Lab10-Various Sets CS363-Computability Theory, Xiaofeng Gao, Spring 2016

* Please upload your assignment to FTP or submit a paper version on the next class * If there is any problem, please contact: steinsgate@sjtu.edu.cn * Name:_____ StudentId: _____ Email: _____

- 1. Prove the following statements.
 - (a) If B is r.e. and $A \cap B$ is productive, then A is productive.
 - (b) If C is creative and A is an r.e. set such that $A \cap C = \emptyset$, then $C \cup A$ is creative.
- 2. Let \mathscr{B} be a set of unary computable functions, and suppose that $g \in \mathscr{B}$ is such that for all finite $\theta \subseteq g, \theta \notin \mathscr{B}$. Prove that the set $\{x \mid \phi_x \in \mathscr{B}\}$ is productive.
- 3. If $A \oplus B = \{2x \mid x \in A\} \cup \{2x+1 \mid x \in B\}$, $A \otimes B = \{\pi(x, y) \mid x \in A \text{ and } y \in B\}$, prove the following statements.
 - (a) Suppose B is r.e. If A is creative, then so are $A \oplus B$ and $A \otimes B$ (provided $B \neq \emptyset$).
 - (b) If B is recursive, then the implications in (a) reverse.
 - (c) If A, B are simple sets, prove that $A \otimes B$ is not simple but that $\overline{A} \otimes \overline{B}$ is simple.