text{Cof} = \{ x \mid W_x \text{ is cofinite} \} \text{ means the set whose complement is finite.} \]

Example 1: \(\{ x \mid x \geq 5 \} \) is cofinite.
Cofinite

\[Cof = \{ x \mid W_x \text{ is cofinite} \} \] means the set whose complement is finite.

Example 1: \(\{ x \mid x \geq 5 \} \) is cofinite.

Not every infinite set is cofinite.
Cofinite

\[Cof = \{ x \mid W_x \text{ is cofinite} \} \text{ means the set whose complement is finite.} \]

Example 1: \(\{ x \mid x \geq 5 \} \) is cofinite.

Not every infinite set is cofinite.

Example 2: \(\mathbb{E}, \emptyset \) are not cofinite.
Extensible Functions

\[Ext = \{ x \mid \phi_x \text{ is extensible to a total recursive function} \}. \]
Extensible Functions

\[Ext = \{ x \mid \phi_x \text{ is extensible to a total recursive function} \}. \]

Example: \(f(x) = \phi_x(x) + 1 \) is not extensible.
Extensible Functions

Ext = \{ x \mid \phi_x \text{ is extensible to a total recursive function} \}.

Example: \(f(x) = \phi_x(x) + 1 \) is not extensible.

Proof: Assume \(f(x) \) is extensible, then define total recursive function

\[
g(x) = \begin{cases}
\psi_U(x,x) + 1 & \text{if } \psi_U(x,x) \text{ is defined.} \\
\star & \text{otherwise}
\end{cases}
\]

Let \(\phi_m \) be the Gödel coding of \(g(x) \), then \(\phi_m \) is a total recursive function.

When \(x = m \), \(\phi_m(m) = \psi_U(m,m) \) by universal problem.

However, \(\phi_m(m) = g(m) = \psi_U(m,m) + 1 \) by equation (1). A contradiction.

\[\square \]
Extensible Functions

Ext = \{x \mid \phi_x \text{ is extensible to a total recursive function}\}.

Example: \(f(x) = \phi_x(x) + 1\) is not extensible.

Proof: Assume \(f(x)\) is extensible, then define total recursive function

\[
g(x) = \begin{cases}
\psi_U(x, x) + 1 & \text{if } \psi_U(x, x) \text{ is defined.} \\
\mathbf{x} & \text{otherwise}
\end{cases} \tag{1}
\]

Let \(\phi_m\) be the Gödel coding of \(g(x)\), then \(\phi_m\) is a total recursive function.

When \(x = m\), \(\phi_m(m) = \psi_U(m, m)\) by universal problem.

However, \(\phi_m(m) = g(m) = \psi_U(m, m) + 1\) by equation (1). A contradiction.

Comment: Not every partial recursive function can be obtained by restricting a total recursive function.
A predicate $M(x)$ is **decidable** if its characteristic function $c_M(x)$ given by

$$c_M(x) = \begin{cases}
1, & \text{if } M(x) \text{ holds,} \\
0, & \text{if } M(x) \text{ does not hold.}
\end{cases}$$

is computable.

The predicate $M(x)$ is **undecidable** if it is not decidable.

Recursive Set \iff Solvable Problem \iff Decidable Predicate.
Theorem. If A, B are recursive sets, then so are the sets \overline{A}, $A \cap B$, $A \cup B$, and $A \setminus B$.
Algebra of Decidability

Theorem. If A, B are recursive sets, then so are the sets \overline{A}, $A \cap B$, $A \cup B$, and $A \setminus B$.

Proof.

\[
\overline{c_A} = 1 - c_A.
\]

\[
c_{A \cap B} = c_A \cdot c_B.
\]

\[
c_{A \cup B} = \max(c_A, c_B).
\]

\[
c_{A \setminus B} = c_A \cdot c_{\overline{B}}.
\]
Reduction between Problems

A reduction is a way of defining a solution of a problem with the help of the solutions of another problem.

In recursion theory we are only interested in reductions that are computable.

There are several ways of reducing a problem to another.

The differences between different reductions from A to B consists in the manner and extent to which information about B is allowed to settle questions about A.
Many-One Reduction

The set A is **many-one reducible**, or **m-reducible**, to the set B if there is a **total** computable function f such that

$$x \in A \text{ iff } f(x) \in B$$

for all x.

We shall write $A \leq_m B$ or more explicitly $f : A \leq_m B$.

If f is injective, then it is a **one-one reducibility**, denoted by \leq_1.
Many-One Reduction

1. \leq_m is reflexive and transitive.

2. $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.

3. $A \leq_m \mathbb{N}$ iff $A = \mathbb{N}$; $A \leq_m \emptyset$ iff $A = \emptyset$.

4. $\mathbb{N} \leq_m A$ iff $A \neq \emptyset$; $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.
Non-Recursive Set

Proposition. $K = \{ x \mid x \in W_x \}$ is not recursive.
Non-Recursive Set

Proposition. \(K = \{ x \mid x \in W_x \} \) is not recursive.

Proof. If \(K \) were recursive, then the characteristic function

\[
c(x) = \begin{cases} 1, & \text{if } x \in W_x, \\ 0, & \text{if } x \notin W_x, \end{cases}
\]

would be computable.

Then the function \(g(x) \) defined by

\[
g(x) = \begin{cases} 0, & \text{if } c(x) = 0, \\ \text{undefined,} & \text{if } c(x) = 1. \end{cases}
\]

would also be computable.

Let \(m \) be an index for \(g \). Then

\[
m \in W_m \text{ iff } c(m) = 0 \text{ iff } m \not\in W_m.
\]
Proposition. Neither $\text{Tot} = \{ x \mid \phi_x \text{ is total} \}$ nor $\{ x \mid \phi_x \simeq 0 \}$ is recursive.
Non-Recursive Set

Proposition. Neither $\text{Tot} = \{ x \mid \phi_x \text{ is total} \}$ nor $\{ x \mid \phi_x \simeq 0 \}$ is recursive.

Proof. Consider the function f defined by

$$f(x, y) = \begin{cases}
0, & \text{if } x \in W_x, \\
\text{undefined}, & \text{if } x \notin W_x.
\end{cases}$$

By S-m-n Theorem there is a primitive recursive function $k(x)$ such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $k : K \leq_m \text{Tot}$ and $k : K \leq_m \{ x \mid \phi_x \simeq 0 \}$.

CSC363-Computability Theory@SJTU Xiaofeng Gao
Rice Theorem

Henry Rice.

Rice Theorem. (1953)

If $\emptyset \subset B \subset C_1$, then $\{x \mid \phi_x \in B\}$ is not recursive.
Rice Theorem. (1953)

If \(\emptyset \subset B \subset C_1 \), then \(\{ x \mid \phi_x \in B \} \) is not recursive.

Proof. Suppose \(f_\emptyset \notin B \) and \(g \in B \). Let the function \(f \) be defined by

\[
f(x, y) = \begin{cases}
g(y), & \text{if } x \in W_x, \\
\text{undefined}, & \text{if } x \notin W_x.
\end{cases}
\]

By S-m-n Theorem there is some primitive recursive function \(k(x) \) such that \(\phi_{k(x)}(y) \simeq f(x, y) \).

It is clear that \(k \) is a many-one reduction from \(K \) to \(\{ x \mid \phi_x \in B \} \).
According to Rice Theorem the following sets are non-recursive:

- **$Fin = \{x \mid W_x \text{ is finite}\}$**,
- **$Inf = \{x \mid W_x \text{ is infinite}\}$**,
- **$Cof = \{x \mid W_x \text{ is cofinite}\}$**,
- **$Rec = \{x \mid W_x \text{ is recursive}\}$**,
- **$Tot = \{x \mid \phi_x \text{ is total}\}$**
Rice Theorem deals with programme independent properties. It talks about classes of computable functions rather than classes of programmes.

All non-trivial semantic problems are algorithmically undecidable.

It is of no help to a proof that the set of all polynomial time Turing Machines is undecidable.
The partial characteristic function of a set A is given by

$$\chi_A(x) = \begin{cases}
1, & \text{if } x \in A, \\
\text{undefined}, & \text{if } x \notin A.
\end{cases}$$

A is recursively enumerable if $\chi_A(x)$ is computable.

Notation 1: A is also called semi-recursive set, semi-computable set.

Notation 2: subsets of \mathbb{N}^n can be defined as r.e. by coding to r.e. subsets of \mathbb{N}.
A predicate $M(x)$ of natural number is partially decidable if its partial characteristic function

$$\chi_M(x) = \begin{cases}
1, & \text{if } M(x) \text{ holds,} \\
\text{undefined}, & \text{if } M(x) \text{ does not hold,}
\end{cases}$$

is computable.
A problem $f : \mathbb{N} \to \{0, 1\}$ is partially decidable if $\text{dom}(f)$ is r.e.
Partially Decidable Problem \iff Partially Decidable Predicate \iff Recursively Enumerable Set
Quick Review

Theorem. A predicate $M(x)$ is partially decidable iff there is a computable function $g(x)$ such that $M(x) \iff x \in Dom(g)$.

Theorem. A predicate $M(x)$ is partially decidable iff there is a decidable predicate $R(x, y)$ such that $M(x) \iff \exists y. R(x, y)$.

Theorem. If $M(x, y)$ is partially decidable, so is $\exists y. M(x, y)$.

Corollary. If $M(x, y)$ is partially decidable, so is $\exists y. M(x, y)$.

Theorem. $M(x)$ is decidable iff both $M(x)$ and $\neg M(x)$ are partially decidable.

Theorem. Let $f(x)$ be a partial function. Then f is computable iff the predicate ‘$f(x) \simeq y$’ is partially decidable.
Some Important Decidable Predicates

For each $n \geq 1$, the following predicates are primitive recursive:

1. $S_n(e, x, y, t) \overset{\text{def}}{=} \text{‘}P_e(x) \downarrow \text{ in } t \text{ or fewer steps’}.$

2. $H_n(e, x, t) \overset{\text{def}}{=} \text{‘}P_e(x) \downarrow \text{ in } t \text{ or fewer steps’}.$
Some Important Decidable Predicates

For each $n \geq 1$, the following predicates are primitive recursive:

1. $S_n(e, x, y, t) \overset{\text{def}}{=} 'P_e(x) \downarrow y \text{ in } t \text{ or fewer steps}'.

2. $H_n(e, x, t) \overset{\text{def}}{=} 'P_e(x) \downarrow \text{ in } t \text{ or fewer steps}'.

They are defined by

\[
S_n(e, x, y, t) \overset{\text{def}}{=} j_n(e, x, t) = 0 \land (c_n(e, x, t))_1 = y,
\]
\[
H_n(e, x, t) \overset{\text{def}}{=} j_n(e, x, t) = 0.
\]
Example

1. The halting problem is partially decidable. Its partial characteristic function is given by

\[\chi_{H}(x, y) = \begin{cases}
1, & \text{if } P_x(y) \downarrow, \\
\text{undefined}, & \text{otherwise}.
\end{cases} \]
Example

1. The halting problem is partially decidable. Its partial characteristic function is given by

\[\chi_H(x, y) = \begin{cases} 1, & \text{if } P_x(y) \downarrow, \\ \text{undefined}, & \text{otherwise}. \end{cases} \]

2. \(K = \{ x \mid x \in W_x \} \) is r.e., but not recursive.

Proof: \(\chi_K(x) = 1(\psi_U(x, x)) \).
Example

1. The halting problem is partially decidable. Its partial characteristic function is given by

\[\chi_{H}(x, y) = \begin{cases}
1, & \text{if } P_x(y) \downarrow, \\
\text{undefined}, & \text{otherwise}.
\end{cases} \]

2. \(K = \{x \mid x \in W_x\} \) is r.e., but not recursive.

Proof: \(\chi_K(x) = 1(\psi_U(x, x)) \).

3. \(\overline{K} = \{x \mid x \not\in W_x\} \) is not r.e., (also not recursive).

Proof: If yes, then define \(f(x) = \begin{cases}
1 & \text{if } x \not\in W_x \\
\uparrow & \text{if } x \in W_x
\end{cases} \)

Then \(x \in \text{Dom}(f) \iff x \not\in W_x \). \(f \) is computable while \(\text{Dom}(f) \) doesn’t equal to any computable function. Contradiction!
Example (Cont.)

4. Any recursive set is r.e.
4. Any recursive set is r.e.

5. \(\{x \mid W_x \neq \emptyset \} \) is r.e.

Proof: \(W_x \neq \emptyset \iff \exists y \exists t (P_x(y) \downarrow \text{ in } t \text{ steps}) \).
Example (Cont.)

4. Any recursive set is r.e.

5. \(\{ x \mid W_x \neq \emptyset \} \) is r.e.

 Proof: \(W_x \neq \emptyset \iff \exists y \exists t (P_x(y) \downarrow \text{ in } t \text{ steps}) \).

6. If \(f \) is a computable function, then \(\text{Ran}(f) \) is r.e.

 Proof: Let \(\phi_m \) be the Gödel coding of \(f \).

 \[
 x \in E_m \iff \exists y \exists t (P_m(y) \downarrow x \text{ in } t \text{ steps}).
 \]

 \(x \in E_m \) is partial decidable \(\iff \text{Ran}(f) \) is r.e.
Theorem. A set is r.e. iff it is the domain of a unary computable function.
Index Theorem

Theorem. A set is r.e. iff it is the domain of a unary computable function.

Proof:
“⇒”: A is r.e. ⇒ χ_A is computable ⇒ “$x \in A \iff x \in \chi_A$".

Thus A is the domain of unary computable function χ_A.

“⇐”: If f is a unary computable function, let $A = Dom(f)$.

Then $\chi_A = 1(f(x))$, which is computable.
Theorem. A set is r.e. iff it is the domain of a unary computable function.

Proof:
“⇒”: A is r.e. ⇒ χ_A is computable ⇒ “$x \in A \Leftrightarrow x \in \chi_A$". Thus A is the domain of unary computable function χ_A.

“⇐”: If f is a unary computable function, let $A = \text{Dom}(f)$. Then $\chi_A = 1(f(x))$, which is computable.

Notation (Index for Recursively Enumerable Set): W_0, W_1, W_2, \ldots is a repetitive enumeration of all r.e. sets. e is an index of A if $A = W_e$, end every r.e. set has an infinite number of indexes.
Normal Form Theorem

Theorem. The set A is r.e. iff there is a primitive recursive predicate $R(x, y)$ such that $x \in A$ iff $\exists y. R(x, y)$.
Normal Form Theorem

Theorem. The set A is r.e. iff there is a primitive recursive predicate $R(x, y)$ such that $x \in A$ iff $\exists y. R(x, y)$.

Proof. "\(\Leftarrow\)" If $R(x, y)$ is primitive recursive and $x \in A \iff \exists y. R(x, y)$, then define $g(x) = \mu y R(x, y)$. Then $g(x)$ is computable and $x \in A \iff x \in \text{Dom}(g)$.
Theorem. The set A is r.e. iff there is a primitive recursive predicate $R(x, y)$ such that $x \in A$ iff $\exists y. R(x, y)$.

Proof. "\Leftarrow": If $R(x, y)$ is primitive recursive and $x \in A \iff \exists y. R(x, y)$, then define $g(x) = \mu y R(x, y)$.
Then $g(x)$ is computable and $x \in A \iff x \in \text{Dom}(g)$.

"\Rightarrow": suppose A is r.e., then χ_A is computable. Let P be program to compute χ_A and $R(x, y)$ be

$$ P(x) \downarrow \text{ in } y \text{ steps.} $$

Then $R(x, y)$ is primitive recursive (decidable) and $x \in A \iff \exists y. R(x, y)$.
Theorem (Applying the Normal Form Theorem). If $M(x, y)$ is partially decidable, so is $\exists y. M(x, y)$ ($\{x | \exists y. M(x, y)\}$ is r.e.).
Quantifier Contraction Theorem

Theorem (Applying the Normal Form Theorem). If $M(x, y)$ is partially decidable, so is $\exists y. M(x, y)$ ($\{x \mid \exists y. M(x, y)\}$ is r.e.).

Proof. Let $R(x, y, z)$ be a primitive recursive predicate such that

$$M(x, y) \iff \exists z. R(x, y, z).$$

Then $\exists y. M(x, y) \iff \exists y. \exists z. R(x, y, z) \iff \exists u. R(x, (u)_0, \cdots, (u)_{m+1}).$

($u = 2^{y_1} 3^{y_2} \cdots p_{m+1}^{y_m}, p_{m+1}^{z}$, if $y = (y_1, \cdots, y_m)$).

By Normal Form Theorem, $\exists y. M(x, y)$ is partially decidable, and $\{x \mid \exists y. M(x, y)\}$ is r.e.
Uniformisation Theorem

Theorem (Applying the Normal Form Theorem). If $R(x, y)$ is partially decidable, then there is a computable function $c(x)$ such that $c(x) \downarrow$ iff $\exists y. R(x, y)$ and $c(x) \downarrow$ implies $R(x, c(x))$.
Theorem (Applying the Normal Form Theorem). If $R(x,y)$ is partially decidable, then there is a computable function $c(x)$ such that $c(x) \downarrow$ iff $\exists y. R(x,y)$ and $c(x) \downarrow$ implies $R(x,c(x))$.

We may think of $c(x)$ as a choice function for $R(x,y)$. The theorem states that the choice function is computable.
Complementation Theorem

Theorem. A is recursive iff A and \overline{A} are r.e.
Theorem. A is recursive iff \(A \) and \(\overline{A} \) are r.e.

Proof. "\(\Rightarrow \)" : If A is recursive, then \(\chi_A \) and \(\chi_{\overline{A}} \) are computable. Thus \(\Rightarrow \) A and \(\overline{A} \) are r.e.
Theorem. A is recursive iff A and \overline{A} are r.e.

Proof. “\Rightarrow”: If A is recursive, then χ_A and $\chi_{\overline{A}}$ are computable. Thus $\Rightarrow A$ and \overline{A} are r.e.

“\Leftarrow”: Suppose A and \overline{A} are r.e. Then some primitive recursive predicates $R(x, y), S(x, y)$ exist such that

$$x \in A \iff \exists y R(x, y),$$
$$x \in \overline{A} \iff \exists y S(x, y).$$

Now let $f(x) = \mu y (R(x, y) \lor S(x, y))$.

Since either $x \in A$ or $x \in \overline{A}$ holds, $f(x)$ is total and computable, and $x \in A \iff R(x, f(x))$. Thus $x \in A$ is decidable $\Rightarrow A$ is recursive.
The Hardest Recursively Enumerable Set

Fact. If $A \leq_m B$ and B is r.e. then A is r.e.
The Hardest Recursively Enumerable Set

Fact. If $A \leq_m B$ and B is r.e. then A is r.e..

Theorem. A is r.e. iff $A \leq_m K$.
Fact. If $A \leq_m B$ and B is r.e. then A is r.e..

Theorem. A is r.e. iff $A \leq_m K$.

Proof. Suppose A is r.e. Let $f(x, y)$ be defined by

$$f(x, y) = \begin{cases} 1, & \text{if } x \in A, \\ \text{undefined}, & \text{if } x \notin A. \end{cases}$$

By S-m-n Theorem there is a total computable function $s(x)$ such that $f(x, y) = \phi_{s(x)}(y)$. It is clear that $x \in A$ iff $s(x) \in K$.
The Hardest Recursively Enumerable Set

Fact. If $A \leq_m B$ and B is r.e. then A is r.e..

Theorem. A is r.e. iff $A \leq_m K$.

Proof. Suppose A is r.e. Let $f(x, y)$ be defined by

$$f(x, y) = \begin{cases}
1, & \text{if } x \in A, \\
\text{undefined,} & \text{if } x \notin A.
\end{cases}$$

By S-m-n Theorem there is a total computable function $s(x)$ such that $f(x, y) = \phi_{s(x)}(y)$. It is clear that $x \in A$ iff $s(x) \in K$.

No r.e. set is more difficult than K.
Proposition. If \(A \) is r.e. but not recursive, then \(\overline{A} \not\leq_m A \not\leq_m \overline{A} \).
Proposition. If A is r.e. but not recursive, then $\overline{A} \not \leq_m A \not \leq_m \overline{A}$.

It contradicts to our intuition that A and \overline{A} are equally difficult.
Theorem. Let $f(x)$ be a partial function. Then $f(x)$ is computable iff the predicate ‘$f(x) \simeq y$’ is partially decidable iff $\{ \pi(x, y) \mid f(x) \simeq y \}$ is r.e.
Graph Theorem

Theorem. Let $f(x)$ be a partial function. Then $f(x)$ is computable iff the predicate ‘$f(x) \simeq y$’ is partially decidable iff \{π(x, y) | f(x) \simeq y\} is r.e.

Proof. If $f(x)$ is computable by $P(x)$, then

$$f(x) \simeq y \iff \exists t. (P(x) \downarrow y \text{ in } t \text{ steps}).$$

The predicate ‘$P(x) \downarrow y \text{ in } t \text{ steps}$’ is primitive recursive.
Theorem. Let $f(x)$ be a partial function. Then $f(x)$ is computable iff the predicate ‘$f(x) \simeq y$’ is partially decidable iff $\{ \pi(x, y) \mid f(x) \simeq y \}$ is r.e.

Proof. If $f(x)$ is computable by $P(x)$, then

$$f(x) \simeq y \iff \exists t. (P(x) \downarrow y \text{ in } t \text{ steps}).$$

The predicate ‘$P(x) \downarrow y \text{ in } t \text{ steps}$’ is primitive recursive.

Conversely let $R(x, y, t)$ be such that

$$f(x) \simeq y \iff \exists t. R(x, y, t).$$

Now $f(x) = \mu y. R(x, y, \mu t. R(x, y, t))$.
Listing Theorem. \(A \) is r.e. iff either \(A = \emptyset \) or \(A \) is the range of a unary **total** computable function.
Listing Theorem. A is r.e. iff either $A = \emptyset$ or A is the range of a unary total computable function.

Proof. Suppose A is nonempty and its partial characteristic function is computed by P. Let a be a member of A. The total function $g(x, t)$ given by

$$g(x, t) = \begin{cases} x, & \text{if } P(x) \downarrow \text{ in } t \text{ steps}, \\ a, & \text{if otherwise.} \end{cases}$$

is computable. Clearly A is the range of $h(z) = g((z)_1, (z)_2)$.
Listing Theorem. A is r.e. iff either $A = \emptyset$ or A is the range of a unary total computable function.

Proof. Suppose A is nonempty and its partial characteristic function is computed by P. Let a be a member of A. The total function $g(x, t)$ given by

$$g(x, t) = \begin{cases} x, & \text{if } P(x) \downarrow \text{ in } t \text{ steps}, \\ a, & \text{if otherwise.} \end{cases}$$

is computable. Clearly A is the range of $h(z) = g((z)_1, (z)_2)$.

The converse follows from Graph Theorem. Suppose $A = \text{Ran}(h)$, then

$$x \in A \iff \exists y (h(y) \simeq x) \iff \exists y \exists t (P(y) \downarrow x \text{ in } t \text{ steps})$$
It gives rise to the terminology **recursively enumerable**.

The elements of a r.e. set can be effectively generated. E.g., A can be enumerated as $A = \{h(0), h(1), \ldots, h(n), \ldots\}$, where h is a primitive recursive function.

$\{E_0, E_1, \ldots, E_n, \ldots\}$ is another enumeration of all r.e. sets.

R.e. set are **effectively generated** sets, which is a list compiled by an informal effective procedure (may go on ad infinitum).
An Example

The set \(\{ x \mid \text{if there is a run of exactly } x \text{ consecutive 7’s in the decimal expansion of } \pi \} \) is r.e.
An Example

The set \(\{ x \mid \text{if there is a run of exactly } x \text{ consecutive 7's in the decimal expansion of } \pi \} \) is r.e.

Proof. Run an algorithm that computes successive digits in the decimal expansion of \(\pi \). Each time a run of 7s appears, count the number of consecutive 7s in the run and add this number to the list.
A set is r.e. iff it is the range of a computable function.
Applying Listing Theorem

A set is r.e. iff it is the range of a computable function.

Equivalence Theorem. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:

(a). A is r.e.

(b). $A = \emptyset$ or A is the range of a unary total computable function.

(c). A is the range of a (partial) computable function.
Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.
Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.

Proof. Suppose $A = \text{Ran}(f)$ where f is a total computable function. An infinite recursive subset is enumerated by the total increasing computable function g given by

$$
\begin{align*}
g(0) &= f(0), \\
g(n + 1) &= f(\mu y (f(y) > g(n))).
\end{align*}
$$

(g is total since $A = \text{Ran}(f)$ is infinite. g is computable by minimalisation and recursion). $\text{Ran}(g)$ is an infinite recursive subset of A.
Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total increasing computable function (if it can be recursively enumerated in increasing order).
Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total increasing computable function (if it can be recursively enumerated in increasing order).

Proof. "⇒" Suppose A is recursive and infinite. Then A is enumerated by the increasing function f given by

\[
 f(0) = \mu y (y \in A), \\
 f(n+1) = \mu y (y \in A \land y > f(n)).
\]

f is total since A is infinite. f is computable by minimalisation and recursion. $\text{Ran}(g)$ is an infinite recursive subset of A.

Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total increasing computable function (if it can be recursively enumerated in increasing order).

Proof. “⇒” Suppose A is recursive and infinite. Then A is enumerated by the increasing function f given by

\[
\begin{align*}
 f(0) &= \mu y (y \in A), \\
 f(n+1) &= \mu y (y \in A \land y > f(n)).
\end{align*}
\]

f is total since A is infinite. f is computable by minimalisation and recursion. $\text{Ran}(g)$ is an infinite recursive subset of A.

“⇐”: Suppose A is the range of the computable total increasing function f; i.e., $f(0) < f(1) < f(2) < \cdots$ It is clear that if $y = f(n)$ then $n \leq y$. Hence

\[
y \in A \iff y \in \text{Ran}(f) \iff \exists n \leq y (f(n) = y)
\]
Applying Listing Theorem

Theorem. The set \(\{ x \mid \phi_x \text{ is total} \} \) is not r.e.
Applying Listing Theorem

Theorem. The set \(\{ x \mid \phi_x \text{ is total} \} \) is not r.e.

Proof. If \(\{ x \mid \phi_x \text{ is total} \} \) were a r.e. set, then there would be a total computable function \(f \) whose range is the r.e. set.

The function \(g(x) \) given by \(g(x) = \phi_{f(x)}(x) + 1 \) would be total and computable.
Let \(f(x, y) = \begin{cases} 1 & \text{if } P_x(x) \text{ does not converge in } y \text{ or fewer steps}, \\ \text{undefined} & \text{otherwise}. \end{cases} \)

Since \(f(x, y) \) is computable by Church’s Thesis, from s-m-n theorem, there is a total computable function \(k(x) \), such that \(\phi_{k(x)}(y) \simeq f(x, y) \).

From the definition of \(f \), we have

\[
\begin{align*}
& x \in W_x \Rightarrow (\exists y)(P_x(x) \text{ converges in } y \text{ steps}) \Rightarrow \phi_{k(x)} \text{ is not total} \\
& x \notin W_x \Rightarrow (\forall y)(P_x(x) \text{ does not converge in } y \text{ steps}) \Rightarrow \phi_{k(x)} \text{ is total}
\end{align*}
\]

Therefore, ‘\(x \notin W_x \)’ iff. ‘\(\phi_{k(x)} \) is total’. We have ‘\(\phi_x \) is total’ is not partially computable.
Theorem. The recursively enumerable sets are closed under union and intersection uniformly and effectively.
Theorem. The recursively enumerable sets are closed under union and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive functions $r(x, y), s(x, y)$ such that

\[W_{r(x,y)} = W_x \cup W_y, \]
\[W_{s(x,y)} = W_x \cap W_y. \]
Theorem. The recursively enumerable sets are closed under union and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive functions \(r(x, y), s(x, y) \) such that

\[
W_r(x, y) = W_x \cup W_y, \\
W_s(x, y) = W_x \cap W_y.
\]
Rice-Shapiro Theorem. Suppose that \mathcal{A} is a set of unary computable functions such that the set $\{x \mid \phi_x \in \mathcal{A}\}$ is r.e. Then for any unary computable function f, $f \in \mathcal{A}$ iff there is a finite function $\theta \subseteq f$ with $\theta \in \mathcal{A}$.
Proof of Rice-Shapiro Theorem

Suppose $A = \{ x \mid \phi_x \in \mathcal{A} \}$ is r.e.
Proof of Rice-Shapiro Theorem

Suppose \(A = \{ x \mid \phi_x \in \mathcal{A} \} \) is r.e.

Suppose \(f \in \mathcal{A} \) but \(\forall \) finite \(\theta \subseteq f. \theta \notin \mathcal{A} \).
Proof of Rice-Shapiro Theorem

Suppose \(A = \{ x \mid \phi_x \in \mathcal{A} \} \) is r.e.

Suppose \(f \in \mathcal{A} \) but \(\forall \) finite \(\theta \subseteq f. \theta \notin \mathcal{A} \).

Let \(P \) be a partial characteristic function of \(K \).
Define the computable function \(g(z, t) \) by

\[
g(z, t) \simeq \begin{cases} f(t), & \text{if } P(z) \downarrow \text{ in } t \text{ steps,} \\ \uparrow, & \text{otherwise.} \end{cases}
\]

According to S-m-n Theorem, there is a primitive recursive function \(s(z) \) such that \(g(z, t) \simeq \phi_{s(z)}(t) \).
Proof of Rice-Shapiro Theorem

Suppose $A = \{ x \mid \phi_x \in A \}$ is r.e.

Suppose $f \in A$ but \forall finite $\theta \subseteq f. \theta \notin A$.

Let P be a partial characteristic function of K
Define the computable function $g(z, t)$ by

$$
 g(z, t) \simeq \begin{cases}
 f(t), & \text{if } P(z) \downarrow \text{ in } t \text{ steps,} \\
 \uparrow, & \text{otherwise.}
\end{cases}
$$

According to S-m-n Theorem, there is a primitive recursive function $s(z)$ such that $g(z, t) \simeq \phi_{s(z)}(t)$.

By construction $\phi_{s(z)} \subseteq f$ for all z.
Proof of Rice-Shapiro Theorem

Suppose \(A = \{x \mid \phi_x \in \mathcal{A}\} \) is r.e.

Suppose \(f \in \mathcal{A} \) but \(\forall \) finite \(\theta \subseteq f. \theta \notin \mathcal{A} \).

Let \(P \) be a partial characteristic function of \(K \).

Define the computable function \(g(z, t) \) by

\[
g(z, t) \sim \begin{cases} f(t), & \text{if } P(z) \downarrow \text{ in } t \text{ steps}, \\ \uparrow, & \text{otherwise.} \end{cases}
\]

According to S-m-n Theorem, there is a primitive recursive function \(s(z) \) such that \(g(z, t) \sim \phi_{s(z)}(t) \).

By construction \(\phi_{s(z)} \subseteq f \) for all \(z \).

\(z \in K \Rightarrow \phi_{s(z)} \) is finite \(\Rightarrow s(z) \notin A; \)
\(z \notin K \Rightarrow \phi_{s(z)} = f \Rightarrow s(z) \in A. \)
Proof of Rice-Shapiro Theorem

Suppose f is a computable function and there is a finite $\theta \in \mathcal{A}$ such that $\theta \subseteq f$ and $f \notin \mathcal{A}$.
Proof of Rice-Shapiro Theorem

Suppose f is a computable function and there is a finite $\theta \in \mathcal{A}$ such that $\theta \subseteq f$ and $f \notin \mathcal{A}$.

Define the computable function $g(z, t)$ by

$$g(z, t) \simeq \begin{cases} f(t), & \text{if } t \in \text{Dom}(\theta) \lor z \in K, \\ \uparrow, & \text{otherwise.} \end{cases}$$

According to S-m-n Theorem, there is a primitive recursive function $s(z)$ such that $g(z, t) \simeq \phi_{s(z)}(t)$.

Suppose f is a computable function and there is a finite $\theta \in \mathcal{A}$ such that $\theta \subseteq f$ and $f \notin \mathcal{A}$.

Define the computable function $g(z, t)$ by

$$g(z, t) \simeq \begin{cases} f(t), & \text{if } t \in Dom(\theta) \lor z \in K, \\ \uparrow, & \text{otherwise}. \end{cases}$$

According to S-m-n Theorem, there is a primitive recursive function $s(z)$ such that $g(z, t) \simeq \phi_{s(z)}(t)$.

$$z \in K \Rightarrow \phi_{s(z)} = f \Rightarrow s(z) \notin A;$$
$$z \notin K \Rightarrow \phi_{s(z)} = \theta \Rightarrow s(z) \in A.$$
Reversing Rice-Shapiro Theorem

\[\{ x \mid \phi_x \in \mathcal{A} \} \text{ is r.e. if the following hold:} \]

1. \(\Theta = \{ g(\theta) \mid \theta \in \mathcal{A} \text{ and } \theta \text{ is finite} \} \) is r.e., where \(g \) is a canonical encoding of the finite functions.

2. \(\forall f \in \mathcal{A}, \exists \text{ finite } \theta \in \mathcal{A}, \theta \subseteq f. \)
Corollary

The sets \(\{ x \mid \phi_x \text{ is total} \} \) and \(\{ x \mid \phi_x \text{ is not total} \} \) are not r.e.
Corollary

The sets \(\{ x \mid \phi_x \text{ is total} \} \) and \(\{ x \mid \phi_x \text{ is not total} \} \) are not r.e.

Proof. Consider the set \(\mathcal{A} = \{ f \mid f \in C_1 \land f \text{ is total} \} \). For no \(f \in \mathcal{A} \) is there a finite \(\theta \subseteq f \) with \(\theta \in \mathcal{A} \). Hence \(\{ x \mid \phi_x \text{ is total} \} \) is not r.e.
The sets \(\{x \mid \phi_x \text{ is total}\} \) and \(\{x \mid \phi_x \text{ is not total}\} \) are not r.e.

Proof. Consider the set \(\mathcal{A} = \{f \mid f \in \mathcal{C}_1 \land f \text{ is total}\} \). For no \(f \in \mathcal{A} \) is there a finite \(\theta \subseteq f \) with \(\theta \in \mathcal{A} \). Hence \(\{x \mid \phi_x \text{ is total}\} \) is not r.e.

Consider the set \(\mathcal{B} = \{f \mid f \in \mathcal{C}_1 \land f \text{ is not total}\} \). Then if \(f \) is any total computable function, \(f \not\in \mathcal{B} \); but every finite function \(\theta \subseteq f \) is in \(\mathcal{B} \). Hence \(\{x \mid \phi_x \text{ is not total}\} \) is not r.e. by Rice-Shapiro theorem.
The following sets are not recursively enumerable:

\[\begin{align*}
\text{Fin} & = \{x \mid W_x \text{ is finite}\}, \\
\text{Inf} & = \{x \mid W_x \text{ is infinite}\}, \\
\text{Cof} & = \{x \mid W_x \text{ is cofinite}\}, \\
\text{Rec} & = \{x \mid W_x \text{ is recursive}\}, \\
\text{Tot} & = \{x \mid \phi_x \text{ is total}\}, \\
\text{Con} & = \{x \mid \phi_x \text{ is total and constant}\}, \\
\text{Ext} & = \{x \mid \phi_x \text{ is extensible to a total recursive function}\}.
\end{align*}\]
Outline

1. Recursive Sets
 - Decidable Predicate
 - Reduction
 - Rice Theorem

2. Recursively Enumerable Set
 - Partial Decidable Predicates
 - Theorems

3. Special Sets
 - Productive Sets
 - Creative Set
 - Simple Sets
Non-r.e. Sets

Target. We consider non-r.e. sets to form *creative sets*. Suppose A is any non-r.e. set, then if W_x is an r.e. set contained in A, there must be a number $y \in A \setminus W_x$. This number y is a witness of $A \neq W_x$.
Non-r.e. Sets

Target. We consider non-r.e. sets to form *creative sets*. Suppose A is any non-r.e. set, then if W_x is an r.e. set contained in A, there must be a number $y \in A \setminus W_x$. This number y is a witness of $A \neq W_x$.

Example. Consider $\overline{K} = \{x \mid x \not\in W_x\}$
Non-r.e. Sets

Target. We consider non-r.e. sets to form creative sets. Suppose A is any non-r.e. set, then if W_x is an r.e. set contained in A, there must be a number $y \in A \setminus W_x$. This number y is a witness of $A \neq W_x$.

Example. Consider $\overline{K} = \{x \mid x \not\in W_x\}$

Suppose $W_x \subseteq \overline{K}$. Then $x \in \overline{K} \setminus W_x$. So x is a witness that the inclusion $W_x \subseteq \overline{K}$ is strict.
Non-r.e. Sets

Target. We consider non-r.e. sets to form creative sets. Suppose A is any non-r.e. set, then if W_x is an r.e. set contained in A, there must be a number $y \in A \setminus W_x$. This number y is a witness of $A \neq W_x$.

Example. Consider $\overline{K} = \{ x \mid x \not\in W_x \}$

Suppose $W_x \subseteq \overline{K}$. Then $x \in \overline{K} \setminus W_x$. So x is a witness that the inclusion $W_x \subseteq \overline{K}$ is strict.

We call \overline{K} productive.
Definition. A set A is **productive** if there is a total computable function g such that whenever $W_x \subseteq A$, then $g(x) \in A \setminus W_x$.

The function is called a **productive function** for A.
Definition. A set A is **productive** if there is a total computable function g such that whenever $W_x \subseteq A$, then $g(x) \in A \setminus W_x$.

The function is called a **productive function** for A.

Notation. A productive set is not r.e.
Definition. A set A is **productive** if there is a total computable function g such that whenever $W_x \subseteq A$, then $g(x) \in A \setminus W_x$.

The function is called a **productive function** for A.

Notation. A productive set is not r.e.

Example. \overline{K} is productive with productive function $g(x) = x$.

![Diagram](image_url) **Fig. A productive set**
Reduction Theorem

Theorem. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.
Reduction Theorem

Theorem. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.

Proof. Suppose $W_x \subseteq B$. Then $W_z = f^{-1}(W_x) \subseteq f^{-1}(B) = A$ for some z.
Theorem. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.

Proof. Suppose $W_x \subseteq B$. Then $W_z = f^{-1}(W_x) \subseteq f^{-1}(B) = A$ for some z.

Moreover, $f^{-1}(W_x)$ is r.e. (by substitution), so there is a z such that $f^{-1}(W_x) = W_z$. Now $W_z \subseteq A$, and $g(z) \in A \setminus W_z$. Hence $f(g(z)) \in B \setminus W_x$.
Theorem. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.

Proof. Suppose $W_x \subseteq B$. Then $W_z = f^{-1}(W_x) \subseteq f^{-1}(B) = A$ for some z.

Moreover, $f^{-1}(W_x)$ is r.e. (by substitution), so there is a z such that $f^{-1}(W_x) = W_z$. Now $W_z \subseteq A$, and $g(z) \in A \setminus W_z$. Hence $f(g(z)) \in B \setminus W_x$.

$f(g(z))$ is a witness to the fact that $W_x \neq B$.
Reduction Theorem

Theorem. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.

Proof. Suppose $W_x \subseteq B$. Then $W_z = f^{-1}(W_x) \subseteq f^{-1}(B) = A$ for some z.

Moreover, $f^{-1}(W_x)$ is r.e. (by substitution), so there is a z such that $f^{-1}(W_x) = W_z$. Now $W_z \subseteq A$, and $g(z) \in A \setminus W_z$. Hence $f(g(z)) \in B \setminus W_x$.

$f(g(z))$ is a witness to the fact that $W_x \neq B$.

We now need to obtain the witness $f(g(z))$ effectively from x. Apply the s-m-n theorem to $\phi_x(f(y))$, one gets a total computable function $k(x)$ such that $\phi_{k(x)}(y) = \phi_x(f(y))$. Then $W_{k(x)} = f^{-1}(W_x)$. It follows that $f(g(k(x))) \in B \setminus W_x$.
Proof

\[A = f^{-1}(B) \]
\[W_z = f^{-1}(W_x) \]
\[g(z) \]

\[f \]
\[B \]
\[W_x \]
\[f(g(z)) \]
Examples

1. \(\{ x \mid \phi_x \neq 0 \} \) is productive.
Examples

1. \(\{ x \mid \phi_x \neq 0 \} \) is productive.

Proof. \(f(x, y) = \begin{cases}
0 & \text{if } x \in W_x \\
\uparrow & \text{if } x \not\in W_x
\end{cases} \). Reduce from \(\overline{K} \).
Examples

1. \(\{ x \mid \phi_x \neq 0 \} \) is productive.

Proof. \(f(x, y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \not\in W_x \end{cases} \). Reduce from \(\overline{K} \).

2. \(\{ x \mid c \not\in W_x \} \) is productive.
Examples

1. \(\{ x \mid \phi_x \neq 0 \} \) is productive.

 Proof. \(f(x, y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \). Reduce from \(\overline{K} \).

2. \(\{ x \mid c \notin W_x \} \) is productive.

 Proof. \(f(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \). Reduce from \(\overline{K} \).
Examples

1. \(\{ x \mid \phi_x \neq 0 \} \) is productive.

Proof. \(f(x, y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \). Reduce from \(\overline{K} \).

2. \(\{ x \mid c \notin W_x \} \) is productive.

Proof. \(f(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \). Reduce from \(\overline{K} \).

3. \(\{ x \mid c \notin E_x \} \) is productive.
Application of Rich’s Theorem

Theorem. Suppose that \mathcal{B} is a set of unary computable functions with $f_\emptyset \in \mathcal{B}$ and $\mathcal{B} \neq \mathcal{C}_1$. Then the set $B = \{ x \mid \phi_x \in \mathcal{B} \}$ is productive.
Theorem. Suppose that \mathcal{B} is a set of unary computable functions with $f_\emptyset \in \mathcal{B}$ and $\mathcal{B} \neq \mathcal{C}_1$. Then the set $B = \{x \mid \phi_x \in \mathcal{B}\}$ is productive.

Proof. Choose a computable function $g \notin \mathcal{B}$. Consider function f defined by

$$f(x, y) = \begin{cases}
g(y), & \text{if } x \in W_x, \\
\uparrow, & \text{if } x \notin W_x.
\end{cases}$$
Application of Rich’s Theorem

Theorem. Suppose that \mathcal{B} is a set of unary computable functions with $f_\emptyset \in \mathcal{B}$ and $\mathcal{B} \neq \mathcal{C}_1$. Then the set $B = \{x \mid \phi_x \in \mathcal{B}\}$ is productive.

Proof. Choose a computable function $g \notin \mathcal{B}$. Consider function f defined by

$$f(x, y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \uparrow, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function $k(x)$ such that $\phi_{k(x)}(y) \simeq f(x, y)$.
Application of Rich’s Theorem

Theorem. Suppose that \(\mathcal{B} \) is a set of unary computable functions with \(f_\emptyset \in \mathcal{B} \) and \(\mathcal{B} \neq \mathcal{C}_1 \). Then the set \(B = \{ x \mid \phi_x \in \mathcal{B} \} \) is productive.

Proof. Choose a computable function \(g \notin \mathcal{B} \). Consider function \(f \) defined by

\[
f(x, y) = \begin{cases}
g(y), & \text{if } x \in W_x, \\
\uparrow, & \text{if } x \notin W_x.
\end{cases}
\]

By s-m-n theorem there is some total computable function \(k(x) \) such that \(\phi_{k(x)}(y) \simeq f(x, y) \).

It is clear that \(x \in W_x \) iff \(\phi_{k(x)} = g \) iff \(\phi_{k(x)} \notin \mathcal{B} \). Thus \(x \in \overline{K} \) iff \(k(x) \in B \).
Application of Rich’s Theorem

Theorem. Suppose that \mathcal{B} is a set of unary computable functions with $f_{\emptyset} \in \mathcal{B}$ and $\mathcal{B} \neq C_1$. Then the set $B = \{x \mid \phi_x \in \mathcal{B}\}$ is productive.

Proof. Choose a computable function $g \notin \mathcal{B}$. Consider function f defined by

$$f(x, y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \uparrow, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function $k(x)$ such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $x \in W_x$ iff $\phi_{k(x)} = g$ iff $\phi_{k(x)} \notin \mathcal{B}$. Thus $x \in \overline{K}$ iff $k(x) \in B$.

Example. $\{x \mid \phi_x \text{ is not total}\}$ is productive.

($\mathcal{B} = \{f \mid f \in C_1 \land f \text{ is not total}\}$.)
Creative Sets

Definition. A set \(A \) is **creative** if it is r.e. and its complement \(\overline{A} \) is productive.
Creative Sets

Definition. A set A is **creative** if it is r.e. and its complement \overline{A} is productive.

Example. K is creative. (The simplest example of a creative set).
Definition. A set A is creative if it is r.e. and its complement \overline{A} is productive.

Example. K is creative. (The simplest example of a creative set).

Notation. From the theorem that A is recursive $\iff A$ and \overline{A} are r.e. we can say that a creative set is an r.e. set that fails to be recursive in a very strong way. (Creative sets are r.e. sets having the most difficult decision problem.)
Examples

1. \(\{ x \mid c \in W_x \} \) is creative.
Examples

1. \(\{ x \mid c \in W_x \} \) is creative.

2. \(\{ x \mid c \in E_x \} \) is creative.
Examples

1. \(\{ x \mid c \in W_x \} \) is creative.

2. \(\{ x \mid c \in E_x \} \) is creative.

3. \(A = \{ x \mid \phi_x(x) = 0 \} \) is creative.
Examples

1. \(\{ x \mid c \in W_x \} \) is creative.

2. \(\{ x \mid c \in E_x \} \) is creative.

3. \(A = \{ x \mid \phi_x(x) = 0 \} \) is creative.

Proof. \(A \) is r.e.
Examples

1. \(\{ x \mid c \in W_x \} \) is creative.

2. \(\{ x \mid c \in E_x \} \) is creative.

3. \(A = \{ x \mid \phi_x(x) = 0 \} \) is creative.

Proof. \(A \) is r.e.

To obtain a productive function for \(\overline{A} \), by s-m-n theorem one gets a total computable function \(g(x) \) such that \(\phi_{g(x)}(y) = 0 \iff \phi_x(y) \) is defined.

Then \(g(x) \in A \iff g(x) \in W_x \). So if \(W_x \subseteq \overline{A} \) we must have \(g(x) \in \overline{A} \setminus W_x \).

Thus \(g \) is a productive function for \(\overline{A} \).
Theorem. Suppose that $A \subseteq C_1$ and let $A = \{x \mid \phi_x \in A\}$. If A is r.e. and $A \neq \emptyset, \mathbb{N}$, then A is creative.
Theorem. Suppose that $\mathcal{A} \subseteq \mathcal{C}_1$ and let $A = \{x \mid \phi_x \in \mathcal{A}\}$. If A is r.e. and $A \neq \emptyset, \mathbb{N}$, then A is creative.

Proof. Suppose A is r.e. and $A \neq \emptyset, \mathbb{N}$.

If $f_\emptyset \in \mathcal{A}$, then A is productive by the previous theorem. This is a contradiction.

Thus $f_\emptyset \notin \mathcal{A}$. \overline{A} is productive by the same theorem. Hence A is creative.
Examples

1. \(A = \{ x \mid c \in W_x \} \) is creative. It corresponds to
\[\mathcal{A} = \{ f \in \mathcal{C}^1 \mid f(c) \downarrow \}. \]
Examples

1. \(A = \{x \mid c \in W_x\} \) is creative. It corresponds to \(A = \{f \in \mathcal{C}_1 \mid f(c) \downarrow\} \).

2. \(A = \{x \mid c \in E_x\} \) is creative. It corresponds to \(A = \{f \in \mathcal{C}_1 \mid \exists x(f(x) \downarrow c)\} \).
Examples

1. $A = \{x \mid c \in W_x\}$ is creative. It corresponds to $A = \{f \in C_1 \mid f(c) \downarrow\}$.

2. $A = \{x \mid c \in E_x\}$ is creative. It corresponds to $A = \{f \in C_1 \mid \exists x(f(x) \downarrow c)\}$.

3. $A = \{x \mid W_x \neq \emptyset\}$ is creative. It corresponds to $A = \{f \in C_1 \mid f \neq f_\emptyset\}$.
Discussion

Question. Are all non-recursive r.e. sets creative?
Question. Are all non-recursive r.e. sets creative?

The answer is negative. By a special construction we can obtain r.e. sets that are neither recursive nor creative.
Lemma. Suppose that g is a total computable function. Then there is a total computable function k such that for all x, $W_{k(x)} = W_x \cup \{g(x)\}$.
Lemma. Suppose that g is a total computable function. Then there is a total computable function k such that for all x, $W_{k(x)} = W_x \cup \{g(x)\}$.

Proof. Using the s-m-n theorem, take $k(x)$ to be a total computable function such that

$$\phi_{k(x)}(y) = \begin{cases}
1, & \text{if } y \in W_x \lor y = g(x), \\
\uparrow, & \text{otherwise}
\end{cases}.$$
Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.
Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea is to enumerate a non-repetitive infinite set $B = \{y_0, y_1, \cdots \} \subseteq A$.
Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea is to enumerate a non-repetitive infinite set $B = \{y_0, y_1, \cdots \} \subseteq A$.

Take e_0 to be some index for $W_{e_0} = \emptyset$. Since $W_{e_0} \subseteq A$, $g(e_0) \in A$. Put $y_0 = g(e_0) \in A$.
Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea is to enumerate a non-repetitive infinite set $B = \{y_0, y_1, \cdots \} \subseteq A$.

Take e_0 to be some index for $W_{e_0} = \emptyset$. Since $W_{e_0} \subseteq A$, $g(e_0) \in A$.

Put $y_0 = g(e_0) \in A$.

For $n \geq 0$, assume $\{y_0, \cdots, y_n\} \subseteq A$. Find an e_{n+1} s.t. $\{y_0, \cdots, y_n\} = W_{e_{n+1}} \subseteq A$. Then $g(e_{n+1}) \in A \setminus W_{e_{n+1}}$. Thus if we put $y_{n+1} = g(e_{n+1})$, we have $y_{n+1} \in A$ and $y_{n+1} \neq y_0, \cdots, y_n$.

Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea is to enumerate a non-repetitive infinite set $B = \{y_0, y_1, \cdots \} \subseteq A$.

Take e_0 to be some index for $W_{e_0} = \emptyset$. Since $W_{e_0} \subseteq A$, $g(e_0) \in A$. Put $y_0 = g(e_0) \in A$.

For $n \geq 0$, assume $\{y_0, \cdots, y_n\} \subseteq A$. Find an e_{n+1} s.t. $\{y_0, \cdots, y_n\} = W_{e_{n+1}} \subseteq A$. Then $g(e_{n+1}) \in A \setminus W_{e_{n+1}}$. Thus if we put $y_{n+1} = g(e_{n+1})$, we have $y_{n+1} \in A$ and $y_{n+1} \neq y_0, \cdots, y_n$.

By the Lemma there is some total computable function k such that for all x, $W_{k(x)} = W_x \cup \{g(x)\}$. So the infinite set $\{e_0, \ldots, k^n(e_0), \ldots\}$ is r.e.
Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea is to enumerate a non-repetitive infinite set $B = \{y_0, y_1, \cdots \} \subseteq A$. Take e_0 to be some index for $W_{e_0} = \emptyset$. Since $W_{e_0} \subseteq A$, $g(e_0) \in A$. Put $y_0 = g(e_0) \in A$.

For $n \geq 0$, assume $\{y_0, \cdots, y_n\} \subseteq A$. Find an e_{n+1} s.t. $\{y_0, \cdots, y_n\} = W_{e_{n+1}} \subseteq A$. Then $g(e_{n+1}) \in A \setminus W_{e_{n+1}}$. Thus if we put $y_{n+1} = g(e_{n+1})$, we have $y_{n+1} \in A$ and $y_{n+1} \neq y_0, \cdots, y_n$.

By the Lemma there is some total computable function k such that for all x, $W_k(x) = W_x \cup \{g(x)\}$. So the infinite set $\{e_0, \ldots, k^n(e_0), \ldots \}$ is r.e.

It follows that the infinite set $\{g(e_0), \ldots, g(k^n(e_0)), \ldots \}$ is a r.e. subset of A.
Illumination

\[y_{n+1} = g(e_{n+1}) \]
Corollary

If A is creative, then \overline{A} contains an infinite r.e. subset.
Simple Sets

Definition. A set A is **simple** if

(i) A is r.e.,

(ii) \overline{A} is infinite,

(iii) \overline{A} contains no infinite r.e. subset.
Theorem. A simple set is neither recursive nor creative.
Simple Sets

Theorem. A simple set is neither recursive nor creative.

Proof. Since \(\overline{A} \) can not be r.e., \(A \) can not be recursive.
Theorem. A simple set is neither recursive nor creative.

Proof. Since \overline{A} can not be r.e., A can not be recursive. (iii) implies that A can not be creative.
Theorem. There is a simple set.
Theorem. There is a simple set.

Proof. Define $f(x) = \phi_x(\mu z (\phi_x(z) > 2x))$. Let A be $\text{Ran}(f)$.
Theorem. There is a simple set.

Proof. Define \(f(x) = \phi_x(\mu z (\phi_x(z) > 2x)) \). Let \(A \) be \(\text{Ran}(f) \).

(i) \(A \) is r.e.
Theorem. There is a simple set.

Proof. Define $f(x) = \phi_x(\mu z (\phi_x(z) > 2x))$. Let A be $\text{Ran}(f)$.

(i) A is r.e.

(ii) \overline{A} is infinite. This is because $A \cap \{0, 1, \ldots, 2n\}$ contains at most the elements $\{f(0), f(1), \ldots, f(n - 1)\}$.
Simple Sets

Theorem. There is a simple set.

Proof. Define \(f(x) = \phi_x(\mu z(\phi_x(z) > 2x)) \). Let \(A \) be \(\text{Ran}(f) \).

(i) \(A \) is r.e.

(ii) \(\overline{A} \) is infinite. This is because \(A \cap \{0, 1, \ldots, 2n\} \) contains at most the elements \(\{f(0), f(1), \ldots, f(n - 1)\} \).

(iii) Suppose \(B \) is an infinite r.e. set. Then there is a total computable function \(\phi_b \) such that \(B = E_b \). Since \(\phi_b \) is total, \(f(b) \) is defined and \(f(b) \in A \). Hence \(B \not\subseteq \overline{A} \).