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8.5 Sequencing Problems

Basic genres.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.
Constraint satisfaction problems: SAT, 3-SAT.
Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle I that contains every node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle I that contains every node in V.

NO: bipartite graph with odd number of nodes.




Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph 6 = (V, E), does there exists a simple
directed cycle I that contains every node in V?

Claim. DIR-HAM-CYCLE <, HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G
with 3n nodes.
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Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff 6" does.

Pf. =
. Suppose 6 has a directed Hamiltonian cycle I.
. Then G' has an undirected Hamiltonian cycle (same order).

Pf. «
. Suppose G' has an undirected Hamiltonian cycle I'".
. I'" must visit nodes in G' using one of following two orders:
..B,6,R,B,G,R B GR,B,..
..B,R,6,B,R G,B,R,G,B,..
. Blue nodes in "' make up directed Hamiltonian cycle I' in G, or
reverse of one.

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT < , DIR-HAM-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff @ is satisfiable.

Construction. First, create graph that has 2" Hamiltonian cycles which
correspond in a natural way to 2" possible truth assignments.

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
. Construct G to have 2" Hamiltonian cycles.
. Intuition: fraverse path i from left to right < set variable x;= 1.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
. For each clause: add a node and 6 edges.
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. @ is satisfiable iff G has a Hamiltonian cycle.

Pf. =
. Suppose 3-SAT instance has satisfying assignment x*.
. Then, define Hamiltonian cycle in G as follows:
- if x*; = 1, traverse row i from left to right
- if x*; = 0, traverse row i from right to left
- for each clause C;, there will be at least one row i in which we are
going in "correct" direction to splice node C; into tour

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. @ is satisfiable iff G has a Hamiltonian cycle.

Pf. «
. Suppose G has a Hamiltonian cycle T
- If I enters clause node C;, it must depart on mate edge.
- thus, nodes immediately before and after C;are connected by an
edgeeinG
- removing C; from cycle, and replacing it with edge e yields
Hamiltonian cycle on G - { CJ- }
. Continuing in this way, we are left with Hamiltonian cycle I'" in
6-{¢,Cs, ..., C}
. Set x*, = 1iff I'" traverses row i left to right.
. Since T visits each clause node Cj , at least one of the paths is
traversed in "correct" direction, and each clause is satisfied.

Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple
path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple
path of length at least k edges?

Claim. 3-SAT <, LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ighoring back-edge from t to s.
Pf 2. Show HAM-CYCLE < ; LONGEST-PATH.




The Longest Path *

Lyrics. Copyright © 1988 by Daniel J. Barrett. b
Music. Sung to the tune of The Longest Time by Billy Joel.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final.

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

11,849 holes to drill in a programmed logic array
Reference: http://www.tsp.gatech.edu




Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

T

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle
that contains every node in V?

Claim. HAM-CYCLE < TSP.
Pf.
. Given instance G = (V, E) of HAM-CYCLE, create n cities with

distance function 1 if(u,v) € E

d(w, v) = {2 if(u, v) ¢ E

. TSP instance has tour of length < n iff G is Hamiltonian. -

Remark. TSP instance in reduction satisfies A-inequality.

8.6 Partitioning Problems

Basic genres.
= Packing problems: SET-PACKING, INDEPENDENT SET.
= Covering problems: SET-COVER, VERTEX-COVER.
= Constraint satisfaction problems: SAT, 3-SAT.
= Sequencing problems: HAMILTONIAN-CYCLE, TSP.
= Partitioning problems: 3D-MATCHING, 3-COLOR.
= Numerical problems: SUBSET-SUM, KNAPSACK.

3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of
the possible courses and times each instructor is willing to teach, is it
possible to make an assignment so that all courses are taught at
different times?

Wayne COS 423 MW 11-12:20
Wayne COS 226 TTh 11-12:20
Wayne COS 126 TTh 11-12:20
Tardos COS 423 TTh 11-12:20
Tardos COS 423 TTh 3-4:20
Kleinberg COS 226 TTh 3-4:20

Kleinberg COS 423 MW 11-12:20
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3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set
T < X xY x Z of triples, does there exist a set of n triples in T such
that each element of X UY U Z is in exactly one of these triples?

Claim. 3-SAT <, 3D-MATCHING.

Pf. Given an instance ® of 3-SAT, we construct an instance of 3D-
matching that has a perfect matching iff @ is satisfiable.
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3-Dimensional Matching

number of clauses

Construction. (part 1) /
. Create gadget for each variable x; with 2k core and tip elements.
» No other triples will use core elements.
. Ingadget i, 3D-matching must use either both grey triples or both

blue ones. \ \
set x; = true set x; = false
false
clause 1 tips core f f
frue é é-% é-*
k = 2 clauses % &
n = 3 variables
X1 X2 X3

3-Dimensional Matching

Construction. (part 2)
« For each clause C; create two elements and three triples.
. Exactly one of these triples will be used in any 3D-matching.
. Ensures any 3D-matching uses either (i) grey core of x; or (ii) blue
core of x, or (iii) grey core of xs.

clause 1 gadget

each clause assigned
its own 2 adjacent tips

3-Dimensional Matching

Construction. (part 3)
. For each tip, add a cleanup gadget.

clause 1 gadget




3-Dimensional Matching

Claim. Instance has a 3D-matching iff @ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element
from each of X, VY, Z?

clause 1 gadget

cleanup gadget

clause 1 tips —

true

X1 X2 X3
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3-Dimensional Matching

Claim. Instance has a 3D-matching iff @ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element
from each of X, Y, Z?

clause 1 gadget

cleanup gadget

clause 1 tips —

X1 X2 X3
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8.7 Graph Coloring

Basic genres.
= Packing problems: SET-PACKING, INDEPENDENT SET.
= Covering problems: SET-COVER, VERTEX-COVER.
= Constraint satisfaction problems: SAT, 3-SAT.
= Sequencing problems: HAMILTONIAN-CYCLE, TSP.
= Partitioning problems: 3D-MATCHING, 3-COLOR.
* Numerical problems: SUBSET-SUM, KNAPSACK.

3-Colorability

3-COLOR: Given an undirected graph G does there exists a way to
color the nodes red, green, and blue so that no adjacent nodes have the
same color?
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Register Allocation

Register allocation. Assign program variables to machine register so
that no more than k registers are used and no two program variables
that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge
between u and v if there exists an operation where both u and

v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff
interference graph is k-colorable.

Fact. 3-COLOR < k-REGISTER-ALLOCATION for any constant k > 3.
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3-Colorability

Claim. 3-SAT <, 3-COLOR.

Pf. Given 3-SAT instance @, we construct an instance of 3-COLOR that
is 3-colorable iff @ is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect
each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.
. Consider assignment that sets all T literals to true.
. (ii) ensures each literal is T or F.
. (iii) ensures a literal and its negation are opposites.
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3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.
. Consider assignment that sets all T literals to true.
. (ii) ensures each literal is T or F.
. (iii) ensures a literal and its negation are opposites.
. (iv) ensures at least one literal in each clause is T.

:=x, Vx, Vx5

true false
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3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.
. Consider assignment that sets all T literals to true.
. (ii) ensures each literal is T or F.
. (iii) ensures a literal and its negation are opposites.
. (iv) ensures at least one literal in each clause is T.

not 3-colorable if all are red

/
c,

1

=x, Vx, Vx
1 P 3

contradiction

true e false
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3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. < Suppose 3-SAT formula @ is satisfiable.
. Color all true literals T.
. Color node below green node F, and node below that B.
. Color remaining middle row nodes B.
. Color remaining bottom nodes T or F as forced. -

a literal set to true in 3-SAT assignment
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8.8 Numerical Problems

Basic genres.
= Packing problems: SET-PACKING, INDEPENDENT SET.
= Covering problems: SET-COVER, VERTEX-COVER.
= Constraint satisfaction problems: SAT, 3-SAT.
= Sequencing problems: HAMILTONIAN-CYCLE, TSP.
= Partitioning problems: 3-COLOR, 3D-MATCHING.
= Numerical problems: SUBSET-SUM, KNAPSACK.

Subset Sum

SUBSET-SUM. Given natural numbers wy, ..., w, and an integer W, is
there a subset that adds up to exactly W?

Ex: {1,4,16, 64,256,1040, 1041, 1093, 1284, 1344}, W = 3754.
Yes. 1+16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in
binary. Polynomial reduction must be polynomial in binary encoding.

Claim. 3-SAT <p SUBSET-SUM.
Pf. Given an instance ® of 3-SAT, we construct an instance of SUBSET-
SUM that has solution iff @ is satisfiable.
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Subset Sum

Construction. Given 3-SAT instance ® with n variables and k clauses,
form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim. @ is satisfiable iff there exists a subset that sums to W.

Pf. No carries possible.
P e Ly L2 161Gl 6]
1 0

X 0O O 1t 0 100,010

-x 1 0 0 1 O 1 100,101

C1=;vyvz y 01 01 0 0 10,100
_ -y 0 1 0 O 1 1 10,011
G=xvyvz z/0 0 1 1 1 0 1,110
Ci=xvVvyvz -z 00100 1 =100
0O 0 o 1 0 oO 100

0O 0O 0O 2 0 O 200

dummies to get clause 0 0 0 0 1 0 10

columns to sum to 4 0 0 0 0 2 0 20

0O 0O 0O o o0 1 1

o o o o o 2 2

v ENENENEAEER -
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My Hobby

MY HoBBY:
EVMBEDDING NP-(OMPLETE PROBLEMS IN RESTRURANT ORDERS

CHOTCHKIES RESTAURANT WED LIKE EXACTLY $15. 05

WORTH OF APPETIZERS, PLEASE.

« APPENZERS — ( . EXCTY? V..

MUED FRUIT 215 HERE, THESE PAPERS ON THE KNAPSACK, )
PROBLEM MIGHT HELP YOU OUT.

FRENCH FRIES 275 \ LISTEN, 1 HAVE Six OTHER

SIDE SALAD 2335 TABLES T0 GET T0 —
- AS FRST AS POSSIBLE, OF (DURSE. WANT

HOT WINGS 2.5 SOMETHING ON TR SALESMAN? /

MOZZAREUA STICKS  4-20

SAMPLER PLATE 5.80

—— SANDWICHES ~—
U rHE Lt

\
2215 %
Randall Munro

http://xked.com/c287.html
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Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time
t;, release time r;, and deadline d;, is it possible to schedule all jobs on a
single machine such that job i is processed with a contiguous slot of t;
time units in the interval [r;, d;]1?

Claim. SUBSET-SUM <, SCHEDULE-RELEASE-TIMES.
Pf. Given an instance of SUBSET-SUM wj, ..., w,,, and target W,
. Create n jobs with processing time t; = w;, release time r; = 0, and no
deadline (d; = 1+X;w)).
. Create job O with ty = 1, release time ro= W, and deadline dq= W+1.

Can schedule jobs 1 to h anywhere but [W, W+1]

job 0 ™~

0 W W+l S+1
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8.10 A Partial Taxonomy of Hard Problems




Polynomial-Time Reductions

constraint satisfaction

Dick Karp (1972)
1985 Turing Award

packing and covering sequencing partitioning numerical
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