CS307 Operating Systems

Main Memory

Fan Wu

Department of Computer Science and Engineering
Shanghai Jiao Tong University

Spring 2020

Background

® Program must be brought (from disk) into memory and placed within a
process for it to be run

® Main memory and registers are only storage CPU can access directly
m Register access in one CPU clock cycle
®m Main memory may take several cycles

® Memory unit only sees a stream of addresses + read requests, or address +
data and write requests

®m Protection of memory required to ensure correct operation

Operating Systems 2

Base and Limit Registers

m A pair of base and limit registers define the physical address space

0
operating
system
256000
process
300040 < 300040
process base
420940) A
process Lol
880000
1024000

Operating Systems 3

Hardware Address Protection

CPU

Operating Systems

address

base

IV

no

yes

base + limit

no

trap to operating system
monitor—addressing error

yes

Y

memory

Logical vs. Physical Address Space

m The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management

e Logical address — generated by the CPU; also referred to as virtual
address

e Physical address — address seen by the memory unit

m Logical address space is the set of all logical addresses generated by a
program

m Physical address space is the set of all physical addresses generated by a
program

Operating Systems 7

Memory-Management Unit (MMU)

m Hardware device that at run time maps logical to physical address

®m Many methods possible, covered in the rest of this chapter

m To start, consider a simple scheme where the value in the relocation
register is added to every address generated by a user process at the time
it is sent to memory

e Base register now called relocation register

®m The user program deals with logical addresses; it never sees the real
physical addresses

e Execution-time binding occurs when reference is made to location in
memory

e Logical address bound to physical addresses

Operating Systems 8

Dynamic Relocation using a Relocation Register

relocation
register
14000
logical physical
address address
CPU + > memory
346 14346
MMU

Operating Systems 9

Memory Management

m Contiguous memory allocation

® Non-contiguous memory allocation
e Paging

Operating Systems 15

Contiguous Allocation

m Each process is contained in a single contiguous section of 0
memory

® Main memory usually contains two partitions:

e Resident operating system, held in low/high memory with
interrupt vector

e User processes then held in high/low memory

m Relocation registers used to protect user processes from each
other, and from changing operating-system code and data

e Base register contains value of smallest physical address

e Limit register contains range of logical addresses — each
logical address must be less than the limit register

MAX

Operating Systems 16

operating
system

process

process

process

Hardware Support for Relocation and Limit Registers

limit relocation
register register
logical physical
address yes address
CPU < + » memory
no
' [
trap: addressing error

Operating Systems 17

Contiguous Allocation (Cont.)

m Multiple-partition allocation
e Degree of multiprogramming limited by number of partitions

e Hole — block of available memory; holes of various size are scattered
throughout memory

e When a process arrives, it is allocated memory from a hole large
enough to accommodate it

e Process exiting frees its partition, adjacent free partitions combined

e Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

oS OS OS OS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> process 10
process 2 process 2 process 2 process 2

Operating Systems

18

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?

m First-fit: Allocate the first hole that is big enough

m Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

e Produces the smallest leftover hole

m Worst-fit: Allocate the largest hole; must also search entire list
e Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

Operating Systems 19 é@

%‘n‘
2 Ht

5
3 bl

EIRENN
£

Fragmentation

m External Fragmentation — total memory space exists to satisfy a request,
but it is not contiguous

m Internal Fragmentation — allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition, but
not being used

m First fit analysis reveals that given N blocks allocated, another 0.5 N blocks
lost to fragmentation

e 1/3 may be unusable -> 50-percent rule

Operating Systems 20

Fragmentation (Cont.)

® Reduce external fragmentation by compaction

e Shuffle memory contents to place all free memory together in one large
block

e Compaction is possible only if relocation is dynamic, and is done at
execution time

® Another solution to permit the logical address space of the processes to be
noncontiguous

e paging
e segmentation

Operating Systems 21

Paging

m Physical address space of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

®m Divide physical memory into fixed-sized blocks called frames
e Size is power of 2, between 512 bytes and 16 Mbytes

®m Divide logical memory into blocks of same size called pages
m Keep track of all free frames

® To run a program of size N pages, need to find up to N free frames and load
program

m Set up a page table to translate logical to physical addresses

m Still have Internal fragmentation

Operating Systems 22

Paging Model of Logical and Physical Memory

frame
number
page 0 Page Frame 0
O 1
page 1 114 1| page O
2|3
page 2 2
317
page 3 page table 3| page 2
|0gica| 4 page'l
memory
5
6
7| page 3
physical
memory

Operating Systems 23

Address Translation Scheme

m Address generated by CPU is divided into:

e Page number (p) — used as an index into a page table, which contains
base address of each page in physical memory

e Page offset (d) — combined with base address to define the physical
memory address that is sent to the memory unit

page number

page offset

P

d

m-n

n

» For given logical address space 2™ and page size 2"

Operating Systems

24

Paging Hardware

N
rf
logical physical J
address address fO000 ... 0000
Y
CPU » p | d f d >
)
(1 O, B
p{
— -I:
physical
page table =Ly

Operating Systems 25

Paging Example

O 0
Page Frame 1 4 |
o[5 4
116 |
AE > & |m What character does
32 : the following logical
5 g logica
B 3 T . addresses map to?
(A) 10 = 10 10
_ ()5 =0101
4 (C) 14 =11 10
5 21§
g
6 |
g
h
7 28

physical memory
n=2 and m=4 32-byte memory and 4-byte pages

Operating Systems 26

Paging (Cont.)

m Calculating internal fragmentation
e Page size = 2,048 bytes
e Process size = 72,766 bytes
e 35 pages + 1,086 bytes
e Internal fragmentation of 2,048 - 1,086 = 962 bytes

®m [nternal fragmentation
e Worst case fragmentation = frame size — 1 byte
e On average fragmentation = 1 / 2 frame size

m Calculate the page numbers and offsets for the following
address, when page size is 1KB:

e 2375=1024*2 + 327
e 19366 = 1024 * 18 + 934

Operating Systems 27

Free Frames

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page 0
15
e N 15 @i 15
___/ ___/
page O 16 page O 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
new process new process
& w 18 ~ » 18 |page 2
19 o[i4 19
18
20 2|18 20 |page 3
320
21 new-process page table 21
(a) (b)
Before allocation After allocation

Operating Systems 28

Implementation of Page Table

m Page table is kept in main memory
e Page-table base register (PTBR) points to the page table
e Page-table length register (PTLR) indicates size of the page table

e In this scheme every data/instruction access requires two memory
accesses

» One for the page table and one for the data / instruction

® The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-
aside buffers (TLBs)

e TLBs typically small (64 to 1,024 entries)

e On a TLB miss, value is loaded into the TLB for faster access next time
» Replacement policies must be considered
» Some entries can be wired down for permanent fast access

Operating Systems 29

Paging Hardware With TLB

logical
address |
CPU > p d
page frame
number number
TLB hit physical
l | address
f d —>
TLB 1
p{
TLB miss
> f
N physical
memory
page table

Operating Systems 31

Effective Access Time

m Associative Lookup = ¢ time unit

B Hitratio =«

e Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

m Consider oo = 80%

m Effective Access Time (EAT)
EAT=(1+g)a+(2+e)(1—-a)

=2+ec—q

e When a = 80%, ¢ = 20ns for TLB search, 100ns for 1 memory access
time unit

e EAT =120x0.80 + 220 x 0.20 = 140ns

Operating Systems 32

Structure of the Page Table

m Memory structures for paging can get huge using straight-forward methods

Consider a 32-bit logical address space as on modern computers
Page size of 4 KB (2'?)
Page table would have 1 million entries (232 / 212)

If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

» That amount of memory used to cost a lot
» Don’t want to allocate that contiguously in main memory

m Hierarchical Paging
m Hashed Page Tables
®m Inverted Page Tables

Operating Systems 37

Hierarchical Page Tables

m Break up the logical address space into multiple page tables

m A simple technique is a two-level page table

m \We then page the page table

Operating Systems 38

Two-Level Page-Table Scheme

0

/'r
D I B
/ . 10—
500 sl
~ 100 V] £00
08 |~ .
- 708
outer page ™ 929 .
table T e
900 />< :
page of 929
page table
inner page table :
memory

Operating Systems 39

Two-Level Paging Example

®m A logical address (on 32-bit machine with 4K page size) is divided into:
e a page number consisting of 20 bits
e a page offset consisting of 12 bits

®m Since the page table is paged, the page number is further divided into:
e a 10-bit page number
e a 10-bit page offset

® Thus, a logical address is as follows:

page number page offset
P4 P2 d
10 10 12

® where p, is an index into the outer page table, and p, is the offset within the
page of the inner page table

m Known as forward-mapped page table

Operating Systems 40

Address-Translation Scheme

logical address
Pi [P2 | d

"

=

=

outer page g {

table

page of
page table

Operating Systems 41

Three-level Paging Scheme

2nd outer page . outer page innerpage . offset

P1 P> P3 d
32 10 10 12

Operating Systems 43

Hashed Page Tables

m Common in address spaces > 32 bits

m The virtual page number is hashed into a page table

e This page table contains a chain of elements hashed to the same
location

m Each element contains (1) the virtual page number (2) the address of the
mapped page frame (3) a pointer to the next element

®m Virtual page numbers are compared in this chain searching for a match
e If a match is found, the corresponding physical frame is extracted

Operating Systems 44

Hashed Page Table

physical
logical address 1 address
p d r d >
[
physical
>Iq|8|'|h|p|r| |,o0c memory

hash table

Operating Systems 45

Inverted Page Table

m Rather than each process having a page table and keeping track of all
possible logical pages, track all physical pages

® One entry for each real frame of memory

m Entry consists of the virtual address of the page stored in that real memory
location, with information about the process that owns that page

m Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

m Use hash table to limit the search to one — or at most a few — page-table
entries

e TLB can accelerate access

Operating Systems 46

Inverted Page Table Architecture

logical ;
address physical
wlr address ohysical
CPU > pid| p | d .Io. d > memory

search l i

pid

-

page table

Operating Systems 47

Segmentation

®m Memory-management scheme that supports user view of memory

m A program is a collection of segments
e A segmentis a logical unit such as:
main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arrays

Operating Systems 48

User’s View of a Program

subroutine

symbol
table

sqrt

main
program

logical address

Operating Systems 49

Example of Segmentation

subroutine stack

segment 3

symbol
segment 0 table

Sqrt segment 4

main
program

segment 1 segment 2

logical address space

Operating Systems

50

F N 0 L B

limit | base

1000 | 1400
400 | 6300
400 | 4300
1100 | 3200
1000 | 4700

segment table

1400

2400

3200

4300
4700

5700
6300

6700

physical memory

segment O

segment 3

segment 2

segment 4

segment 1

| w3

HANGHAL

dr¥

140 TONG UNIVERSITY

Segmentation Architecture

®m Logical address consists of a two tuple:
<segment-number, offset>,

m Segment table — maps two-dimensional physical addresses; each table
entry has:

e base — contains the starting physical address where the segments
reside in memory

e limit — specifies the length of the segment

m Segment-table base register (STBR) points to the segment table’s
location in memory

B Segment-table length register (STLR) indicates number of segments
used by a program,;

segment number s is legal if s < STLR

Operating Systems 51

Segmentation Hardware

|

limit |base
segment
table
CPU —» s | d
es
- y
no
Y
trap: addressing error physical memory

Operating Systems 53

Pop-Quiz

m Consider a 32-bits logical address space

Two-level page table
4K page size

10-bit page number
10-bit page offset
each entry is 4 bytes

page number page offset
P+ P2 d
10 10 12

® Question: How much space is needed to store the page table?

Operating Systems

60

Homework

m Reading
e Chapter 8

Operating Systems 61

