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Background

® Program must be brought (from disk) into memory and placed within a
process for it to be run

® Main memory and registers are only storage CPU can access directly
m Register access in one CPU clock cycle
®m Main memory may take several cycles

® Memory unit only sees a stream of addresses + read requests, or address +
data and write requests

®m Protection of memory required to ensure correct operation
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Base and Limit Registers

m A pair of base and limit registers define the physical address space
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Hardware Address Protection
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Logical vs. Physical Address Space

m The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management

e Logical address — generated by the CPU; also referred to as virtual
address

e Physical address — address seen by the memory unit

m Logical address space is the set of all logical addresses generated by a
program

m Physical address space is the set of all physical addresses generated by a
program
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Memory-Management Unit (MMU)

m Hardware device that at run time maps logical to physical address

®m Many methods possible, covered in the rest of this chapter

m To start, consider a simple scheme where the value in the relocation
register is added to every address generated by a user process at the time
it is sent to memory

e Base register now called relocation register

®m The user program deals with logical addresses; it never sees the real
physical addresses

e Execution-time binding occurs when reference is made to location in
memory

e Logical address bound to physical addresses
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Dynamic Relocation using a Relocation Register
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Memory Management

m Contiguous memory allocation

® Non-contiguous memory allocation
e Paging
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Contiguous Allocation

m Each process is contained in a single contiguous section of 0
memory

® Main memory usually contains two partitions:

e Resident operating system, held in low/high memory with
interrupt vector

e User processes then held in high/low memory

m Relocation registers used to protect user processes from each
other, and from changing operating-system code and data

e Base register contains value of smallest physical address

e Limit register contains range of logical addresses — each
logical address must be less than the limit register

MAX
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Hardware Support for Relocation and Limit Registers
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Contiguous Allocation (Cont.)

m  Multiple-partition allocation
e Degree of multiprogramming limited by number of partitions

e Hole — block of available memory; holes of various size are scattered
throughout memory

e When a process arrives, it is allocated memory from a hole large
enough to accommodate it

e Process exiting frees its partition, adjacent free partitions combined

e Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

oS OS OS OS
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Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?

m First-fit: Allocate the first hole that is big enough

m Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

e Produces the smallest leftover hole

m Worst-fit: Allocate the largest hole; must also search entire list
e Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage
utilization
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Fragmentation

m External Fragmentation — total memory space exists to satisfy a request,
but it is not contiguous

m Internal Fragmentation — allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition, but
not being used

m First fit analysis reveals that given N blocks allocated, another 0.5 N blocks
lost to fragmentation

e 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

® Reduce external fragmentation by compaction

e Shuffle memory contents to place all free memory together in one large
block

e Compaction is possible only if relocation is dynamic, and is done at
execution time

® Another solution to permit the logical address space of the processes to be
noncontiguous

e paging
e segmentation
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Paging

m Physical address space of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

®m Divide physical memory into fixed-sized blocks called frames
e Size is power of 2, between 512 bytes and 16 Mbytes

®m Divide logical memory into blocks of same size called pages
m Keep track of all free frames

® To run a program of size N pages, need to find up to N free frames and load
program

m Set up a page table to translate logical to physical addresses

m  Still have Internal fragmentation
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Paging Model of Logical and Physical Memory
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Address Translation Scheme

m Address generated by CPU is divided into:

e Page number (p) — used as an index into a page table, which contains
base address of each page in physical memory

e Page offset (d) — combined with base address to define the physical
memory address that is sent to the memory unit
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» For given logical address space 2™ and page size 2"
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Paging Hardware
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Paging Example
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Paging (Cont.)

m Calculating internal fragmentation
e Page size = 2,048 bytes
e Process size = 72,766 bytes
e 35 pages + 1,086 bytes
e Internal fragmentation of 2,048 - 1,086 = 962 bytes

®m [nternal fragmentation
e Worst case fragmentation = frame size — 1 byte
e On average fragmentation = 1 / 2 frame size

m Calculate the page numbers and offsets for the following
address, when page size is 1KB:

e 2375=1024*2 + 327
e 19366 = 1024 * 18 + 934
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Free Frames
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Implementation of Page Table

m Page table is kept in main memory
e Page-table base register (PTBR) points to the page table
e Page-table length register (PTLR) indicates size of the page table

e In this scheme every data/instruction access requires two memory
accesses

» One for the page table and one for the data / instruction

® The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-
aside buffers (TLBs)

e TLBs typically small (64 to 1,024 entries)

e On a TLB miss, value is loaded into the TLB for faster access next time
» Replacement policies must be considered
» Some entries can be wired down for permanent fast access

Operating Systems 29




Paging Hardware With TLB
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Effective Access Time

m Associative Lookup = ¢ time unit

B Hitratio =«

e Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

m Consider oo = 80%

m Effective Access Time (EAT)
EAT=(1+g)a+(2+e)(1—-a)

=2+ec—q

e When a = 80%, ¢ = 20ns for TLB search, 100ns for 1 memory access
time unit

e EAT =120x0.80 + 220 x 0.20 = 140ns
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Structure of the Page Table

m Memory structures for paging can get huge using straight-forward methods

Consider a 32-bit logical address space as on modern computers
Page size of 4 KB (2'?)
Page table would have 1 million entries (232 / 212)

If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

» That amount of memory used to cost a lot
» Don’t want to allocate that contiguously in main memory

m Hierarchical Paging
m Hashed Page Tables
®m Inverted Page Tables
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Hierarchical Page Tables

m Break up the logical address space into multiple page tables

m A simple technique is a two-level page table

m \We then page the page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

®m A logical address (on 32-bit machine with 4K page size) is divided into:
e a page number consisting of 20 bits
e a page offset consisting of 12 bits

®m Since the page table is paged, the page number is further divided into:
e a 10-bit page number
e a 10-bit page offset

® Thus, a logical address is as follows:

page number page offset
P4 P2 d
10 10 12

® where p, is an index into the outer page table, and p, is the offset within the
page of the inner page table

m Known as forward-mapped page table
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Address-Translation Scheme
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Three-level Paging Scheme

2nd outer page . outer page innerpage . offset

P1 P> P3 d
32 10 10 12
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Hashed Page Tables

m Common in address spaces > 32 bits

m The virtual page number is hashed into a page table

e This page table contains a chain of elements hashed to the same
location

m Each element contains (1) the virtual page number (2) the address of the
mapped page frame (3) a pointer to the next element

®m Virtual page numbers are compared in this chain searching for a match
e If a match is found, the corresponding physical frame is extracted
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Hashed Page Table
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Inverted Page Table

m Rather than each process having a page table and keeping track of all
possible logical pages, track all physical pages

® One entry for each real frame of memory

m Entry consists of the virtual address of the page stored in that real memory
location, with information about the process that owns that page

m Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

m Use hash table to limit the search to one — or at most a few — page-table
entries

e TLB can accelerate access
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Inverted Page Table Architecture
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Segmentation

®m Memory-management scheme that supports user view of memory

m A program is a collection of segments
e A segmentis a logical unit such as:
main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arrays
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User’s View of a Program
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Example of Segmentation
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Segmentation Architecture

®m Logical address consists of a two tuple:
<segment-number, offset>,

m Segment table — maps two-dimensional physical addresses; each table
entry has:

e base — contains the starting physical address where the segments
reside in memory

e limit — specifies the length of the segment

m Segment-table base register (STBR) points to the segment table’s
location in memory

B Segment-table length register (STLR) indicates number of segments
used by a program,;

segment number s is legal if s < STLR
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Segmentation Hardware
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Pop-Quiz

m Consider a 32-bits logical address space

Two-level page table
4K page size

10-bit page number
10-bit page offset
each entry is 4 bytes

page number page offset
P+ P2 d
10 10 12

® Question: How much space is needed to store the page table?
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Homework

m Reading
e Chapter 8
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