
CS307 Operating Systems

Main Memory

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Spring 2020



2Operating Systems

Background

 Program must be brought (from disk)  into memory and placed within a 
process for it to be run

 Main memory and registers are only storage CPU can access directly

 Register access in one CPU clock cycle

 Main memory may take several cycles

 Memory unit only sees a stream of addresses + read requests, or address + 
data and write requests

 Protection of memory required to ensure correct operation



3Operating Systems

Base and Limit Registers

 A pair of base and limit registers define the physical address space



4Operating Systems

Hardware Address Protection



7Operating Systems

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate 
physical address space is central to proper memory management
 Logical address – generated by the CPU; also referred to as virtual 

address
 Physical address – address seen by the memory unit

 Logical address space is the set of all logical addresses generated by a 
program

 Physical address space is the set of all physical addresses generated by a 
program



8Operating Systems

Memory-Management Unit (MMU)
 Hardware device that at run time maps logical to physical address

 Many methods possible, covered in the rest of this chapter

 To start, consider a simple scheme where the value in the relocation 
register is added to every address generated by a user process at the time 
it is sent to memory
 Base register now called relocation register

 The user program deals with logical addresses; it never sees the real
physical addresses
 Execution-time binding occurs when reference is made to location in 

memory
 Logical address bound to physical addresses



9Operating Systems

Dynamic Relocation using a Relocation Register



15Operating Systems

Memory Management

 Contiguous memory allocation

 Non-contiguous memory allocation
 Paging



16Operating Systems

Contiguous Allocation

 Each process is contained in a single contiguous section of 
memory

 Main memory usually contains two partitions:
 Resident operating system, held in low/high memory with 

interrupt vector
 User processes then held in high/low memory

 Relocation registers used to protect user processes from each 
other, and from changing operating-system code and data
 Base register contains value of smallest physical address
 Limit register contains range of logical addresses – each 

logical address must be less than the limit register 

0

MAX



17Operating Systems

Hardware Support for Relocation and Limit Registers



18Operating Systems

Contiguous Allocation (Cont.)
 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions
 Hole – block of available memory; holes of various size are scattered 

throughout memory
 When a process arrives, it is allocated memory from a hole large 

enough to accommodate it
 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10



19Operating Systems

Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; must search 
entire list, unless ordered by size  
 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search entire list  
 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage 
utilization



20Operating Systems

Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, 
but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger than 
requested memory; this size difference is memory internal to a partition, but 
not being used

 First fit analysis reveals that given N blocks allocated, another 0.5 N blocks 
lost to fragmentation
 1/3 may be unusable -> 50-percent rule



21Operating Systems

Fragmentation (Cont.)

 Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together in one large 

block
 Compaction is possible only if relocation is dynamic, and is done at 

execution time

 Another solution to permit the logical address space of the processes to be 
noncontiguous
 paging
 segmentation



22Operating Systems

Paging

 Physical address space of a process can be noncontiguous; process is 
allocated physical memory whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find up to N free frames and load 
program

 Set up a page table to translate logical to physical addresses

 Still have Internal fragmentation



23Operating Systems

Paging Model of Logical and Physical Memory

Page   Frame



24Operating Systems

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table, which contains 

base address of each page in physical memory
 Page offset (d) – combined with base address to define the physical 

memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n



25Operating Systems

Paging Hardware



26Operating Systems

Paging Example

n=2 and m=4   32-byte memory and 4-byte pages

0

1

2

3

0

1

2

3

4

5

6

7

Page  Frame

What character does 
the following logical 
addresses map to?
(A) 10 = 10 10
(B) 5 = 01 01
(C) 14 = 11 10



27Operating Systems

Paging (Cont.)

 Calculating internal fragmentation
 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Internal fragmentation
 Worst case fragmentation = frame size – 1 byte
 On average fragmentation = 1 / 2 frame size

 Calculate the page numbers and offsets for the following 
address, when page size is 1KB:
 2375
 19366

2375 = 1024 * 2 + 327
19366 = 1024 * 18 + 934



28Operating Systems

Free Frames

Before allocation After allocation



29Operating Systems

Implementation of Page Table
 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table
 Page-table length register (PTLR) indicates size of the page table
 In this scheme every data/instruction access requires two memory 

accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-
aside buffers (TLBs)
 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster access next time

 Replacement policies must be considered
 Some entries can be wired down for permanent fast access



31Operating Systems

Paging Hardware With TLB



32Operating Systems

Effective Access Time

 Associative Lookup =  time unit

 Hit ratio = 
 Hit ratio – percentage of times that a page number is found in the 

associative registers; ratio related to number of associative registers

 Consider  = 80%

 Effective Access Time (EAT)
EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

 When  = 80%,  = 20ns for TLB search, 100ns for 1 memory access 
time unit

 EAT = 120 x 0.80 + 220 x 0.20 = 140ns



37Operating Systems

Structure of the Page Table

 Memory structures for paging can get huge using straight-forward methods
 Consider a 32-bit logical address space as on modern computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)
 If each entry is 4 bytes -> 4 MB of physical address space / memory for 

page table alone
 That amount of memory used to cost a lot
 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging
 Hashed Page Tables
 Inverted Page Tables



38Operating Systems

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table



39Operating Systems

Two-Level Page-Table Scheme

inner page table



40Operating Systems

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided into:
 a 10-bit page number 
 a 10-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the offset within the 
page of the inner page table

 Known as forward-mapped page table

page number page offset

p1 p2 d
10 10 12



41Operating Systems

Address-Translation Scheme



43Operating Systems

Three-level Paging Scheme



44Operating Systems

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table
 This page table contains a chain of elements hashed to the same 

location

 Each element contains (1) the virtual page number (2) the address of the 
mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a match
 If a match is found, the corresponding physical frame is extracted



45Operating Systems

Hashed Page Table



46Operating Systems

Inverted Page Table

 Rather than each process having a page table and keeping track of all 
possible logical pages, track all physical pages

 One entry for each real frame of memory

 Entry consists of the virtual address of the page stored in that real memory 
location, with information about the process that owns that page

 Decreases memory needed to store each page table, but increases time 
needed to search the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table 
entries
 TLB can accelerate access



47Operating Systems

Inverted Page Table Architecture



48Operating Systems

Segmentation

 Memory-management scheme that supports user view of memory 

 A program is a collection of segments
 A segment is a logical unit such as:

main program
procedure 
function
method
object
local variables, global variables
common block
stack
symbol table
arrays



49Operating Systems

User’s View of a Program



50Operating Systems

Example of Segmentation



51Operating Systems

Segmentation Architecture 

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table 
entry has:
 base – contains the starting physical address where the segments 

reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s 
location in memory

 Segment-table length register (STLR) indicates number of segments 
used by a program;

segment number s is legal if s < STLR



53Operating Systems

Segmentation Hardware



60Operating Systems

Pop-Quiz

 Consider a 32-bits logical address space
 Two-level page table
 4K page size
 10-bit page number 
 10-bit page offset
 each entry is 4 bytes

 Question: How much space is needed to store the page table?

page number page offset

p1 p2 d
10 10 12



61Operating Systems

Homework

 Reading
 Chapter 8


