

Universal Functions and Universal Programs Application of the Universal Program ffective Operations on Computable Functions

Universal Function

The universal function for *n*-ary computable functions is the (n + 1)-ary function $\psi_U^{(n)}$ defined by

 $\psi_U^{(n)}(e,x_1,\ldots,x_n)\simeq \phi_e^{(n)}(x_1,\ldots,x_n).$

We write ψ_U for $\psi_U^{(1)}$.

Question: Is $\psi_U^{(n)}$ computable?

• Define two new functions c_n and j_n :

The Theorem

Theorem. For each *n*, the universal function $\psi_U^{(n)}$ is computable.

Proof. Given a number *e*, decode the number to get the program P_e ; and then simulate the program P_e . If the simulation ever terminates, then return the number in R_1 . By Church-Turing Thesis, $\psi_U^{(n)}$ is computable.

 $\mathbf{C}_n(e, \mathbf{x}, t) = \text{the configuration after } t \text{ steps of } P_e(\mathbf{x}),$

• Let $\sigma_n(e, \mathbf{x}, t) = \pi(\mathbf{C}_n(e, \mathbf{x}, t), \mathbf{j}_n(e, \mathbf{x}, t))$. If σ_n is primitive

recursive, then C_n , j_n are primitive recursive!

 $\mathbf{j}_n(e, \mathbf{x}, t)$ = the number of the next instruction after t steps

• If the computation of $P_e(\mathbf{x})$ stops, it does so in $\mu t(\mathbf{j}_n(e, \mathbf{x}, t) = 0)$

steps, and the final configuration is $C_n(e, \mathbf{x}, \mu t(\mathbf{j}_n(e, \mathbf{x}, t) = 0))$.

 $\psi_{II}^{(n)}(e,\mathbf{x}) \simeq (\mathbf{C}_n(e,\mathbf{x},\mu t(\mathbf{j}_n(e,\mathbf{x},t)=0)))_1$

of $P_e(\mathbf{x})$ (it is 0 if $P_e(\mathbf{x})$ stops in t or less steps),

CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 6/34	CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 7/34
Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions	Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions
Proof in Detail	Step 1: Three New $(n + 2)$ -ary functions

The states of the computation of the program $P_e(\mathbf{x})$ can be described by a configuration and an instruction number.

A state can be coded up by the number

$$\sigma = \pi(c, j),$$

where c is the configuration that codes up the current values in the registers

$$c=2^{r_1}3^{r_2}\ldots=\prod_{i\geq 1}p_i^{r_i},$$

and *j* is the next instruction number.

CSC363-Com	putability	7 Theors	a@SJTI	
cocoo com	putuonne	, incory	1000010	0

8/34

Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions

Step 2: Computability of $\sigma_n(e, \mathbf{x}, t)$

The function σ_n can be defined by recursion as follows:

$$\sigma_{n}(e, \mathbf{x}, 0) = \pi(2^{x_{1}} 3^{x_{2}} \dots p_{n}^{x_{n}}, 1),$$

$$\sigma_{n}(e, \mathbf{x}, t+1) = \pi(\operatorname{config}(e, \sigma_{n}(e, \mathbf{x}, t)), \operatorname{next}(e, \sigma_{n}(e, \mathbf{x}, t))),$$

$$\operatorname{config}(e, \pi(c, j)) = \begin{cases} \operatorname{New configuration after} & \text{if } 1 \leq j \leq s \\ j^{th} & \text{instruction of } P_{e} & \text{is obeyed,} \\ c, & \text{otherwise.} \end{cases}$$

$$\operatorname{next}(e, \pi(c, j)) = \begin{cases} \operatorname{No. of next instruction after} & \text{if } 1 \leq j \leq s \\ j^{th} & \text{instruction of } P_{e} & \text{is obeyed on } c, & \text{and it exists} \\ 0, & \text{otherwise.} \end{cases}$$

$$\operatorname{If config and next are primitive recursive, then so is \sigma_{n}! \tag{CCd-d-computability flowords} To the computation of the flow of the$$

Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions

Step 3: Computability of config and next

$\ln(e)$	=	the number of instructions in P_e ;	
gn(e,j)	=	$\begin{cases} \text{ the code of } I_j \text{ in } P_e, & \text{if } 1 \leq j \leq \ln(e), \\ 0, & \text{ otherwise.} \end{cases}$	
ch(c,z)	=	the resulting configuration when the configuration c is operated on by the instruction with code number z .	
$\mathbf{V}(c,j,z)$	=	$\begin{cases} \text{the number } j' \text{ of the next instruction} \\ \text{when the configuration } c \text{ is operated} & \text{if } j > 0, \\ \text{on by the } j \text{th instruction with code } z, \\ 0 & \text{if } i = 0 \end{cases}$	
63-Computability The	eory@SJ	TU Xiaofeng Gao Universal Program 11/2	34
Univ Effecti	versal Fu Appli ive Opera	nctions and Universal Programs cation of the Universal Program ations on Computable Functions	
ep 4: Coi	mpu	itability of In, gn, cn, and V	
Any number (a) $x = \sum_{i=0}^{\infty} (b_i) x_i = 2b_i$	er $x \in \alpha_i 2^i$	E \mathbb{N} has a unique expression as , with $\alpha_i = 0$ or 1, all <i>i</i> .	
(b) $x = 2^{a_1}$ (c) $x = 2^{a_1}$	$+ 2^{\circ} + 2^{\circ}$	$b^{2} + \dots + 2^{a_{l}}$, with $0 \le b_{1} < b_{2} < \dots < b_{l}$ and $l \ge 1$. $a_{1} + a_{2} + 1 + \dots + 2^{a_{1} + a_{2} + \dots + a_{k} + k - 1}$	
Define α , ℓ	2. b. e	and <i>a</i> as follows:	
$\alpha(i, x) = \\ \ell(x) = \begin{cases} \\ b(x) = \\ \end{cases}$ $a(i, x) = \end{cases}$	$ \begin{array}{c} \alpha_i \text{ as} \\ \ell \text{ as} \\ 0 \\ b_i \text{ a} \\ 0 \\ \left\{ \begin{array}{c} a_i \\ 0 \end{array} \right. \end{array} $	in the expression (a); in (b), if $x > 0$, otherwise; s in (b), if $x > 0$ and $1 \le i \le l$, otherwise; as in (c), if $x > 0$ and $1 \le i \le l$, otherwise;	

Xiaofeng Gao Universal Program

Each of the functions α , ℓ , b, a is computable.

Xiaofeng Gao

12/34

Universal Functions and Universal Program

In and gn are primitive recursive

Both functions are primitive recursive since

$$ln(e) = \ell(e+1),$$

 $gn(e,j) = a(j, e+1).$

Universal Functions and Universal Programs

Computability of ch, and v

22 Computability Theory@SITU Viaofang Gao Universal Program 15	121
$ \begin{aligned} \mathbf{v}_1(z) &= \pi_1(\pi_1(qt(4,z))) + 1, \\ \mathbf{v}_2(z) &= \pi_2(\pi_1(qt(4,z))) + 1, \\ \mathbf{v}_3(z) &= \pi_2(qt(4,z)) + 1. \end{aligned} $	
$V_1(z) = m_1$ and $V_2(z) = m_2$ and $V_3(z) = q$ if $z = \beta(J(m_1, m_2, q))$:	
$\begin{array}{rcl} {\sf u}_1(z) & = & \pi_1({\sf qt}(4,z))+1, \\ {\sf u}_2(z) & = & \pi_2({\sf qt}(4,z))+1. \end{array}$	
$u_1(z) = m_1$ and $u_2(z) = m_2$ whenever $z = \beta(T(m_1, m_2))$:	
u(z) = qt(4, z) + 1.	
$u(z) = m$ whenever $z = \beta(Z(m))$ or $z = \beta(S(m))$:	
Define primitive recursive functions u , u_1 , u_2 , v_1 , v_2 , and v_3 :	

CSC363-Computability Theory@SJTU Xiaofeng Gao	Universal Program 14/34	CSC363-Computability Theory@SJTU	Xiaofeng Gao	Universal Program	15/34
Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions		Universal Functions an Application of Effective Operations on	nd Universal Programs the Universal Program Computable Functions		
Computability of ch, and v		ch, and v are prim	itive recurs	ive	

Define primitive recursive functions zero, succ, and rans:

The change in the configuration *c* effected by instruction Z(m):

$$\operatorname{zero}(c,m) = \operatorname{qt}(p_m^{(c)_m},c).$$

The change in the configuration *c* effected by instruction S(m):

$$\operatorname{succ}(c,m) = p_m c.$$

The change in the configuration *c* effected by instruction T(m, n):

$$\mathsf{tran}(c,m,n) = \mathsf{qt}(p_n^{(c)_n},p_n^{(c)_m}c)$$

CSC363-Computability Theory@SJTU

 $\mathsf{ch}(c,z) = \begin{cases} \mathsf{zero}(c,\mathsf{u}(z)), & \text{if }\mathsf{rm}(4,z) = 0, \\ \mathsf{succ}(c,\mathsf{u}(z)), & \text{if }\mathsf{rm}(4,z) = 1, \\ \mathsf{tran}(c,\mathsf{u}_1(z),\mathsf{u}_2(z)), & \text{if }\mathsf{rm}(4,z) = 2, \\ c, & \text{if }\mathsf{rm}(4,z) = 3. \end{cases}$

 $\mathbf{v}(c,j,z) = \begin{cases} j+1, & \text{if } \mathsf{rm}(4,z) \neq 3, \\ j+1, & \text{if } \mathsf{rm}(4,z) = 3 \land (c)_{\mathsf{v}_1(z)} \neq (c)_{\mathsf{v}_2(z)}, \\ \mathsf{v}_3(z), & \text{if } \mathsf{rm}(4,z) = 3 \land (c)_{\mathsf{v}_1(z)} = (c)_{\mathsf{v}_2(z)}. \end{cases}$

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Universal Functions and Universal Programs Application of the Universal Program ffective Operations on Computable Functions

Conclusion

We conclude that the functions c_n, j_n, σ_n are primitive recursive.

Further Constructions

For each $n \ge 1$, the following predicates are primitive recursive:

1. $S_n(e, \mathbf{x}, y, t) \stackrel{\text{def}}{=} {}^{\circ}P_e(\mathbf{x}) \downarrow y \text{ in } t \text{ or fewer steps'}.$ 2. $H_n(e, \mathbf{x}, t) \stackrel{\text{def}}{=} {}^{\circ}P_e(\mathbf{x}) \downarrow \text{ in } t \text{ or fewer steps'}.$

They are defined by

$$\begin{aligned} \mathsf{S}_n(e,\mathbf{x},y,t) &\stackrel{\text{def}}{=} & \mathsf{j}_n(e,\mathbf{x},t) = 0 \land (\mathsf{C}_n(e,\mathbf{x},t))_1 = y, \\ \mathsf{H}_n(e,\mathbf{x},t) &\stackrel{\text{def}}{=} & \mathsf{j}_n(e,\mathbf{x},t) = 0. \end{aligned}$$

Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions

Application: Undecidability

Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions

Application: Nonprimitive Total Computable Function

Theorem. The problem ' ϕ_x is total' is undecidable.

Proof. If ' ϕ_x is total' were decidable, then by Church's Thesis

 $f(x) = \begin{cases} \psi_U(x, x) + 1, & \text{if } \phi_x \text{ is total,} \\ 0, & \text{if } \phi_x \text{ is not total.} \end{cases}$

would be a total computable function that differs from every total computable function.

Theorem. There is a total computable function that is not primitive recursive.

Proof.

1. The primitive recursive functions are effectively denumerable.

2. Construct a coding of a primitive recursive function f(x) one can effectively calculate p(e) such that $\phi_{p(e)}(x) \simeq f(x)$.

3. But then $g(x) = \phi_{p(x)}(x) + 1 = \psi_U(p(x), x) + 1$ is a total computable function that is not primitive recursive.

CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 23/34	CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 2
Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions Proof (1)	Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions Example: $f(x) = x^2$
$Sub(f; g_1, g_2, \cdots, g_m)$ denotes the function obtained by substituting	$g_1 = Sub(S; U_3^3)$: $g_1(x, y, z) = U_3^3(x, y, z) + 1 = z + 1$
g_1, \dots, g_m into f . (f is m -ary; g_i are n -ary for some n). Rec(f,g) denotes the function obtained from f and g by recursion (f is n -ary, g is $(n + 2)$ -ary for some n).	$g_2 = Rec(U_1^1; g_1): \begin{cases} g_2(x, 0) = U_1^1(x) = x, \\ g_2(x, y+1) = g_1(x, y, g_2(x, y)) = g_2(x, y) \\ \text{So } g_2(x, y) = x + y \end{cases}$
S denotes the function $x + 1$	$g_3 = Sub(g_2; U_1^3, U_3^3)$: $g_3(x, y, z) = g_2(x, z) = x + z$
U_i^n denotes the projection function $U_i^n(x_1, \cdots, x_n) = x_i$.	$g_4 = Rec(0; g_3): \begin{cases} g_4(x, 0) = 0, \\ g_4(x, y + 1) = g_3(x, y, g_4(x, y)) = x + g_4(x, y) \\ So g_4(x, y) = xy \end{cases}$
basic functions used and the exact sequence of operations performed.	$f = Sub(g_4; U_1^1, U_1^1)$: $f(x) = g_4(x, x) = x^2$

Universal Functions and Universal Programs Application of the Universal Program fective Operations on Computable Functions

Effective Numbering

Now restrict our attention to plans for unary primitive recursive functions. We can number these plans in an effective way. Define:

 θ_n = the unary primitive recursive function defined by plan number *n*

Since every primitive recursive function is computable, there is a total function *p* such that for each *n*, p(n) is the number of a program that computes θ_n .

 $\theta_n = \phi_{p(n)}.$

CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 27/34	CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 28/34
Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions Construction of Total Non-Primitive Recursive Function	Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions Application: Effectiveness of Function Operation
For every primitive recursive function θ_n , we use a diagonal construction as follows: $g(x) = \theta_x(x) + 1$ $= \phi_{p(x)}(x) + 1$ $= \psi_U(p(x), x) + 1$	Fact . There is a total computable function $s(x, y)$ such that $\phi_{s(x,y)} = \phi_x \phi_y$ for all x, y . <i>Proof</i> . Let $f(x, y, z) = \phi_x(z)\phi_y(z) = \psi_U(x, z)\psi_U(y, z)$. By S-m-n Theorem there is a total function $s(x, y)$ such that $\phi_{s(x,y)}(z) \simeq f(x, y, z)$.
g is a total function that is not primitive recursive, but g is computable, by the computability of ψ_U and p.	

Computability of p(n)

We know how to obtain a program for the function $Sub(f; g_1, \dots, g_m)$ given programs for f, g_1, \dots, g_m ;

We know how to obtain a program for the function Rec(f,g) given programs for f, g;

We have explicit programs for the basic functions.

Hence, given a plan for a primitive recursive function f involving intermediate functions g_1, \dots, g_k , we can effectively find programs for g_1, \dots, g_k and finally f.

Thus, by Church's Thesis, there is an effectively computable function p such that $\theta_n = \phi_{p(n)}$.

Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions

Application: Effectiveness of Set Operation

Fact. There is a total computable function s(x, y) such that $W_{s(x,y)} = W_x \cup W_y$.

Proof. Let

$$f(x, y, z) = \begin{cases} 1, & \text{if } z \in W_x \text{ or } z \in W_y, \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

By S-m-n Theorem there is a total function s(x, y) such that $\phi_{s(x,y)}(z) \simeq f(x, y, z)$. Clearly $W_{s(x,y)} = W_x \cup W_y$.

Application: Effectiveness of Inversion

Let g(x, y) be a computable function such that (a) g(x, y) is defined iff $y \in E_x$; (b) If $y \in E_x$, then $g(x, y) \in W_x$ and $\phi_x(g(x, y)) = y$. (i.e., $g(x, y) \in \phi_x^{-1}(\{y\})$)

By S-m-n Theorem, there is a total computable function k such that $g(x, y) \simeq \phi_{k(x)}(y)$. Then from (a) and (b) we have: (a') $W_{k(x)} = E_x$; (b') $E_{k(x)} \subseteq W_x$; If $y \in E_x$, then $\phi_x(\phi_{k(x)}(y)) = y$.

Hence if ϕ_x is injective, then $\phi_{k(x)} = \phi_x^{-1}$ and $E_{k(x)} = W_x$.

CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 32/34	CSC363-Computability Theory@SJTU	Xiaofeng Gao Universal Program	33/34
Universal Functions and Universal Programs Application of the Universal Program Effective Operations on Computable Functions Application: Effectiveness of Recursion			
Consider f defined by the following recursion			
$f(e_1, e_2, \mathbf{x}, 0) \simeq \phi_{e_1}^{(n)}(\mathbf{x}) \simeq \psi_U^{(n)}(e_1, \mathbf{x}),$			
and			
$f(e_1, e_2, \mathbf{x}, y+1) \simeq \phi_{e_2}^{(n+2)}(\mathbf{x}, y, f(e_1, e_2, \mathbf{x}, y)) \\ \simeq \psi_U^{(n+2)}(e_2, \mathbf{x}, y, f(e_1, e_2, \mathbf{x}, y)).$			
By S-m-n Theorem, there is a total computable function $r(e_1, e_2)$ such that $\phi_{r(e_1, e_2)}^{(n+1)}(\mathbf{x}, y) \simeq f(e_1, e_2, \mathbf{x}, y).$			