Unlimited Register Machine*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

^{*} Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

Outline

- Basic Concepts
- Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

Effective Procedures

Unlimited Register Machine Computable and Decidable Notations Basic Concepts Computable Function

Outline

- 1 Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

Image: A matrix of the second seco

-

Basic Concepts Computable Function

What is Effective Procedure

- Methods for addition, multiplication · · ·
 - \triangleright Given *n*, finding the *n*th prime number.
 - ▷ Differentiating a polynomial.
 - ▷ Finding the highest common factor of two numbers $HCF(x, y) \rightarrow$ Euclidean algorithm
 - \triangleright Given two numbers x, y, deciding whether x is a multiple of y.
- Their implementation requires no ingenuity, intelligence, inventiveness.

< / → <

Effective Procedures Unlimited Register Machine

Basic Concepts Computable Function

Intuitive Definition

An *algorithm* or *effective procedure* is a mechanical rule, or automatic method, or programme for performing some mathematical operations.

Blackbox: input \longrightarrow output

Image: A matrix and a matrix

Basic Concepts Computable Function

What is "effective procedure"?

An Example: Consider the function g(n) defined as follows:

$$g(n) = \begin{cases} 1, & \text{if there is a run of exactly } n \text{ consecutive 7's} \\ & \text{in the decimal expansion of } \pi, \\ 0, & \text{otherwise.} \end{cases}$$

Question: Is g(n) effective?

Image: A matrix of the second seco

Basic Concepts Computable Function

What is "effective procedure"?

An Example: Consider the function g(n) defined as follows:

$$g(n) = \begin{cases} 1, & \text{if there is a run of exactly } n \text{ consecutive 7's} \\ & \text{in the decimal expansion of } \pi, \\ 0, & \text{otherwise.} \end{cases}$$

Question: Is g(n) effective?

 \triangleright The answer is unknown \neq the answer is negative.

< 口 > < 同 >

Basic Concepts Computable Function

What is "effective procedure"?

An Example: Consider the function g(n) defined as follows:

$$g(n) = \begin{cases} 1, & \text{if there is a run of exactly } n \text{ consecutive 7's} \\ & \text{in the decimal expansion of } \pi, \\ 0, & \text{otherwise.} \end{cases}$$

Question: Is g(n) effective?

 \triangleright The answer is unknown \neq the answer is negative.

Other Examples:

- Theorem Proving is in general not effective/algorithmic.
- *Proof Verification* is effective/algorithmic.

• • • • • • • • •

Effective Procedures

Unlimited Register Machine Computable and Decidable Notations Basic Concepts Computable Function

Algorithm

An algorithm is a procedure that consists of a finite set of *instructions* which, given an *input* from some set of possible inputs, enables us to obtain an *output* through a systematic execution of the instructions that *terminates* in a finite number of steps.

• • • • • • • • •

Effective Procedures

Unlimited Register Machine Computable and Decidable Notations Basic Concepts Computable Function

Outline

- 1 Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

Image: A matrix of the second seco

-

Effective Procedures Unlimited Register Machine

Basic Concepts Computable Function

Computable Function

When an algorithm or effective procedure is used to calculate the value of a numerical function then the function in question is effectively calculable (or algorithmically computable, effectively computable, computable).

Image: A matrix and a matrix

Effective Procedures Unlimited Register Machine

Basic Concepts Computable Function

Computable Function

When an algorithm or effective procedure is used to calculate the value of a numerical function then the function in question is effectively calculable (or algorithmically computable, effectively computable, computable).

Examples:

- *HCF*(*x*, *y*) is computable;
- g(n) is non-computable.

• • • • • • • • •

Definition Instruction An Example

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

• • • • • • • • • •

Definition Instruction An Example

Unlimited Register Machine

- An Unlimited Register Machine (URM) is an idealized computer.
 - ▷ No limitation in the size of the numbers it can receive as input.
 - ▷ No limitation in the amount of working space available.
 - ▷ Inputs and outpus are restricted to natural numbers. (coding for others)
- From Shepherdson & Sturgis [1963]'s description.
 - ▷ Shepherdson, J. C. & Sturgis, H.E., Computability of Recursive Functions, *Journal of Association for Computing Machinery* (*Journal of ACM*), 10, 217-55, 1963.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Instruction An Example

Register

A URM has an infinite number of register labeled R_1, R_2, R_3, \ldots

R_1	R_2	R_3	R_4	R_5	R_6	R_7	•••
r_1	r_2	r_3	r_4	r_5	r_6	r_7	•••

Every register can hold a *natural number* at any moment.

The registers can be equivalently written as for example

$$[r_1r_2r_3]_1^3[r_4]_4^4[r_5r_6r_7\ldots]_5^\infty$$

or simply

 $[r_1, r_2, r_3]_1^3 [r_4]_4^4 [r_5, r_6, r_7]_5^7.$

• • • • • • • • •

Definition Instruction An Example

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

• • • • • • • • • •

Definition Instruction An Example

Program

A URM also has a program, which is a finite list of instructions.

An instruction is a recognized simple operations (calculation with numbers) to alter the contents of the registers. (I_1, \dots, I_s)

< ロト < 同ト < ヨト < ヨ

Definition Instruction An Example

Instruction

Type Instruction Response of the URM

*ロト *部ト * ヨト * ヨ

Definition Instruction An Example

Instruction

Туре	Instruction	Response of the URM
Zero	Z(n)	Replace r_n by 0. $(0 \rightarrow R_n, \text{ or } r_n \coloneqq 0)$

(日) (四) (日) (日)

Definition Instruction An Example

Instruction

Туре	Instruction	Response of the URM
Zero	Z(n)	Replace r_n by 0. $(0 \rightarrow R_n, \text{ or } r_n \coloneqq 0)$
Successor	S(n)	Add 1 to r_n . $(r_n + 1 \rightarrow R_n, \text{ or } r_n \coloneqq r_n + 1)$

(日) (四) (日) (日)

Definition Instruction An Example

Instruction

Туре	Instruction	Response of the URM
Zero	Z(n)	Replace r_n by 0. $(0 \rightarrow R_n, \text{ or } r_n \coloneqq 0)$
Successor	S(n)	Add 1 to r_n . $(r_n + 1 \rightarrow R_n, \text{ or } r_n \coloneqq r_n + 1)$
Transfer	T(m,n)	Copy r_m to R_n . $(r_m \to R_n, \text{ or } r_n \coloneqq r_m)$

(日) (四) (日) (日)

Definition Instruction An Example

Instruction

Туре	Instruction	Response of the URM
Zero	Z(n)	Replace r_n by 0. $(0 \rightarrow R_n, \text{ or } r_n \coloneqq 0)$
Successor	S(n)	Add 1 to r_n . $(r_n + 1 \rightarrow R_n, \text{ or } r_n \coloneqq r_n + 1)$
Transfer	T(m,n)	Copy r_m to R_n . $(r_m \to R_n, \text{ or } r_n \coloneqq r_m)$
Jump	J(m, n, q)	If $r_m = r_n$, go to the <i>q</i> -th instruction;
		otherwise go to the next instruction.

(日) (四) (日) (日)

Definition Instruction An Example

Instruction

Туре	Instruction	Response of the URM
Zero	Z(n)	Replace r_n by 0. $(0 \rightarrow R_n, \text{ or } r_n \coloneqq 0)$
Successor	S(n)	Add 1 to r_n . $(r_n + 1 \rightarrow R_n, \text{ or } r_n \coloneqq r_n + 1)$
Transfer	T(m,n)	Copy r_m to R_n . $(r_m \to R_n, \text{ or } r_n \coloneqq r_m)$
Jump	J(m, n, q)	If $r_m = r_n$, go to the <i>q</i> -th instruction;
		otherwise go to the next instruction.

Z(n), S(n), T(m, n) are arithmetic instructions.

CSC363-Computability Theory@SJTU

• • • • • • • • • •

э

Definition Instruction An Example

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Unlimited Register Machine
 - Definition
 - Instruction
 - An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable
- 4 Notations
 - Register Machine
 - Joining Programs Together

• • • • • • • • • •

Definition Instruction An Example

Configuration and Instructions

Example: The initial registers are:

The program is:

 $I_1: J(1,2,6)$ $I_2: S(2)$ $I_3: S(3)$ $I_4: J(1,2,6)$ $I_5: J(1,1,2)$ $I_6: T(3,1)$

< / ₽ > <

Definition Instruction An Example

Configuration and Computation

Configuration: the contents of the registers + the current instruction number.

Initial configuration, computation, final configuration.

Image: A matrix and a matrix

Operation of URM under a program P

- $P = \{I_1, I_2, \cdots, I_s\} \rightarrow \text{URM}$
- URM starts by obeying instruction I_1
- When URM finishes obeying *I*_k, it proceeds to the next instruction in the computation,
 - ▷ if I_k is not a jump instruction, then the next instruction is I_{k+1} ;
 - ▷ if $I_k = J(m, n, q)$ then next instruction is (1) I_q , if $r_m = r_n$; or (2) I_{k+1} , otherwise.

• Computation stops when the next instruction is I_v , where v > s.

 \triangleright if k = s, and I_s is an arithmetic instruction;

▷ if
$$I_k = J(m, n, q)$$
, $r_m = r_n$ and $q > s$;

▷ if
$$I_k = J(m, n, q)$$
, $r_m \neq r_n$ and $k = s$.

< ロ > < 同 > < 回 > <

Unlimited Register Machine Computable and Decidable

R₃

Ζ

Ra

Ra

An Example

Flow Diagram

- J(m, m, q) is alertunconditional jump
- Computations that never stop

(日)

Definition Instruction An Example

Some Notation

Suppose *P* is the program of a URM and $a_1, a_2, a_3, ...$ are the numbers stored in the registers.

- $P(a_1, a_2, a_3, ...)$ is the initial configuration.
- $P(a_1, a_2, a_3, ...) \downarrow$ means that the computation converges.
- $P(a_1, a_2, a_3, ...) \uparrow$ means that the computation diverges.
- $P(a_1, a_2, ..., a_m)$ is $P(a_1, a_2, ..., a_m, 0, 0, ...)$.

イロト イポト イヨト イヨト

URM-Computable Function Decidable and Computable

Outline

Effective Procedures

- Basic Concepts
- Computable Function

2 Unlimited Register Machine

- Definition
- Instruction
- An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable

4 Notations

- Register Machine
- Joining Programs Together

Image: A matrix and a matrix

URM-Computable Function Decidable and Computable

URM-Computable Function

URM-Computable Function Decidable and Computable

URM-Computable Function

What does it mean that a URM computes a (partial) n-ary function f?

Image: A matrix and a matrix

-

URM-Computable Function Decidable and Computable

URM-Computable Function

What does it mean that a URM computes a (partial) n-ary function f?

Let *P* be the program of a URM and $a_1, \ldots, a_n, b \in \mathbb{N}$. When computation $P(a_1, \ldots, a_n)$ converges to *b* if $P(a_1, \ldots, a_n) \downarrow$ and $r_1 = b$ in the final configuration. We write $P(a_1, \ldots, a_n) \downarrow b$.

• *P* URM-computes *f* if, for all $a_1, \ldots, a_n, b \in \mathbb{N}$,

$$P(a_1,\ldots,a_n)\downarrow b$$
 iff $f(a_1,\ldots,a_n)=b$

- Function *f* is URM-computable if there is a program that URM-computes *f*.
- (We abbreviate "URM-computable" to "computable")

▲ 御 ▶ ▲ 重

URM-Computable Function Decidable and Computable

Computable Functions

Let

 ${\mathscr C}$ be the set of computable functions and

 \mathscr{C}_n be the set of *n*-ary computable functions.

Image: A matrix and a matrix

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes x + y.

*ロト *部ト * ヨト * ヨ

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes x + y.

$$I_1 : J(3,2,5) I_2 : S(1) I_3 : S(3) I_4 : J(1,1,1)$$

CSC363-Computability Theory@SJTU

*ロト *部ト * ヨト * ヨ

URM-Computable Function Decidable and Computable

Construct a URM that computes x + y.

CSC363-Computability Theory@SJTU

Examples

Xiaofeng Gao

• • • • • • • • • •

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes
$$\dot{x-1} = \begin{cases} x-1, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes $\dot{x-1} = \begin{cases} x-1, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$

$$I_1 : J(1,4,8)$$

$$I_2 : S(3)$$

$$I_3 : J(1,3,7)$$

$$I_4 : S(2)$$

$$I_5 : S(3)$$

$$I_6 : J(1,1,3)$$

$$I_7 : T(2,1)$$

イロト イポト イヨト イヨト

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes
$$\dot{x-1} = \begin{cases} x-1, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Unlimited Register Machine

URM-Computable Function Decidable and Computable

*

Examples

Construct a URM that computes $x \div 2 = \begin{cases} x/2, & \text{if } x \text{ is even,} \\ \text{undefined,} & \text{if } x \text{ is odd.} \end{cases}$

(日)

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes $x \div 2 = \begin{cases} x/2, & \text{if } x \text{ is even,} \\ \text{undefined,} & \text{if } x \text{ is odd.} \end{cases}$

$$I_1 : J(1,2,6) I_2 : S(3) I_3 : S(2) I_4 : S(2) I_5 : J(1,1,1) I_6 : T(3,1)$$

(日)

URM-Computable Function Decidable and Computable

Examples

Construct a URM that computes $x \div 2 = \begin{cases} x/2, & \text{if } x \text{ is even,} \\ \text{undefined,} & \text{if } x \text{ is odd.} \end{cases}$

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

URM-Computable Function Decidable and Computable

Function Defined by Program

Given any program *P* and $n \ge 1$, by thinking of the effect of *P* on initial configurations of the form $a_1, \dots, a_n, 0, 0, \dots$, there is a unique *n*-ary function that *P* computes, denoted by $f_P^{(n)}$.

$$f_P^{(n)}(a_1,\ldots,a_n) = \begin{cases} b, & \text{if } P(a_1,\ldots,a_n) \downarrow b, \\ \text{undefined}, & \text{if } P(a_1,\ldots,a_n) \uparrow. \end{cases}$$

Image: A matrix and a matrix

URM-Computable Function Decidable and Computable

Outline

Effective Procedures

- Basic Concepts
- Computable Function

2 Unlimited Register Machine

- Definition
- Instruction
- An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable

4 Notations

- Register Machine
- Joining Programs Together

Image: A matrix and a matrix

URM-Computable Function Decidable and Computable

Predicate and Decision Problem

The value of a predicate is either 'true' or 'false'.

The answer of a *decision problem* is either 'yes' or 'no'.

Example: Given two numbers x, y, check whether x is a multiple of y. Input: x, y; Output: 'Yes' or 'No'.

The operation amounts to calculation of the function

$$f(x,y) = \begin{cases} 1, & \text{if } x \text{ is a multiple of } y, \\ 0, & \text{if otherwise.} \end{cases}$$

Thus the property or predicate 'x is a multiple of y' is algorithmically or effectively decidable, or just decidable if function f is computable.

• • • • • • • • •

Decidable Predicate and Decidable Problem

Suppose that $M(x_1, ..., x_n)$ is an *n*-ary predicate of natural numbers. The characteristic function $c_M(\mathbf{x})$, where $\mathbf{x} = x_1, ..., x_n$, is given by

$$f_P^{(n)}(a_1,\ldots,a_n) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if otherwise.} \end{cases}$$

The predicate $M(\mathbf{x})$ is decidable if c_M is computable; it is undecidable otherwise.

URM-Computable Function Decidable and Computable

Computability on other Domains

Suppose *D* is an object domain. A coding of *D* is an explicit and effective injection $\alpha : D \to \mathbb{N}$. We say that an object $d \in D$ is coded by the natural number $\alpha(d)$.

A function $f : D \to D$ extends to a numeric function $f^* : \mathbb{N} \to \mathbb{N}$. We say that f is computable if f^* is computable.

$$f^* = \alpha \circ f \circ \alpha^{-1}$$

URM-Computable Function Decidable and Computable

Example

Consider the domain $\mathbb Z.$ An explicit coding is given by the function α where

$$\alpha(n) = \begin{cases} 2n, & \text{if } n \ge 0, \\ -2n-1, & \text{if } n < 0. \end{cases}$$

Then α^{-1} is given by

$$\alpha^{-1}(m) = \begin{cases} \frac{1}{2}m, & \text{if } m \text{ is even,} \\ -\frac{1}{2}(m+1), & \text{if } m \text{ is odd.} \end{cases}$$

(日)

URM-Computable Function Decidable and Computable

Example (Continued)

Consider the function f(x) = x - 1 on \mathbb{Z} , then $f^* : \mathbb{N} \to \mathbb{N}$ is given by

$$f^*(x) = \begin{cases} 1 & \text{if } x = 0 \text{ (i.e. } x = \alpha(0)), \\ x - 2 & \text{if } x > 0 \text{ and } x \text{ is even (i.e. } x = \alpha(n), n > 0), \\ x + 2 & \text{if } x \text{ is odd (i.e. } x = \alpha(n), n < 0). \end{cases}$$

It is a routine exercise to write a program that computes f^* , hence x - 1 is a computable function on \mathbb{Z} .

• □ > • □ > • □ > •

Register Machine Joining Programs Together

Outline

Effective Procedures

- Basic Concepts
- Computable Function

2 Unlimited Register Machine

- Definition
- Instruction
- An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable

4 Notations

- Register Machine
- Joining Programs Together

Image: A matrix and a matrix

Register Machine Joining Programs Together

Remark

Register Machines are more advanced than Turing Machines.

< ロ > < (回 > < (回 >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=) >) < ((=

Register Machine Joining Programs Together

Remark

Register Machines are more advanced than Turing Machines.

Register Machine Models can be classified into three groups:

- CM (Counter Machine Model).
- RAM (Random Access Machine Model).
- RASP (Random Access Stored Program Machine Model).

Image: A matrix and a matrix

Register Machine Joining Programs Together

Remark

Register Machines are more advanced than Turing Machines.

Register Machine Models can be classified into three groups:

- CM (Counter Machine Model).
- RAM (Random Access Machine Model).
- RASP (Random Access Stored Program Machine Model).

The Unlimited Register Machine Model belongs to the CM class.

Image: A matrix and a matrix

Register Machine Joining Programs Together

Finiteness

Every URM uses only a fixed finite number of registers, no matter how large an input number is.

(日)

Register Machine Joining Programs Together

Finiteness

Every URM uses only a fixed finite number of registers, no matter how large an input number is.

This is a fine property of Counter Machine Model.

Image: A matrix and a matrix

-

Register Machine Joining Programs Together

Outline

Effective Procedures

- Basic Concepts
- Computable Function

2 Unlimited Register Machine

- Definition
- Instruction
- An Example
- 3 Computable and Decidable
 - URM-Computable Function
 - Decidable and Computable

4 Notations

- Register Machine
- Joining Programs Together

Image: A matrix and a matrix

Register Machine Joining Programs Together

Sequential Composition

Given Programs P and Q, how do we construct the sequential composition P; Q?

The jump instructions of P and Q must be modified.

• □ > • □ > • □ > •

Register Machine Joining Programs Together

Sequential Composition

Given Programs P and Q, how do we construct the sequential composition P; Q?

The jump instructions of P and Q must be modified.

Standard Form: A program $P = I_1, ..., I_s$ is in *standard form* if, for every jump instruction J(m, n, q) we have $q \le s + 1$.

< ロ > < 同 > < 回 > <

Register Machine Joining Programs Together

Lemma

For any program *P* there is a program P^* in standard form such that any computation under P^* is identical to the corresponding computation under *P*. In particular, for any a_1, \dots, a_n, b ,

$$P(a_1, \cdots, a_n) \downarrow b$$
 if and only if $P^*(a_1, \cdots, a_n) \downarrow b$,

and hence $f_P^{(n)} = f_{P^*}^{(n)}$ for every n > 0.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Register Machine Joining Programs Together

Proof

Suppose that
$$P = I_1, I_2, \cdots, I_s$$
. Put $P^* = I_1^*, I_2^*, \cdots, I_s^*$ where

if I_k is not a jump instruction, then $I_k^* = I_k$;

if
$$I_k$$
 is not a jump instruction, then $I_k^* = \begin{cases} I_k & \text{if } q \le s+1, \\ J(m,n,s+1) & \text{if } q > s+1. \end{cases}$

(日)

Register Machine Joining Programs Together

Join/Concatenation

Let *P* and *Q* be programs of lengths *s*, *t* respectively, in standard form. The *join* or *concatenation* of *P* and *Q*, written *PQ* or $_Q^P$, is a program $I_1, I_2, \dots, I_s, I_{s+1}, \dots, I_{s+t}$ where $P = I_1, \dots, I_s$ and the instructions I_{s+1}, \dots, I_{s+t} are the instructions of *Q* with each jump J(m, n, q) replaced by J(m, n, s + q).

4 日 2 4 同 2 4 回 2 4 0

Register Machine Joining Programs Together

Program as Subroutine

Suppose the program P computes f.

Let $\rho(P)$ be the least number *i* such that the register R_i is not used by the program *P*.

< □ > < 同 > < 回 > < 回

The notation $P[l_1, \ldots, l_n \rightarrow l]$ stands for the following program:

