Decidability and Undecidability*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

^{*} Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

Outline

Undecidable Problem in Computability

- Undecidability
- Reduction
- Rice's Theorem

2 Partial Decidable Predicates

- Partial Decidability
- Theorems and Examples

Outline

Undecidable Problem in Computability

- Undecidability
- Reduction
- Rice's Theorem
- 2 Partial Decidable Predicates
 - Partial Decidability
 - Theorems and Examples

-

Decidability and Undecidability

A predicate $M(\mathbf{x})$ is decidable if its characteristic function $c_M(\mathbf{x})$ given by

$$c_M(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if } M(\mathbf{x}) \text{ does not hold.} \end{cases}$$

is computable.

The predicate $M(\mathbf{x})$ is undecidable if it is not decidable.

An algorithm for computing c_M is called a decision procedure for M(x).

• • • • • • • • • • • •

Theorem. The problem ' $x \in W_x$ ' is undecidable.

• □ > • □ > • □ > •

-

Theorem. The problem ' $x \in W_x$ ' is undecidable.

Proof. The characteristic function of this problem is given by

$$c(x) = \begin{cases} 1, & \text{if } x \in W_x, \\ 0, & \text{if } x \notin W_x. \end{cases}$$

• □ > • □ > • □ > •

Theorem. The problem ' $x \in W_x$ ' is undecidable.

Proof. The characteristic function of this problem is given by

$$c(x) = \begin{cases} 1, & \text{if } x \in W_x, \\ 0, & \text{if } x \notin W_x. \end{cases}$$

Suppose c(x) was computable. Then the function g(x) defined below would also be computable.

$$g(x) = \begin{cases} 0, & \text{if } c(x) = 0, \\ \text{undefined}, & \text{if } c(x) = 1. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. The problem ' $x \in W_x$ ' is undecidable.

Proof. The characteristic function of this problem is given by

$$c(x) = \begin{cases} 1, & \text{if } x \in W_x, \\ 0, & \text{if } x \notin W_x. \end{cases}$$

Suppose c(x) was computable. Then the function g(x) defined below would also be computable.

$$g(x) = \begin{cases} 0, & \text{if } c(x) = 0, \\ \text{undefined}, & \text{if } c(x) = 1. \end{cases}$$

Let m be an index for g. Then

$$m \in W_m$$
 iff $c(m) = 0$ iff $m \notin W_m$.

< ロト < 同ト < ヨト < ヨ

Corollary. There is a computable function *h* such that both $x \in Dom(h)$, and $x \in Ran(h)$ are undecidable.

Corollary. There is a computable function *h* such that both $x \in Dom(h)$ and $x \in Ran(h)$ are undecidable.

Proof. Let $h(x) = \begin{cases} x, & \text{if } x \in W_x, \\ \text{undefined, } & \text{if } x \notin W_x. \end{cases}$

Corollary. There is a computable function *h* such that both $x \in Dom(h)$ and $x \in Ran(h)$ are undecidable.

Proof. Let $h(x) = \begin{cases} x, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$

Clearly $x \in Dom(h)$ iff $x \in W_x$ iff $x \in Ran(h)$.

Undecidable Problem in Computability Partial Decidable Predicates Undecidability Reduction Rice's Theorem

Undecidability Result (Halting Problem)

Theorem. The problem ' $\phi_x(y)$ is defined' is undecidable.

• □ > • □ > • □ > •

Undecidability Result (Halting Problem)

Theorem. The problem ' $\phi_x(y)$ is defined' is undecidable.

Proof. If $y \in W_x$ were decidable then $x \in W_x$ would be decidable.

< ロト < 同ト < ヨト < ヨ

Undecidability Result (Halting Problem)

Theorem. The problem ' $\phi_x(y)$ is defined' is undecidable.

Proof. If $y \in W_x$ were decidable then $x \in W_x$ would be decidable.

In this proof we have reduced the problem ' $x \in W_x$ ' to the problem ' $y \in W_x$ '. The reduction shows that the latter is at least as hard as the former.

4 日 2 4 同 2 4 回 2 4 0

Methodology: Reduction

Many problems can be shown to be undecidable by showing that they are at least as difficult as $x \in W_x$

Thus we can reduce one problem to another to prove the undecidability property.

If a problem $M(\mathbf{x})$ would lead to a solution to general problem $x \in W_x$, then we say that $x \in W_x$ is reduced to $M(\mathbf{x})$.

The decidability of $M(\mathbf{x})$ implies the decidability of $x \in W_x$, from which we can conclude the undecidability of M(x).

< 日 > < 同 > < 三 > < 三

Undecidability Result

Theorem. The problem ' $\phi_x = \mathbf{0}$ ' is undecidable.

(日)

Theorem. The problem ' $\phi_x = \mathbf{0}$ ' is undecidable.

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} 0, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

(日)

Theorem. The problem ' $\phi_x = \mathbf{0}$ ' is undecidable.

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} 0, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

Theorem. The problem ' $\phi_x = \mathbf{0}$ ' is undecidable.

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} 0, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $\phi_{k(x)} = \mathbf{0}$ iff $x \in W_x$.

Further Discussion

Let *g* be the characteristic function of $\phi_x = \mathbf{0}$,

$$g(x) = \begin{cases} 1 & \text{if } \phi_x = \mathbf{0}; \\ 0 & \text{if } \phi_x \neq \mathbf{0} \end{cases}$$

Suppose that g is computable, then so is the function h(x) = g(k(x)). However, we have

$$h(x) = \begin{cases} 1 & \text{if } \phi_{k(x)} = \mathbf{0}, \text{ i.e. } x \in W_x \\ 0 & \text{if } \phi_{k(x)} \neq \mathbf{0}, \text{ i.e. } x \notin W_x \end{cases}$$

Thus *h* is not computable. Hence *g* is not computable, and the problem $\phi_x = \mathbf{0}$ is undecidable.

Corollary. The problem ' $\phi_x = \phi_y$ ' is undecidable.

(日)

Corollary. The problem ' $\phi_x = \phi_y$ ' is undecidable.

Let c be a number such that $\phi_c = \mathbf{0}$.

If f(x, y) is the characteristic function of the problem $\phi_x = \phi_y$, then the function g(x) = f(x, c) is the characteristic function of $\phi_x = \mathbf{0}$.

Thus g is not computable, neither is f.

Thus ' $\phi_x = \phi_y$ ' is undecidable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Undecidability Result

Theorem. Let *c* be any number. The followings are undecidable. (a) Acceptance Problem: $c \in W_x$, $(P_x(c) \downarrow, \text{ or } c \in Dom(\phi_x))$ (b) Printing Problem: $c \in E_x$. $(c \in Ran(\phi_x))$

Undecidability Result

Theorem. Let *c* be any number. The followings are undecidable. (a) Acceptance Problem: $c \in W_x$, $(P_x(c) \downarrow, \text{ or } c \in Dom(\phi_x))$ (b) Printing Problem: $c \in E_x$. $(c \in Ran(\phi_x))$

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} y, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

Image: A matrix and a matrix

Undecidability Result

Theorem. Let *c* be any number. The followings are undecidable. (a) Acceptance Problem: $c \in W_x$, $(P_x(c) \downarrow, \text{ or } c \in Dom(\phi_x))$ (b) Printing Problem: $c \in E_x$. $(c \in Ran(\phi_x))$

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} y, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Undecidability Result

Theorem. Let *c* be any number. The followings are undecidable. (a) Acceptance Problem: $c \in W_x$, $(P_x(c) \downarrow, \text{ or } c \in Dom(\phi_x))$ (b) Printing Problem: $c \in E_x$. $(c \in Ran(\phi_x))$

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} y, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $c \in W_{k(x)}$ iff $x \in W_x$ iff $c \in E_{k(x)}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. (Rice) Suppose $\emptyset \subsetneq \mathscr{B} \subsetneq \mathscr{C}_1$. Then the problem ' $\phi_x \in \mathscr{B}$ ' is undecidable.

(日)

Theorem. (Rice) Suppose $\emptyset \subsetneq \mathscr{B} \subsetneq \mathscr{C}_1$. Then the problem ' $\phi_x \in \mathscr{B}$ ' is undecidable.

Proof. Suppose $f_{\emptyset} \notin \mathscr{B}$ and $g \in \mathscr{B}$. Let the function f be defined by

$$f(x,y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

Theorem. (Rice) Suppose $\emptyset \subsetneq \mathscr{B} \subsetneq \mathscr{C}_1$. Then the problem ' $\phi_x \in \mathscr{B}$ ' is undecidable.

Proof. Suppose $f_{\emptyset} \notin \mathscr{B}$ and $g \in \mathscr{B}$. Let the function f be defined by

$$f(x,y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

Theorem. (Rice) Suppose $\emptyset \subsetneq \mathscr{B} \subsetneq \mathscr{C}_1$. Then the problem ' $\phi_x \in \mathscr{B}$ ' is undecidable.

Rice's Theorem

Proof. Suppose $f_{\emptyset} \notin \mathscr{B}$ and $g \in \mathscr{B}$. Let the function f be defined by

$$f(x,y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $\phi_{k(x)} \in \mathscr{B}$ iff $\phi_{k(x)} = g$ iff $x \in W_x$.

Outline

Undecidable Problem in Computability

- Undecidability
- Reduction
- Rice's Theorem

2 Partial Decidable Predicates

- Partial Decidability
- Theorems and Examples

Partial Decidability Theorems and Examples

Partially Decidable Predicates

A predicate $M(\mathbf{x})$ of natural numbers is partially decidable if the function given by

$$f(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ \text{undefined,} & \text{if } M(\mathbf{x}) \text{ does not hold,} \end{cases}$$

is computable.

< 口 > < 同 >

Partial Decidability Theorems and Examples

Partially Decidable Predicates

A predicate $M(\mathbf{x})$ of natural numbers is partially decidable if the function given by

$$f(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ \text{undefined,} & \text{if } M(\mathbf{x}) \text{ does not hold,} \end{cases}$$

is computable.

The function $f(\mathbf{x})$ is the partial characteristic function.

Image: A matrix of the second seco

1. The halting problem is partially decidable. Its partial characteristic function is given by

$$f(x,y) = \begin{cases} 1, & \text{if } P_x(y) \downarrow, \\ \text{undefined, otherwise.} \end{cases}$$

Image: A matrix and a matrix

∃ → ∢

1. The halting problem is partially decidable. Its partial characteristic function is given by

$$f(x, y) = \begin{cases} 1, & \text{if } P_x(y) \downarrow, \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

2. Any decidable predicate is partially decidable: simply arrange for the decision procedure to enter a loop whenever it gives output 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1. The halting problem is partially decidable. Its partial characteristic function is given by

$$f(x,y) = \begin{cases} 1, & \text{if } P_x(y) \downarrow, \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

2. Any decidable predicate is partially decidable: simply arrange for the decision procedure to enter a loop whenever it gives output 0.

3. For any computable function $g(\mathbf{x})$ the problem $\mathbf{x} \in Dom(g)$ is partially decidable, since it has the computable characteristic function $\mathbf{1}(g(\mathbf{x}))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4. The problem ' $x \notin W_x$ ' is not partially decidable. For if *f* is its partial characteristic function, then

$$x \in Dom(f) \Leftrightarrow x \notin W_x.$$

The domain of its partial characteristic function differs from the domain of every computable function.

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a computable function $g(\mathbf{x})$ such that $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$.

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a computable function $g(\mathbf{x})$ such that $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$.

Proof. g is essentially the partial characteristic function.

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

Image: A matrix of the second seco

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

Proof. " \Leftarrow " If $R(\mathbf{x}, y)$ is decidable and $M(\mathbf{x}) \Leftrightarrow \exists y.R(\mathbf{x}, y)$, then $g(\mathbf{x}) \simeq \mu y R(\mathbf{x}, y)$ is computable. Clearly $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$. Thus $M(\mathbf{x})$ is partially decidable.

< 日 > < 同 > < 三 > < 三

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

Proof. " \Leftarrow " If $R(\mathbf{x}, y)$ is decidable and $M(\mathbf{x}) \Leftrightarrow \exists y.R(\mathbf{x}, y)$, then $g(\mathbf{x}) \simeq \mu y R(\mathbf{x}, y)$ is computable. Clearly $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$. Thus $M(\mathbf{x})$ is partially decidable.

" \Rightarrow " Conversely suppose $M(\mathbf{x})$ is partially decided by program *P*. Let $R(\mathbf{x}, y)$ be

$$R(\mathbf{x}, y) \equiv P(\mathbf{x}) \downarrow$$
 in y steps.

Then $R(\mathbf{x}, y)$ is decidable and $M(\mathbf{x}) \Leftrightarrow P(\mathbf{x}) \downarrow \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

イロト イボト イヨト イヨト

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y.M(\mathbf{x}, y)$.

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y.M(\mathbf{x}, y)$.

Proof. Let $R(\mathbf{x}, y, z)$ be a decidable predicate such that $M(\mathbf{x}, y) \Leftrightarrow \exists z.R(\mathbf{x}, y, z)$. Then $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists y \exists z.R(\mathbf{x}, y, z)$.

< □ > < 同 > < 回 > < 回

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y.M(\mathbf{x}, y)$.

Proof. Let $R(\mathbf{x}, y, z)$ be a decidable predicate such that $M(\mathbf{x}, y) \Leftrightarrow \exists z.R(\mathbf{x}, y, z)$. Then $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists y \exists z.R(\mathbf{x}, y, z)$.

Use standard technique of coding the pair of numbers *y*, *z* such that $R(\mathbf{x}, y, z)$ reduces to the search for a single number *u* such that $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists u.R(\mathbf{x}, (u)_0, (u)_1).$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y.M(\mathbf{x}, y)$.

Proof. Let $R(\mathbf{x}, y, z)$ be a decidable predicate such that $M(\mathbf{x}, y) \Leftrightarrow \exists z.R(\mathbf{x}, y, z)$. Then $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists y \exists z.R(\mathbf{x}, y, z)$.

Use standard technique of coding the pair of numbers *y*, *z* such that $R(\mathbf{x}, y, z)$ reduces to the search for a single number *u* such that $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists u.R(\mathbf{x}, (u)_0, (u)_1).$

The predicate $S(\mathbf{x}, y) \equiv R(\mathbf{x}, (u)_0, (u)_1)$ is decidable by substitution and so $\exists y.M(\mathbf{x}, y)$ is partially decidable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y.M(\mathbf{x}, y)$.

Proof. Let $R(\mathbf{x}, y, z)$ be a decidable predicate such that $M(\mathbf{x}, y) \Leftrightarrow \exists z.R(\mathbf{x}, y, z)$. Then $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists y \exists z.R(\mathbf{x}, y, z)$.

Use standard technique of coding the pair of numbers *y*, *z* such that $R(\mathbf{x}, y, z)$ reduces to the search for a single number *u* such that $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists u.R(\mathbf{x}, (u)_0, (u)_1).$

The predicate $S(\mathbf{x}, y) \equiv R(\mathbf{x}, (u)_0, (u)_1)$ is decidable by substitution and so $\exists y.M(\mathbf{x}, y)$ is partially decidable.

Corollary. If $M(\mathbf{x}, \mathbf{y})$ is a partially decidable, so is $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})$.

< 日 > < 同 > < 三 > < 三

Example: $x \in E_y^{(n)}$ (*n* fixed) is partially decidable.

Image: A matrix of the second seco

Example: $x \in E_y^{(n)}$ (*n* fixed) is partially decidable.

Proof: $x \in E_y^{(n)} \Leftrightarrow \exists z_1 \cdots \exists z_n \exists t (P_y(z_1, \cdots, z_n) \downarrow x \text{ in } t \text{ steps})$. The right one is decidable so $x \in E_y^{(n)}$ is partially decidable.

Example: $x \in E_y^{(n)}$ (*n* fixed) is partially decidable.

Proof: $x \in E_y^{(n)} \Leftrightarrow \exists z_1 \cdots \exists z_n \exists t (P_y(z_1, \cdots, z_n) \downarrow x \text{ in } t \text{ steps})$. The right one is decidable so $x \in E_y^{(n)}$ is partially decidable.

Example: $W_x \neq \emptyset$ is partially decidable.

Example: $x \in E_y^{(n)}$ (*n* fixed) is partially decidable.

Proof: $x \in E_y^{(n)} \Leftrightarrow \exists z_1 \cdots \exists z_n \exists t (P_y(z_1, \cdots, z_n) \downarrow x \text{ in } t \text{ steps})$. The right one is decidable so $x \in E_y^{(n)}$ is partially decidable.

Example: $W_x \neq \emptyset$ is partially decidable.

Proof: $W_x \neq \emptyset$ iff $\exists y \exists t. (P_x(y) \downarrow \text{ in } t \text{ steps})$. So $W_x \neq \emptyset$ is partially decidable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem. A predicate $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.

Image: A matrix of the second seco

∃ → ∢

Theorem. A predicate $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.

Proof: " \Rightarrow " If $M(\mathbf{x})$ is decidable, so is 'not $M(\mathbf{x})$ ', so both are partially decidable.

Theorem. A predicate $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.

Proof: " \Rightarrow " If $M(\mathbf{x})$ is decidable, so is 'not $M(\mathbf{x})$ ', so both are partially decidable.

" \Leftarrow " Conversely, suppose that partial decidable procedures for $M(\mathbf{x})$ and 'not $M(\mathbf{x})$ ' are given by programs F, G. Then

 $F(x) \downarrow \Leftrightarrow M(\mathbf{x})$ holds and $G(x) \downarrow \Leftrightarrow$ 'not $M(\mathbf{x})$ ' holds.

Also, $\forall \mathbf{x}$, either $F(\mathbf{x}) \downarrow$ or $G(\mathbf{x}) \downarrow$ but not both.

Thus given **x**, run the computation $F(\mathbf{x})$ and $G(\mathbf{x})$ simultaneously and go on until one of them stops. If $F(\mathbf{x})$ stops, then $M(\mathbf{x})$ holds; if $G(\mathbf{x})$ stops, then $M(\mathbf{x})$ not hold.

イロト イボト イヨト イヨト

Corollary (Divergence Problem). The problem ' $y \notin W_x$ ' (' $P_x(y) \uparrow$ ' or ' $\phi_x(y)$ is undefined') is not partially decidable.

Corollary (Divergence Problem). The problem ' $y \notin W_x$ ' (' $P_x(y) \uparrow$ ' or ' $\phi_x(y)$ is undefined') is not partially decidable.

Proof: If this problem were partially decidable, since $P_x(y) \downarrow$ is partially decidable, then by the above theorem the Halting problem would be decidable.

Theorem. Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate ' $f(\mathbf{x}) \simeq y$ ' is partially decidable.

Theorem. Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate ' $f(\mathbf{x}) \simeq y$ ' is partially decidable.

Proof. If $f(\mathbf{x})$ is computable by $P(\mathbf{x})$, then

 $f(\mathbf{x}) \simeq y \Leftrightarrow \exists t. (P(\mathbf{x}) \downarrow y \text{ in } t \text{ steps}).$

We are done by observing that $P(\mathbf{x}) \downarrow y$ in *t* steps' is decidable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate ' $f(\mathbf{x}) \simeq y$ ' is partially decidable.

Proof. If $f(\mathbf{x})$ is computable by $P(\mathbf{x})$, then

 $f(\mathbf{x}) \simeq y \Leftrightarrow \exists t. (P(\mathbf{x}) \downarrow y \text{ in } t \text{ steps}).$

We are done by observing that $P(\mathbf{x}) \downarrow y$ in *t* steps' is decidable.

Conversely let $R(\mathbf{x}, y, t)$ be such that

$$f(\mathbf{x}) \simeq y \Leftrightarrow \exists t. R(\mathbf{x}, y, t).$$

The equivalence gives rise to an algorithm.

< ロ > < 同 > < 回 > < 回 > < 回 > <