Lab04-Church's Thesis CS363-Computability Theory, Xiaofeng Gao, Spring 2016

* Please upload your assignment to FTP or submit a paper version on the next class
* If there is any problem, please contact: nongeek.zv@gmail.com
* Name:_____ StudentId: _____ Email: _____

- 1. Suggest the natural definition of computability on domain \mathbb{Q} (rational numbers).
- 2. Define f(n) as the *n*-th digit in the decimal expansion of *e*. Use Church's Thesis to prove that *f* is computable. (*e* is the the base of the natural logarithm and can be calculated as the sum of the infinite series: $e = \sum_{n=0}^{\infty} \frac{1}{n!}$)
- 3. Suppose there is a two-tape Turing Machine M with alphabet $\Gamma = \{ \triangleright, \triangleleft, \Box, 1 \}$ and state set $Q = \{q_s, q_1, q_2, q_h\}$. M has the following specifications. Transform M into a single-tape Turing Machine \widetilde{M} , and write down the new alphabet and specifications.

$$\begin{array}{lll} \langle q_s, \triangleright, \triangleright \rangle & \to & \langle q_1, \triangleright, S, R \rangle \\ \langle q_1, \triangleright, \Box \rangle & \to & \langle q_2, 1, R, R \rangle \\ \langle q_2, 1, \Box \rangle & \to & \langle q_2, 1, R, R \rangle \\ \langle q_2, \triangleleft, \Box \rangle & \to & \langle q_h, \triangleleft, S, S \rangle \end{array}$$

4. Design a three-tape TM M that computes the function f(x, y) = x % y, where both m and n belong to the natural number set \mathbb{N} . The alphabet is $\{1, \Box, \triangleright, \triangleleft\}$, where the input on the first tape is x + 1 "1"'s and y + 1 "1"'s with a " \Box " as the separation. Below is the initial configurations for input (x, y). The result is the number of "1"'s on the output tape with the pattern of $\triangleright 111 \cdots 111 \triangleleft$. First describe your design and then write the specifications of M in the form like $\langle q_S, \triangleright, \triangleright, \triangleright \rangle \rightarrow \langle q_1, \triangleright, \triangleright, R, R, R \rangle$ and explain the transition functions in detail (especially the meaning of each state).

	0													
Tape 1:		1	1	•••	1	1		1	1	•••	1	1	\triangleleft	
	$\uparrow \leftarrow x + 1 \text{ squares} \rightarrow \qquad \leftarrow y + 1 \text{ squares} \rightarrow$													
Tape 2:					••	•	•••	• •	••					
	\uparrow													
Tape 3:					••	•	• • •	• •	••					
	\uparrow													

Initial Configurations