
CS307 Operating Systems

Distributed-File Systems

Guihai Chen
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Spring 2020

2Operating Systems

Distributed-File Systems

Outline of Contents
 Background
 Naming and Transparency
 Remote File Access
 Stateful versus Stateless Service
 File Replication
 An Example: AFS

Red color stuff are appended by Guihai Chen

3Operating Systems

Chapter Objectives

 To explain the naming mechanism that provides location transparency
and independence

 To describe the various methods for accessing distributed files

 To contrast stateful and stateless distributed file servers

 To show how replication of files on different machines in a distributed
file system is a useful redundancy for improving availability

 To introduce the Andrew file system (AFS) as an example of a
distributed file system

The Ultimate goal is to make DFS look as if it is a conventional file system.

4Operating Systems

Background

 Distributed file system (DFS) – a distributed implementation of
the classical time-sharing model of a file system, where multiple
users share files and storage resources

 A DFS manages set of dispersed storage devices

 Overall storage space managed by a DFS is composed of different,
remotely located, smaller storage spaces

 There is usually a correspondence between constituent storage
spaces and sets of files

5Operating Systems

Distributed System

Node 1 Node 2

Disk1 Disk 2

Node n

Disk n

Distributed File System

Background (Cont.)

Network

……

Disk(1~n) many component units A file system

6Operating Systems

DFS Structure

 Service – software entity running on one or more machines and
providing a particular type of function to a priori unknown clients

 Server – service software running on a single machine

 Client – process that can invoke a service using a set of operations
that forms its client interface

 A client interface for a file service is formed by a set of primitive file
operations (create, delete, read, write, see next slides)

 Client interface of a DFS should be transparent, i.e., not distinguish
between local and remote files

7Operating Systems

UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

8Operating Systems

Naming and Transparency

 Naming – mapping between logical and physical objects

 Multilevel mapping – abstraction of a file that hides the details of how
and where on the disk the file is actually stored
 Name to identifier
 Identifier to blocks and locations (inode)
 More complicated if there are many replicas of one file

 A transparent DFS hides the location where in the network the file is
stored

 For a file being replicated in several sites, the mapping returns a set of
the locations of this file’s replicas; both the existence of multiple copies
and their location are hidden

9Operating Systems

Naming Structures

 Location transparency – file name does not reveal the file’s physical
storage location

 Location independence – file name does not need to be changed
when the file’s physical storage location changes

 Location independence is a stronger requirement than Location
transparency
 Most DFSs only support Location transparency , but AFS meets both

requirements

10Operating Systems

Naming Schemes — Three Main Approaches

 Files named by combination of their host name and local name; guarantees
a unique system-wide name
 It supports neither Location independence nor Location transparency.

 Attach remote directories to local directories, giving the appearance of a
coherent directory tree; only previously mounted remote directories can be
accessed transparently
 UNIX is an example. See next slide.

 Total integration of the component file systems
 A single global name structure spans all the files in the system
 If a server is unavailable, some arbitrary set of directories on different

machines also becomes unavailable

11Operating Systems

Local and Remote File Systems
Accessible on An NFS Client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note:
The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;
the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

12Operating Systems

Remote File Access

 Remote-service mechanism is one transfer approach
 Use RPC to support remote file access.(see 3.6.2)

 Reduce network traffic by retaining recently accessed disk blocks in a
cache, so that repeated accesses to the same information can be
handled locally
 If needed data not already cached, a copy of data is brought from

the server to the user
 Accesses are performed on the cached copy
 Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in different
caches

 Cache-consistency problem – keeping the cached copies
consistent with the master file
 Could be called network virtual memory

13Operating Systems

Cache Location – Disk vs. Main Memory

 Advantages of disk caches
 More reliable
 Cached data kept on disk are still there during recovery and

don’t need to be fetched again

 Advantages of main-memory caches:
 Permit workstations to be diskless
 Data can be accessed more quickly
 Performance speedup in bigger memories
 Server caches (used to speed up disk I/O) are in main memory

regardless of where user caches are located; using main-
memory caches on the user machine permits a single caching
mechanism for servers and users

14Operating Systems

Cache Update Policy

 Write-through – write data through to disk as soon as they are placed
on any cache
 Reliable, but poor performance

 Delayed-write (a.k.a.Write Back)– modifications written to the cache and
then written through to the server later
 Write accesses complete quickly; some data may be overwritten

before they are written back, and so need never be written at all
 Poor reliability; unwritten data will be lost whenever a user machine

crashes
 Variation 1 – scan cache at regular intervals and flush blocks that

have been modified since the last scan
 Variation 2 – write-on-close, writes data back to the server when

the file is closed
 Best for files that are open for long periods and frequently modified
 Used in AFS

15Operating Systems

CacheFS and its Use of Caching

16Operating Systems

Consistency

 Is locally cached copy of the data consistent with the master copy?

 Client-initiated approach
 Client initiates a validity check
 Server checks whether the local data are consistent with the

master copy
 Tradeoff between validity check and access performance

 Server-initiated approach
 Server records, for each client, the (parts of) files it caches
 When server detects a potential inconsistency, it must react

17Operating Systems

Comparing Caching and Remote Service

 In caching, many remote accesses handled efficiently by the local cache;
most remote accesses will be served as fast as local ones

 Servers are contacted only occasionally in caching (rather than for each
access)
 Reduces server load and network traffic
 Enhances potential for scalability

 Remote server method handles every remote access across the network;
penalty in network traffic, server load, and performance

 Total network overhead in transmitting big chunks of data (caching) is lower
than a series of responses to specific requests (remote-service)

18Operating Systems

Caching and Remote Service (Cont.)

 Caching is superior in access patterns with infrequent writes
 With frequent writes, substantial overhead incurred to overcome

cache-consistency problem

 Benefit from caching when execution carried out on machines with
either local disks or large main memories

 Remote access on diskless, small-memory-capacity machines should
be done through remote-service method

 In caching, the lower intermachine interface is different from the upper
user interface

 In remote-service, the intermachine interface mirrors the local user-file-
system interface

19Operating Systems

Stateful File Service

 Mechanism
 Client opens a file
 Server fetches information about the file from its disk, stores it in its

memory, and gives the client a connection identifier unique to the
client and the open file

 Identifier is used for subsequent accesses until the session ends
 Server must reclaim the main-memory space used by clients who

are no longer active

 Increased performance
 Fewer disk accesses
 Stateful server knows if a file was opened for sequential access and

can thus read ahead the next blocks

20Operating Systems

Stateless File Server

 Avoids state information by making each request self-contained

 Each request identifies the file and position in the file

 No need to establish and terminate a connection by open and close
operations

21Operating Systems

Distinctions Between Stateful and Stateless Service

 Failure Recovery
 A stateful server loses all its volatile state in a crash

 Restore state by recovery protocol based on a dialog with clients, or
abort operations that were underway when the crash occurred

 Server needs to be aware of client failures in order to reclaim space
allocated to record the state of crashed client processes (orphan
detection and elimination)

 With stateless server, the effects of server failure and recovery are
almost unnoticeable
 A newly reincarnated server can respond to a self-contained request

without any difficulty

22Operating Systems

Distinctions (Cont.)

 Penalties for using the robust stateless service:
 longer request messages
 slower request processing
 additional constraints imposed on DFS design

 Some environments require stateful service
 A server employing server-initiated cache validation cannot provide

stateless service, since it maintains a record of which files are
cached by which clients

 UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file descriptors to
inodes, and store the current offset within a file

23Operating Systems

File Replication
 Replicas of the same file reside on failure-independent machines

 Improves availability and can shorten service time

 Naming scheme maps a replicated file name to a particular replica
 Existence of replicas should be invisible to higher levels
 Replicas must be distinguished from one another by different

lower-level names
 But sometimes file replication mechanism is exposed to users for

performance purpose like Lucas

 Updates – replicas of a file denote the same logical entity, and thus an
update to any replica must be reflected on all other replicas

 Demand replication – reading a nonlocal replica causes it to be
cached locally, thereby generating a new nonprimary replica

24Operating Systems

An Example: AFS

 A distributed computing environment (Andrew) under development
since 1983 at Carnegie-Mellon University, purchased by IBM and
released as Transarc DFS, now open sourced as OpenAFS

 AFS tries to solve complex issues such as uniform name space,
location-independent file sharing, client-side caching (with cache
consistency), secure authentication (via Kerberos)
 Also includes server-side caching (via replicas), high availability
 Can span 5,000 workstations

 See which choice is taken for each mechanism
 Naming
 Remote file access
 Caching
 consistency

25Operating Systems

ANDREW (Cont.)

 Clients are presented with a partitioned space of file names: a local
name space and a shared name space

 Dedicated servers, called Vice, present the shared name space to the
clients as an homogeneous, identical, and location transparent file
hierarchy

 The local name space is the root file system of a workstation, from
which the shared name space descends

 Workstations run the Virtue protocol to communicate with Vice, and
are required to have local disks where they store their local name
space

 Servers collectively are responsible for the storage and management
of the shared name space

26Operating Systems

ANDREW (Cont.)

 Clients and servers are structured in clusters interconnected by a
backbone LAN

 A cluster consists of a collection of workstations and a cluster server
and is connected to the backbone by a router

 A key mechanism selected for remote file operations is whole file
caching
 Opening a file causes it to be cached, in its entirety, on the local

disk

27Operating Systems

Distribution of Processes in the Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

28Operating Systems

System Call Interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

29Operating Systems

File Name Space Seen by Clients of AFS

/ (root)

tmp bin cmuvmunix. . .

bin

Shared Name SpaceLocal Name Space

Symbolic Links

30Operating Systems

ANDREW Shared Name Space

 Andrew’s volumes are small component units associated with the files
of a single client

 A fid identifies a Vice file or directory - A fid is 96 bits long and has
three equal-length components:
 volume number
 vnode number – index into an array containing the inodes of files

in a single volume
 uniquifier – allows reuse of vnode numbers, thereby keeping

certain data structures, compact

 Fids are location transparent; therefore, file movements from server to
server do not invalidate cached directory contents

 Location information is kept on a volume basis, and the information is
replicated on each server

31Operating Systems

ANDREW File Operations

 Andrew caches entire files from servers
 A client workstation interacts with Vice servers only during opening

and closing of files

 Venus – caches files from Vice when they are opened, and stores
modified copies of files back when they are closed

 Reading and writing bytes of a file are done by the kernel without Venus
intervention on the cached copy

 Venus caches contents of directories and symbolic links, for path-name
translation

 Exceptions to the caching policy are modifications to directories that are
made directly on the server responsibility for that directory

32Operating Systems

ANDREW Implementation

 Client processes are interfaced to a UNIX kernel with the usual set of
system calls

 Venus carries out path-name translation component by component

 The UNIX file system is used as a low-level storage system for both
servers and clients
 The client cache is a local directory on the workstation’s disk

 Both Venus and server processes access UNIX files directly by their
inodes to avoid the expensive path name-to-inode translation routine

33Operating Systems

ANDREW Implementation (Cont.)

 Venus manages two separate caches:
 one for status
 one for data

 LRU algorithm used to keep each of them bounded in size

 The status cache is kept in virtual memory to allow rapid servicing
of stat() (file status returning) system calls

 The data cache is resident on the local disk, but the UNIX I/O
buffering mechanism does some caching of the disk blocks in
memory that are transparent to Venus

34Operating Systems

Implementation of File System Calls in AFS
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise ,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding ca llba ck
promises on the file.

35Operating Systems

Homework

 Reading
 Chapter 19

