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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Decision Problem, Predicate, Number Set

The following emphasizes the importance of the subsek& of

Decision Problems < Predicates on Number
& Sets of Numbers

A central theme of recursion theory is to look for sensible
classification of number sets.

Classification is often done with the help of reduction.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Recursive Set

Let A be a subset di. The characteristic function & is given by

ca(X) = 1 ifxeA
AT 0, ifxé¢ A

Alis recursivef ca(X) is computable.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Solvable Problem

A recursive set is (the domain of)salvableproblem.

It is important to know if a problem is solvable.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Examples

The following sets are recursive.
(&) N.

(b) E (the even numbers).

(c) Any finite set.

(d) The set of prime numbers.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Unsolvable Problem

Here are some importanhsolvableproblems:

K
Fin
Inf

Cof
Rec
Tot
Ext

{x| xe W},

{x| Wy is finite},

{x | Wy is infinite},

{X | Wy is cofinite},

{x| Wy is recursive,

{X| ¢x is total},

{X| ¢ is extensible to a total recursive functipn
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Cofinite

Cof = {x| Wk is cofinite} means the set whose complement is finite.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 9/7



Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Cofinite

Cof = {x| Wk is cofinite} means the set whose complement is finite.

Example 1 {x | x > 5} is cofinite.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Cofinite

Cof = {x| Wk is cofinite} means the set whose complement is finite.

Example 1 {x | x > 5} is cofinite.

Not every infinite set is cofinite.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Cofinite

Cof = {x| Wk is cofinite} means the set whose complement is finite.

Example 1 {x | x > 5} is cofinite.

Not every infinite set is cofinite.

Example 2 E, O are not cofinite.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Extensible Functions

Ext = {x | ¢x is extensible to a total recursive function
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Extensible Functions

Ext = {x | ¢x is extensible to a total recursive function

Example f(x) = ¢x(X) + 1 is not extensible.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Extensible Functions

Ext = {x | ¢x is extensible to a total recursive function
Example f(x) = ¢x(X) + 1 is not extensible.

Proof: Assumef (x) is extensible, then define total recursive function

[ Yu(xx) + 1 if y(x x) is defined
90X = { o otherwise @)

Let ¢m be the Godel coding dj(x), thengn, is a total recursive
function.

Whenx = m, ¢m(m) = 1y (m, m) by universal problem.
However,¢mn(m) = g(m) = ¢y (m, m) + 1 by equation (1). A
contradiction. O

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 10/7



Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Extensible Functions

Ext = {x | ¢x is extensible to a total recursive function
Example f(x) = ¢x(X) + 1 is not extensible.

Proof: Assumef (x) is extensible, then define total recursive function

[ Yu(xx) + 1 if y(x x) is defined
90X = { o otherwise @)

Let ¢m be the Godel coding dj(x), thengn, is a total recursive
function.

Whenx = m, ¢m(m) = 1y (m, m) by universal problem.
However,¢mn(m) = g(m) = ¢y (m, m) + 1 by equation (1). A
contradiction. O

Comment Not every partial recursive function can be obtained by
restricting a total recursive function.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Decidable Predicate

A predicateM (x) is decidableif its characteristic functiomy (X)
given by

o (x) = { 1, if M(x) holds
0, if M(x) does not hold

is computable.

The predicateM (x) is undecidabléf it is not decidable.

Recursive Set Solvable Problem= Decidable Predicate.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Algebra of Decidability

Theorem. If A, B are recursive sets, then so are the sets N B,
AU B, andA\B.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Algebra of Decidability

Theorem. If A, B are recursive sets, then so are the sets N B,

AU B, andA\B.
Proof.
Cr = 1;CA.

CanB = Ca - CB.
Caus = Max(ca, Cg).

CA\B =Ca- CE.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Reduction between Problems

A reduction is a way of defining a solution of a problem with tedp
of the solutions of another problem.

In recursion theory we are only interested in reductions dha
computable.

There are several ways of reducing a problem to another.

The differences between different reductions frAro B consists in
the manner and extent to which information abBus allowed to
settle questions aboét
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Many-One Reduction

The setA is many-one reducibleor m-reducible to the seB if there
is atotal computable functiori such that

x € Aiff f(x) € B

for all x.
We shall writeA <, B or more explicitlyf : A <p, B.

If f is injective, then it is ane-one reducibilitydenoted by<;.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Many-One Reduction

1. <, is reflexive and transitive.
2. A<y Biff A<y B.
AL NIff A=N A<, g iff A= @.

4.N < Aiff A% @; @ <m Aiff A% N,
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Non-Recursive Set

Proposition. K = {x | x € Wx} is not recursive.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Non-Recursive Set

Proposition. K = {x | x € Wx} is not recursive.

Proof. If K were recursive, then the characteristic function

o(x) = 1, if xe W,
1 0, if xé¢ W,

would be computable.
Then the functiorg(x) defined by

/0 if c(x) =0,
90 = { undefined if c(x) = 1.

would also be computable.
Letmbe an index fog. Then

m € Wi iff c(m) = 0 iff m ¢ Wi,

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 16/7



Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Non-Recursive Set

Proposition. NeitherTot = {x | ¢x is total} nor {x | ¢x ~ 0} is
recursive.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Non-Recursive Set

Proposition. NeitherTot = {x | ¢x is total} nor {x | ¢x ~ 0} is
recursive.

Proof. Consider the functiof defined by
|0 if x € W,
fooy) = { undefined if x ¢ W.

By S-m-n Theorem there is a primitive recursive functigr) such
that gy (Y) = f(x,y).

Itis clear thak : K <, Tot andk : K <p, {x | ¢x ~ 0}.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Rice Theorem

Henry Rice.

Classes of Recursively Enumerable Sets and their Decigildns.
Transactions of the American mathematical Sociéf358-366,
1953.
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Recursive Sets Decidable Predicate
Reduction
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Rice Theorem

Rice Theorem (1953)
If @ C # C ¢1,then{x | ¢x € A} is not recursive.
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Recursive Sets Decidable Predicate
Reduction
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Rice Theorem

Rice Theorem (1953)
If @ C # C ¢1,then{x | ¢x € A} is not recursive.

Proof. Supposé, ¢ % andg € #. Let the functiorf be defined by

B g(y)’ |f X e WX7
f(xy) = { undefined if x ¢ W.

By S-m-n Theorem there is some primitive recursive funckor)
such thatpyy (y) =~ f(x,y).

It is clear thatk is a many-one reduction froi to {x | ¢x € %A}.
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Applying Rice Theorem

According to Rice Theorem the following sets are non-regars

Fin = {x| Wkis finite},

Inf = {x| Wkis infinite},
Cof = {x|Wis cofinite},
Rec = {x|Wis recursive,

Tot = {x| ¢xis total}
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Recursive Sets Decidable Predicate
Reduction
Rice Theorem

Remark on Rice Theorem

Rice Theorem deals with programme independent properties.

It talks about classes of computable functions rather thesses of
programmes.

All non-trivial semantic problems are algorithmically wwidable.

It is of no help to a proof that the set of all polynomial timerifig
Machines is undecidable.
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Outline

© Recursively Enumerable Set
o Partial Decidable Predicates
@ Theorems
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Partial Decidable Predicates

Recursively Enumerable Set S e

Recursively Enumerable Set

Thepartial characteristic functioof a setA is given by

(X) = 1, if xe A,
XA =\ undefined if x ¢ A.

Alis recursively enumerablié xa(x) is computable.
Notation 1: Aiis also calledsemi-recursiveset,semi-computablset.

Notation 2: subsets oN" can be defined ase. by coding to r.e.
subsets oN.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Partially Decidable Predicate

A predicateM (x) of natural number ipartially decidabléf its partial
characteristic function

(x) = 1, if M(x) holds
M= 1 undefined if M(x) does not hold

is computable.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Partially Decidable Problem

A problemf : N — {0, 1} is partially decidabléf dom(f) isr.e.
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Partial Decidable Predicates
Theorems

Recursively Enumerable Set

Partially Decidable Problem<« Partially Decidable Predicate
< Recursively Enumerable Set
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Partial Decidable Predicates

Recursively Enumerable Set S e

Quick Review

Theorem. A predicateM(x) is partially decidable iff there is a
computable functiom(x) such thaM(x) < x € Dom(g).

Theorem. A predicateM(x) is partially decidable iff there is a
decidable predicatR(x,y) such thaM(x) < 3y.R(x,y).

Theorem. If M(x,y) is partially decidable, so i8y.M(x, y).
Corollary . If M(x,y) is partially decidable, so i8y.M(X, y).

Theorem. M(x) is decidable iff bothVi(x) and—=M(x) are partially
decidable.

Theorem. Letf(x) be a partial function. Thehis computable iff the
predicate f (x) ~ y' is partially decidable.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Some Important Decidable Predicates

For eacn > 1, the following predicates are primitive recursive:
1. Sn(e X, y,t) def. Pe(x) L yin t or fewer steps’.

2. Hn(e X, t) def. Pe(x) 4 int or fewer steps’.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Some Important Decidable Predicates

For eacn > 1, the following predicates are primitive recursive:
1. Sn(e X, y,t) def. Pe(x) L yin t or fewer steps’.

2. Hn(e X, t) def. Pe(x) 4 int or fewer steps’.

They are defined by

Sn(e,x,y, t) = jn(ev X, t) =0A (Cn(ev X, t))l =Y,
Hn(e x,t) = j,(ex,t) =0.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Example

1. The halting problem is partially decidable. Its partiadracteristic
function is given by

_ 17 if PX(y) \La
XH(XY) = { undefined otherwise
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Partial Decidable Predicates

Recursively Enumerable Set S e

Example

1. The halting problem is partially decidable. Its partiadracteristic
function is given by

_ 17 if PX(y) \La
XH(XY) = { undefined otherwise

2. K = {x| x e Wy} is r.e., but not recursive.
Proof xk (X) = 1(¢bu (X, X)).
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Partial Decidable Predicates

Recursively Enumerable Set S e

Example

1. The halting problem is partially decidable. Its partiadracteristic
function is given by

_ 17 if PX(y) \La
XH(XY) = { undefined otherwise

2. K = {x| x e Wy} is r.e., but not recursive.
Proof xk (X) = 1(¢bu (X, X)).

3. K = {x|x & W} is not r.e., (also not recursive).

1 ifxe& W

T if x € Wy

Thenx € Dom(f) < x € W. f is computable whil®©om(f) doesn’t
equal to any computable function. Contradiction!

Proof If yes, then defindé(x) = {

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 29/7



Partial Decidable Predicates
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Example (Cont.)

4. Any recursive setis r.e.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Example (Cont.)

4. Any recursive setis r.e.

5 {X|Wx # @}isre.
Proof Wy # @ < Jy3t(Px(y) | int steps.
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Partial Decidable Predicates

Recursively Enumerable Set S e

Example (Cont.)

4. Any recursive setis r.e.

5 {X|Wx # @}isre.
Proof Wy # @ < Jy3t(Px(y) | int steps.

6. If f is a computable function, théRan(f) is r.e.
Proof Let ¢m be the Godel coding df.
X € Em < 3y3t(Pm(y) | Xin t steps.

X € Eny is partial decidable< Ran(f) isr.e
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Index Theorem

Theorem. A set is r.e.iff it is the domain of a unary computable
function.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Index Theorem

Theorem. A set is r.e.iff it is the domain of a unary computable
function.

Proof:
“=". Aisr.e.= yais computable= “Xx € A< X € xa".
ThusA is the domain of unary computable functigp.

“<": If f is a unary computable function, l&t= Dom(f).
Thenya = 1(f(x)), which is computable.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Index Theorem

Theorem. A set is r.e.iff it is the domain of a unary computable
function.

Proof:
“=". Aisr.e.= yais computable= “Xx € A< X € xa".
ThusA is the domain of unary computable functigp.

“<": If f is a unary computable function, l&t= Dom(f).
Thenya = 1(f(x)), which is computable.

Notation (Index for Recursively Enumerable SetYy, Wi, W, . . . is
a repetitive enumeration of all r.e. setss an index ofA if A =W,
end every r.e. set has an infinite number of indexes.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Normal Form Theorem

Theorem. The setAis r.e. iff there is a primitive recursive predicate
R(x,y) such thak € Aiff 3y.R(X,y).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Normal Form Theorem

Theorem. The setAis r.e. iff there is a primitive recursive predicate
R(x,y) such thak € Aiff 3y.R(X,y).

Proof. “<": If R(X,y) is primitive recursive ana € A < 3y.R(X,y),
then defing(x) = pyR(X,y).
Theng(x) is computable and € A < x € Dom(g).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Normal Form Theorem

Theorem. The setAis r.e. iff there is a primitive recursive predicate
R(x,y) such thak € Aiff 3y.R(X,y).

Proof. “<": If R(X,y) is primitive recursive ana € A < 3y.R(X,y),
then defing(x) = pyR(X,y).
Theng(x) is computable and € A < x € Dom(g).

“=": supposeAisr.e., thenya is computable. LeP be program to
computexa andR(X,y) be

P(x) J in y steps

ThenR(x,y) is primitive recursive (decidable) and
X € A< Jy.RXY).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Quantifier Contraction Theorem

Theorem (Applying the Normal Form Theorem). M (X, y) is
partially decidable, so iSy.M(x,y) ({x | Jy.M(x,y)} isr.e.)
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Quantifier Contraction Theorem

Theorem (Applying the Normal Form Theorem). M (X, y) is
partially decidable, so iSy.M(x,y) ({x | Jy.M(x,y)} isr.e.)

Proof. LetR(X,y, z) be a primitive recursive predicate such that

M(x,y) & 3zR(X,Y, 2).

Then3dy.M(x,y) < 3y.3zR(X,Y, 2) < Ju.R(X, (U)o, - - , (U)mt1)-
(U= 2132 g, Ty = (V2,0 Ym))-

By Normal Form Theorenjy.M(X,y) is partially decidable, and
{X]3Iy.M(x,y)}isr.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Uniformisation Theorem

Theorem (Applying the Normal Form Theorem). R(x,y) is
partially decidable, then there is a computable functio such that
c(x) J iff Jy.R(x,y) andc(x) | impliesR(x, c(X)).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Uniformisation Theorem

Theorem (Applying the Normal Form Theorem). R(x,y) is
partially decidable, then there is a computable functio such that
c(x) J iff Jy.R(x,y) andc(x) | impliesR(x, c(X)).

We may think ofc(x) as a choice function fdR(x, y). The theorem
states that the choice function is computable.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Complementation Theorem

Theorem. Ais recursive iffA andA are r.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Complementation Theorem

Theorem. Ais recursive iffA andA are r.e.

Proof. “=": If Ais recursive, therya andy are computable.
Thus= AandAare r.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Complementation Theorem

Theorem. Ais recursive iffA andA are r.e.

Proof. “=": If Ais recursive, therya andy are computable.
Thus= AandAare r.e.

“<": SupposeA andA are r.e. Then some primitive recursive
predicateRR(x,y), S(x,y) exist such that

xeA & 3IyRXY),
XEA & FySXy).

Now letf(x) = uy(R(X,y) V S(X,Y)).

Since eithex € A or x € A holds,f(x) is total and computable, and
x € A< R(x f(x)). Thusx € Ais decidable= Ais recursive.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

The Hardest Recursively Enumerable Set

Fact. If A<y, BandBisr.e. themAisr.e..
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

The Hardest Recursively Enumerable Set

Fact. If A<y, BandBisr.e. themAisr.e..

Theorem. Aisr.e. iff A <y K.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

The Hardest Recursively Enumerable Set

Fact. If A<y, BandBisr.e. themAisr.e..
Theorem. Aisr.e. iff A <y K.
Proof. Supposéis r.e. Letf (x,y) be defined by

F(xy) = 1, if xeA,
Y=\ undefined if x ¢ A.

By S-m-n Theorem there is a total computable funcgpg such that
f(XY) = ¢sx(y). Itis clear thai € Aiff s(x) € K.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

The Hardest Recursively Enumerable Set

Fact. If A<y, BandBisr.e. themAisr.e..

Theorem. Aisr.e. iff A <y K.

Proof. Supposéis r.e. Letf (x,y) be defined by

F(xy) = 1, if xeA,
Y=\ undefined if x ¢ A.

By S-m-n Theorem there is a total computable funcgpg such that
f(XY) = ¢sx(y). Itis clear thai € Aiff s(x) € K.

No r.e. set is more difficult thaK.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Complementation Theorem

Proposition. If Ais r.e. but not recursive, theR <m A £m A.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Complementation Theorem

Proposition. If Ais r.e. but not recursive, theR <m A £m A.

It contradicts to our intuition thah andA are equally difficult.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Graph Theorem

Theorem. Letf(x) be a partial function. Thef(x) is computable iff
the predicatef(x) ~ y' is partially decidable iff{7(x,y) | f(X) ~ y}
isr.e.
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- Partial Decidable Predicates
Recursively Enumerable Set TrEerais

Graph Theorem

Theorem. Letf(x) be a partial function. Thef(x) is computable iff
the predicatef(x) ~ y' is partially decidable iff{7(x,y) | f(X) ~ y}
isr.e.
Proof. If f(x) is computable by(x), then

f(x) ~y < 3t.(P(x) | yin t steps.

The predicateP(x) | yin t steps’ is primitive recursive.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Graph Theorem

Theorem. Letf(x) be a partial function. Thef(x) is computable iff
the predicatef(x) ~ y' is partially decidable iff{7(x,y) | f(X) ~ y}
isr.e.

Proof. If f(x) is computable by(x), then
f(x) ~y < 3t.(P(x) | yin t steps.
The predicateP(x) | yin t steps’ is primitive recursive.

Conversely leR(x, y, t) be such that
f(x) ~y < 3tR(X Y, 1).

Now f(x) = uy.R(X, Y, ut.R(x,y,t)).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Listing Theorem

Listing Theorem. Ais r.e. iff eitherA = @ or Ais the range of a
unarytotal computable function.
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- Partial Decidable Predicates
Recursively Enumerable Set TrEerais

Listing Theorem

Listing Theorem. Ais r.e. iff eitherA = @ or Ais the range of a
unarytotal computable function.

Proof. Supposei is nonempty and its partial characteristic function is
computed byP. Leta be a member oA. The total functiorg(x, t)
given by
[ % if P(x) | intsteps
gt = { a, if otherwise

is computable. Clearlp is the range oh(z) = 9((2)1, (2)2).
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- Partial Decidable Predicates
Recursively Enumerable Set TrEerais

Listing Theorem

Listing Theorem. Ais r.e. iff eitherA = @ or Ais the range of a
unarytotal computable function.

Proof. Supposei is nonempty and its partial characteristic function is
computed byP. Leta be a member oA. The total functiorg(x, t)
given by
[ % if P(x) | intsteps
gt = { a, if otherwise

is computable. Clearlp is the range oh(z) = 9((2)1, (2)2).

The converse follows from Graph Theorem.
SupposeéA = Ran(h), then

x € A< 3y(h(y) ~ x) < Jy3t(P(y) { xint steps
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Listing Theorem

It gives rise to the terminologsecursively enumerahle

The elements of ar.e. set can be effectively generated. Acgn be
enumerated a& = {h(0),h(1),--- ,h(n),--- }, wherehis a primitive
recursive function.

{Eo,E1,--- ,En,--- } isanother enumeration of all r.e. sets.

R.e. set areffectively generatedets, which is a list compiled by an
informal effective procedure (may go on ad infinitum).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

An Example

The set{x | if there is a run of exactlx consecutive 7’s in the decimal
expansion ofr} isr.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

An Example

The set{x | if there is a run of exactlx consecutive 7’s in the decimal
expansion ofr} isr.e.

Proof. Run an algorithm that computes successive digits in the

decimal expansion af. Each time a run of 7s appears, count the
number of consecutive 7s in the run and add this number tasthe |
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

A setisr.e. iff it is the range of a computable function.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

A setisr.e. iff it is the range of a computable function.

Equivalence Theorem.Let A C N. Then the following are
equivalent:

(@).Aisr.e.
(b). A= @ or Ais the range of a unary total computable function.
(c). Ais the range of a (partial) computable function.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.

Proof. SupposéA = Ran(f) wheref is a total computable function.
An infinite recursive subset is enumerated by the total exirg
computable functiog given by

9(0) = f(0),
gin+1) = fluy(y) > gn)).

(gis total sinceA = Ran(f) is infinite. g is computable by
minimalisation and recursion).
Ran(g) is an infinite recursive subset Af
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total
increasing computable function (if it can be recursivelyreerated in
increasing order).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total
increasing computable function (if it can be recursivelyreerated in
increasing order).

Proof.“=-" SupposeA is recursive and infinite. Thefdis enumerated
by the increasing functioh given by

fO) = wlyeAh),
fin+1) = pylye AAy>f(n)).

f is total sinceA is infinite. f is computable by minimalisation and
recursion.Ran(g) is an infinite recursive subset &f
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total
increasing computable function (if it can be recursivelyreerated in
increasing order).

Proof.“=-" SupposeA is recursive and infinite. Thefdis enumerated
by the increasing functioh given by

fO) = wlyeAh),
fin+1) = pylye AAy>f(n)).
f is total sinceA is infinite. f is computable by minimalisation and
recursion.Ran(g) is an infinite recursive subset &f

“«<": SupposéA is the range of the computable total increasing
functionf;i.e.,f(0) < f(1) <f(2) <--- Itis clear that ify = f(n)
thenn <y. Hence

ye AeyeRan(f) < In<y(f(n) =y)
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. The set{x | ¢« is total} is not r.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Listing Theorem

Theorem. The set{x | ¢« is total} is not r.e.

Proof. If {x | ¢« is total} were ar.e. set, then there would be a total
computable functio whose range is the r.e. set.

The functiong(x) given byg(x) = ¢y (X) + 1 would be total and
computable.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

An Alternative Proof

Letf(x,y) =
1 if Px(X) does not converge ior fewer steps
undefined otherwise

Sincef (x, y) is computable by Church’s Thesis, from s-m-n theorem,
there is a total computable functidx), such thatpy (y) >~ f(x,y).

From the definition of , we have

x € Wy = (3Jy)(Px(x) converges iry steps = ¢y is not total
X & Wy = (Vy)(Px(x) does not converge wsteps = ¢y is total

Therefore, X & W' iff. ‘@ is total’. We have ¢ is total’ is not
partially computable.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Closure Theorem

Theorem. The recursively enumerable sets are closed under union
and intersection uniformly and effectively.
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- Partial Decidable Predicates
Recursively Enumerable Set TrEerais

Closure Theorem

Theorem. The recursively enumerable sets are closed under union
and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive
functionsr(x,y), s(x,y) such that

Wy = WaUW,
WS(X,y) — WX ﬂ Wy
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- Partial Decidable Predicates
Recursively Enumerable Set TrEerais

Closure Theorem

Theorem. The recursively enumerable sets are closed under union
and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive
functionsr(x,y), s(x,y) such that

Wy = WaUW,
WS(X,y) — WX ﬂ Wy
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- Partial Decidable Predicates
Recursively Enumerable Set TrEerais

Rice-Shapiro Theorem

Rice-Shapiro Theorem Suppose that7 is a set of unary
computable functions such that the et ¢x € <7} is r.e. Then for
any unary computable functidnf € o7 iff there is a finite function
6 Cfwithf e .o
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

SupposeA = {x | ¢x € '} isr.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

SupposeA = {x | ¢x € '} isr.e.
Supposd € o7 butV finited C f.0 ¢ .
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

SupposeA = {x | ¢x € '} isr.e.
Supposd € o7 butV finited C f.0 ¢ .

Let P be a partial characteristic function Ikif
Define the computable functiay(z t) by

_J f(t), ifP(2) /intsteps
9z ~ { T, otherwise

According to S-m-n Theorem, there is a primitive recursivection
S(2) such thag(z t) =~ ¢g (1).
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

SupposeA = {x | ¢x € '} isr.e.
Supposd € o7 butV finited C f.0 ¢ .

Let P be a partial characteristic function Ikif
Define the computable functiay(z t) by

_J f(t), ifP(2) /intsteps
9z ~ { T, otherwise

According to S-m-n Theorem, there is a primitive recursivection
S(2) such thag(z t) =~ ¢g (1).

By constructionpg, C f for all z
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

SupposeA = {x | ¢x € '} isr.e.
Supposd € o7 butV finited C f.0 ¢ .

Let P be a partial characteristic function Ikif
Define the computable functiay(z t) by

_J f(t), ifP(2) /intsteps
9z ~ { T, otherwise

According to S-m-n Theorem, there is a primitive recursivection
S(2) such thag(z t) =~ ¢g (1).

By constructionpg, C f for all z

ze K= ¢gy isfinite=s(z) ¢ A;
Z2¢ K= g5y =f=5(2) €A
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

Supposd is a computable function and there is a firfite .« such
thatd C f andf ¢ «7.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

Supposd is a computable function and there is a firfite .« such
thatd C f andf ¢ «7.

Define the computable functiay(z t) by

_J (), ifteDom(f)VzeK,
9z 1) ~ { T, otherwise

According to S-m-n Theorem, there is a primitive recursivection
S(2) such thag(z,t) =~ ¢, (1)
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Proof of Rice-Shapiro Theorem

Supposd is a computable function and there is a firfite .« such
thatd C f andf ¢ «7.

Define the computable functiay(z t) by

_J (), ifteDom(f)VzeK,
9z 1) ~ { T, otherwise

According to S-m-n Theorem, there is a primitive recursivection
S(2) such thag(z,t) =~ ¢, (1)

zeK=ggy =f=5(2) ¢ A
2¢ K= g5y =0=5(2 € A
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Reversing Rice-Shapiro Theorem

{x| ¢x € &/} is r.e. if the following hold:

(1) © ={9g(9) | 6 € o7 andd is finite} is r.e., wheregy is a canonical
encoding of the finite functions.

(2)Vf € o7, dfinited € o7, 6 Cf.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Corollary

The sets(x | ¢« is total} and{x | ¢y is not tota} are notr.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Corollary

The sets(x | ¢« is total} and{x | ¢y is not tota} are notr.e.

Proof. Consider the set/ = {f | f € €1 A f is total}. For nof € o/
is there a finited C f with 6 € 7. Hence{x | ¢x is total} is not r.e.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Corollary

The sets(x | ¢« is total} and{x | ¢y is not tota} are notr.e.

Proof. Consider the set/ = {f | f € €1 A f is total}. For nof € o/
is there a finited C f with 6 € 7. Hence{x | ¢x is total} is not r.e.

Consider the se¥ = {f | f € 1 A f is not total. Then iff is any

total computable functiorf, ¢ 2; but every finite functiord C f is in
2. Hence{x | ¢y is not tota} is not r.e. by Rice-Shapiro theorem.
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Partial Decidable Predicates

Recursively Enumerable Set Theorems

Applying Rice-Shapiro Theorem

The following sets are not recursively enumerable:

Fin = {x| W is finite},

Inf = {x| Wis infinite},

Cof = {x|Wyis cofinite},

Rec = {x|Wyisrecursive,

Tot = {x|¢xistotal},
Con = {x| ¢xis total and constamt

Ext = {X]| ¢xis extensible to a total recursive function
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Productive Sets

Special Sets

Outline

© Special Sets
@ Productive Sets
@ Creative Set
@ Simple Sets
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Productive Sets
Creative Set
Special Sets Simple Sets

Non-r.e. Sets

Target. We consider non-r.e. sets to folreative sets. SUpposei is
any non-r.e. set, then W is an r.e. set contained & there must be
a numbery € A\W,. This numbely is a withess ofA £ W.
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Productive Sets
Creative Set
Special Sets Simple Sets

Non-r.e. Sets

Target. We consider non-r.e. sets to folreative sets. SUpposei is
any non-r.e. set, then W is an r.e. set contained & there must be
a numbery € A\W,. This numbely is a withess ofA £ W.

Example. ConsideK = {x | x & Wy}
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Productive Sets
Creative Set
Special Sets Simple Sets

Non-r.e. Sets

Target. We consider non-r.e. sets to folreative sets. SUpposei is
any non-r.e. set, then W is an r.e. set contained & there must be
a numbery € A\W,. This numbely is a withess ofA £ W.

Example. ConsideK = {x | x & Wy}

Supposaly C K. Thenx € K \ Wy. Sox is a witness that the
inclusionWy C K is strict.
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Productive Sets
Creative Set
Special Sets Simple Sets

Non-r.e. Sets

Target. We consider non-r.e. sets to folreative sets. SUpposei is
any non-r.e. set, then W is an r.e. set contained & there must be
a numbery € A\W,. This numbely is a withess ofA £ W.

Example. ConsideK = {x | x & Wy}

Supposaly C K. Thenx € K \ Wy. Sox is a witness that the
inclusionWy C K is strict.

We callK productive.
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Productive Sets
Creative Set
Special Sets Simple Sets

Productive Sets

Definition. A set A is productive if
there is a total computable function
g such that wheneveWy, C A, then
g(x) € A\ W

The function is called goroductive
functionfor A.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 56/7



Productive Sets
Creative Set
Special Sets Simple Sets

Productive Sets

Definition. A set A is productive if
there is a total computable functiol
g such that wheneveWy, C A, then

g(x) € A\ Wk. @

The function is called goroductive
functionfor A.

. . . Fig. A productive set
Notation. A productive setis not r.e. o-APp

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 56/7



Productive Sets
Creative Set
Special Sets Simple Sets

Productive Sets

Definition. A set A is productive if
there is a total computable functiol
g such that wheneveWy, C A, then

gx) € A\ W. @ !
o g{x)
The function is called goroductive

functionfor A.

. . . Fig. A productive set
Notation. A productive setis not r.e. o-APp

Example. K is productive with productive functiog(x) = x.
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Productive Sets
Creative Set
Special Sets Simple Sets

Reduction Theorem

Theorem. Suppose thah andB are sets such thatis productive,
and there is a total computable function such thatA iff f(x) € B.
ThenB is productive.
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Productive Sets
Creative Set
Special Sets Simple Sets

Reduction Theorem

Theorem. Suppose thah andB are sets such thatis productive,
and there is a total computable function such thatA iff f(x) € B.
ThenB is productive.

Proof. Supposé\Vy C B. ThenW, = f~1(W) C f~1(B) = Afor
somez
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Productive Sets
Creative Set
Special Sets Simple Sets

Reduction Theorem

Theorem. Suppose thah andB are sets such thatis productive,
and there is a total computable function such thatA iff f(x) € B.
ThenB is productive.

Proof. Supposé\Vy C B. ThenW, = f~1(W) C f~1(B) = Afor
somez

Moreover,f ~1(W) is r.e. (by substitution), so there izauch that
f~1(Wy) = W,. NowW, C A, andg(z) € A\ W,. Hence
f(9(2)) € B\ Wk
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Productive Sets
Creative Set
Special Sets Simple Sets

Reduction Theorem

Theorem. Suppose thah andB are sets such thatis productive,
and there is a total computable function such thatA iff f(x) € B.
ThenB is productive.

Proof. Supposé\Vy C B. ThenW, = f~1(W) C f~1(B) = Afor
somez

Moreover,f ~1(W) is r.e. (by substitution), so there izauch that
f~1(Wy) = W,. NowW, C A, andg(z) € A\ W,. Hence
f(9(2)) € B\ Wk

f(g(2)) is a witness to the fact tha¥y # B.
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Productive Sets
Creative Set
Special Sets Simple Sets

Reduction Theorem

Theorem. Suppose thah andB are sets such thatis productive,
and there is a total computable function such thatA iff f(x) € B.
ThenB is productive.

Proof. Supposé\Vy C B. ThenW, = f~1(W) C f~1(B) = Afor
somez

Moreover,f ~1(W) is r.e. (by substitution), so there izauch that
f~1(Wy) = W,. NowW, C A, andg(z) € A\ W,. Hence
f(9(2)) € B\ Wk

f(g(2)) is a witness to the fact tha¥y # B.

We now need to obtain the witnebg(z)) effectively fromx. Apply
the s-m-n theorem tox(f (y)), one gets a total computable function
k(x) such thaipy (Y) = éx(f(y)). ThenWyyy = f~1(W). It follows

(1) (1 K X » A
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Special Sets

A=f"'(B)

og(z)

CSC363-Computability Theory@SJTU

Xiaofeng Gac

Productive Sets
Creative Set
Simple Sets

*f(g(2))
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Productive Sets
Creative Set
Special Sets Simple Sets

Examples

1. {x| ¢x # O} is productive.
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Productive Sets
Creative Set
Special Sets Simple Sets

Examples

1. {x| ¢x # O} is productive.

0 ifxe W

Proof f(x,y) = { P oifxd W Reduce fronK.
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Productive Sets
Creative Set
Special Sets Simple Sets

Examples

1. {x| ¢x # O} is productive.

0 ifxe W

Proof f(x,y) = { P oifxd W Reduce fronK.
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1. {x| ¢x # O} is productive.

] 0 ifxe W _
Proof f(x,y) = { Tt X W Reduce fronK.
2. {x| c ¢ Wy} is productive.

oy ifxe W =
Proof f(x,y) = { T x W Reduce fronK.
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1. {x| ¢x # O} is productive.

] 0 ifxe W _
Proof f(x,y) = { Tt X W Reduce fronK.
2. {x| c ¢ Wy} is productive.

oy ifxe W =
Proof f(x,y) = { T x W Reduce fronK.

3. {x| c ¢ Ex} is productive.
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Application of Rich’s Theorem

Theorem. Suppose tha® is a set of unary computable functions with
fo € B andB # €1. Then the seB = {X | ¢x € A} is productive.
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Theorem. Suppose tha® is a set of unary computable functions with
fo € B andB # €1. Then the seB = {X | ¢x € A} is productive.

Proof. Choose a computable functignz %. Consider functior
defined by

_ g(y)¢ ifXEWXa
f(x’y)_{ 5 i xd W
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Application of Rich’s Theorem

Theorem. Suppose tha® is a set of unary computable functions with
fo € B andB # €1. Then the seB = {X | ¢x € A} is productive.

Proof. Choose a computable functignz %. Consider functior
defined by

_ g(y)¢ ifXEWXa
f(x’y)_{ 5 i xd W

By s-m-n theorem there is some total computable fundtieh such
that gy (Y) = f(x,y).
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Application of Rich’s Theorem

Theorem. Suppose tha® is a set of unary computable functions with
fo € B andB # €1. Then the seB = {X | ¢x € A} is productive.

Proof. Choose a computable functignz %. Consider functior
defined by

_ g(y)¢ ifXEWXa
f(x’y)_{ 5 i xd W

By s-m-n theorem there is some total computable fundtieh such
that gy (Y) = f(x,y).

Itis clear thatx € W iff ¢y = giff ¢ ¢ #. Thusx € Kiff
k(x) € B.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 60/7



Productive Sets
Creative Set
Special Sets Simple Sets

Application of Rich’s Theorem

Theorem. Suppose tha® is a set of unary computable functions with
fo € B andB # €1. Then the seB = {X | ¢x € A} is productive.

Proof. Choose a computable functignz %. Consider functior
defined by
— g(y)¢ If Xe WXa
fxy) = { 5 i xd W
By s-m-n theorem there is some total computable fundtieh such
that gy (Y) = f(x,y).

Itis clear thatx € W iff ¢y = giff ¢ ¢ #. Thusx € Kiff
k(x) € B.

Example. {x | ¢x is not tota} is productive.
(% ={f |f € 61 NTisnottotal.)
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Creative Sets

Definition. A setA s creativeif it is r.e. and its complemer is
productive.
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Creative Sets

Definition. A setA s creativeif it is r.e. and its complemer is
productive.

Example. K is creative. (The simplest example of a creative set).
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Creative Sets

Definition. A setA s creativeif it is r.e. and its complemer is
productive.

Example. K is creative. (The simplest example of a creative set).
Notation. From the theorem that is recursive= A andA are r.ewe
can say that a creative set is an r.e. set that fails to besigeun a

very strong way. (Creative sets are r.e. sets having the dif@istlt
decision problem.)
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Examples

1. {x| c € Wy} is creative.
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1. {x| c € Wy} is creative.

2. {x| c € Ex} is creative.
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Examples

1. {x| c € Wy} is creative.
2. {x| c € Ex} is creative.

3. A= {x| ¢x(x) = O} is creative.
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Examples

1. {x| c € Wy} is creative.
2. {x| c € Ex} is creative.

3. A= {x| ¢x(x) = O} is creative.

Proof Aisr.e.
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Examples

1. {x| c € Wy} is creative.
2. {x| c € Ex} is creative.

3. A= {x| ¢x(x) = O} is creative.
Proof Aisr.e.

To obtain a productive function f@k, by s-m-n theorem one gets a
total computable functiog(x) such thatpy, (y) = 0 < ¢x(y) is
defined.

Theng(x) € A< g(x) € Wk So if Wy C Awe must have
g(x) € A\ Wx.

Thusg is a productive function foA.
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Application of Rice’s Theorem

Theorem. Suppose that” C %1 and letA = {x | ¢x € &/ }. If Ais
r.e. andA £ @ N, thenAis creative.
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Application of Rice’s Theorem

Theorem. Suppose that” C %1 and letA = {x | ¢x € &/ }. If Ais
r.e. andA £ @ N, thenAis creative.

Proof. Supposé\isr.e. andA # &, N.

If fz € o7, thenAis productive by the previous theorem. Thisis a
contradiction.

Thusfy ¢ 7. Ais productive by the same theorem. Heldcis
creative.
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Examples

1. A= {x| c € Wy} is creative. It corresponds to
o ={f e6r|f(c)}.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 64/7



Productive Sets
Creative Set
Special Sets Simple Sets

Examples

1. A= {x| c € Wy} is creative. It corresponds to
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2. A= {x| c € Ex} is creative. It corresponds to
o ={f e |IxF(x)|c}.
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Examples

1. A= {x| c € Wy} is creative. It corresponds to
o ={f e6r|f(c)}.

2. A= {x| c € Ex} is creative. It corresponds to
o ={f e |IxF(x)|c}.

3. A= {x| Wy # @} is creative. It corresponds to
o ={feer|f#1z}.
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Discussion

Question Are all non-recursive r.e. sets creative?
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Discussion

Question Are all non-recursive r.e. sets creative?

The answer is negative. By a special construction we canrpobta
r.e.sets that are neither recursive nor creative.
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Subset Theorem

Lemma. Suppose thaj is a total computable function. Then there is
a total computable functiokisuch that for alk, Wix, = Wx U {g(X) }.
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Subset Theorem

Lemma. Suppose thaj is a total computable function. Then there is
a total computable functiokisuch that for alk, Wix, = Wx U {g(X) }.

Proof. Using the s-m-n theorem, takéx) to be a total computable
function such that

[ Lifye W vy=g(x)
Pk(x) (y) = { 1, otherwise
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functignThe idea
is to enumerate a non-repetitive infinite 8et {yo,y1, -} C A
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functignThe idea
is to enumerate a non-repetitive infinite 8et {yo,y1, -} C A

Takeey to be some index fow, = @. SinceWy, C A, g(e) € A.
Putyo = g(eo) € A.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive and Recursively Enumerable Set 67/7



Productive Sets
Creative Set
Special Sets Simple Sets

Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functignThe idea
is to enumerate a non-repetitive infinite 8et {yo,y1, -} C A

Takeey to be some index fow, = @. SinceWy, C A, g(e) € A.
Putyo = g(eo) € A.

Forn > 0, assumdgyp, - - ,yn} € A. Find ane,;; S.t.
{Yo, - ,¥n} = We,,, C A Theng(ent1) € A\We,,,. Thus if we put
Yntr1 = 9(€ns+1), We haveyn, 1 € Aandyny1 # Yo, - - , Yn.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functignThe idea
is to enumerate a non-repetitive infinite 8et {yo,y1, -} C A

Takeey to be some index fow, = @. SinceWy, C A, g(e) € A.
Putyo = g(eo) € A.

Forn > 0, assumdgyp, - - ,yn} € A. Find ane,;; S.t.

{Yo,-+ ,Yn} = We,.; C A Theng(ent1) € A\W,,,. Thus if we put
Yn+1 = Q(Ent1), We haveyn1 € Aandyni1 # Yo, -, Yn.

By the Lemma there is some total computable funckauch that for

all x, Wiy = Wi U {g(X)}. So the infinite sefey, ... ,k"(ep), ...} is
r.e.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functignThe idea
is to enumerate a non-repetitive infinite 8et {yo,y1, -} C A

Takeey to be some index fow, = @. SinceWy, C A, g(e) € A.
Putyo = g(eo) € A.

Forn > 0, assumdgyp, - - ,yn} € A. Find ane,;; S.t.
{Yo,-+ ,Yn} = We,.; C A Theng(ent1) € A\W,,,. Thus if we put
Yntr1 = 9(€ns+1), We haveyn, 1 € Aandyny1 # Yo, - - , Yn.

By the Lemma there is some total computable funckauch that for
all x, Wiy = Wi U {g(X)}. So the infinite sefey, ... ,k"(ep), ...} is
re.

It follows that the infinite se{g(ep), . ..,9(k"(&p)),...} isar.e.
subset ofA.
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llumination

* Yn+1 =S(¢'n+l)
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Corollary

If Ais creative, ther contains an infinite r.e. subset.
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Simple Sets

Definition. A setAis simpleif
() Aisr.e.,
(i) Ais infinite,

(iii) A contains no infinite r.e. subset.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.

Proof. SinceA can not be r.e A can not be recursive.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.
Proof. SinceA can not be r.e A can not be recursive.

(i) implies that A can not be creative.
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Simple Sets

Theorem. There is a simple set.
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Simple Sets

Theorem. There is a simple set.

Proof. Definef (x) = ¢x(uz(éx(z) > 2x)). Let AbeRan(f).
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Simple Sets

Theorem. There is a simple set.
Proof. Definef (x) = ¢x(uz(éx(z) > 2x)). Let AbeRan(f).
() Aisr.e.
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Simple Sets

Theorem. There is a simple set.

Proof. Definef (x) = ¢x(uz(éx(z) > 2x)). Let AbeRan(f).
() Aisr.e.

(ii) Ais infinite. This is becaus&n {0,1, ..., 2n} contains at most
the elementgf (0),f(1),...,f(n—1)}.
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Simple Sets

Theorem. There is a simple set.
Proof. Definef (x) = ¢x(uz(éx(z) > 2x)). Let AbeRan(f).
() Aisr.e.

(ii) Ais infinite. This is becaus&n {0,1, ..., 2n} contains at most
the elementgf (0),f(1),...,f(n—1)}.

(iii) SupposeB is an infinite r.e. set. Then there is@al computable
function ¢y, such thaB = Ey. Sincegy is total,f(b) is definedand
f(b) € A. HenceB Z A.
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