
CS307 Operating Systems

Process Synchronization

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020



2Operating Systems

Background

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly 
execution of cooperating processes
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Producer-Consumer Problem

 Paradigm for cooperating processes, producer process 
produces information that is consumed by a consumer
process

 unbounded-buffer places no practical limit on the size of 
the buffer

 bounded-buffer assumes that there is a fixed buffer size

Producer Consumer

Send to 
Buffer

Receive 
from Buffer
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Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
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Bounded-Buffer – Shared-Memory Solution

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE)  == out)

;   /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}
while (true) {

while (in == out)

; // do nothing

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Producer

Consumer
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Bounded-Buffer – Shared-Memory Solution

 Weakness:

 The solution allows only BUFFER_SIZE-1 elements at the same time

 Busy waiting

 Can you:

 Rewrite the previous processes to allow BUFFER_SIZE items in the 
buffer at the same time
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Bounded-Buffer – Shared-Memory Solution

while (true) {
/* produce an item */

while (in % BUFFER_SIZE == out && in != out)

; /* waiting */

buffer[in % BUFFER_SIZE] = item;

if ((in + 1) % BUFFER_SIZE == out)

in = out + BUFFER_SIZE;

else

in = (in + 1) % BUFFER_SIZE;    

}

while (true) {

while (in == out)

; // do nothing

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Producer

Consumer
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One Possible Solution

 Suppose that we wanted to provide a solution to the consumer-producer 
problem that fills all the buffers. 

 We can do so by having an integer counter that keeps track of the number 
of full buffers.  

 Initially, counter is set to 0. 

 It is increased by the producer after it fills a new buffer and 

 It is decreased by the consumer after it consumes a buffer.
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Improved Solution

while (true) {

/*  produce an item and put in nextProduced  */

while (counter == BUFFER_SIZE)  ; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}   

while (true)  {

while (counter == 0) ; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/*  consume the item */

}

Producer

Consumer
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Race Condition
 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “counter = 5” initially:

S0: producer execute   register1 = counter {register1 = 5}
S1: producer execute   register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute   counter = register1 {counter = 6} 
S5: consumer execute counter = register2 {counter = 4}

 Race condition: several processes access and manipulate the same data 
concurrently and the outcome of the execution depends on the particular 
order in which the access takes place



11Operating Systems

Critical Section Problem

 Consider system of n processes {p0, p1, … , pn-1}

 Each process has a critical section segment of codes

 Process may be changing common variables, updating table, writing file, 
etc

 When one process is in critical section, no other processes may be in its 
critical section

 Critical section problem is to design protocols to solve this

 Each process must ask permission to enter the critical section in entry 
section, may follow critical section with exit section, then remainder 
section

 Especially challenging with preemptive kernels



12Operating Systems

Critical Section

 General structure of process pi is

do {

entry section

critical section

exit section

remainder section

} while (TRUE);
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Requirements to Solution

1. Mutual Exclusion - If process Pi is executing in its critical section, then no 
other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist 
some processes that wish to enter their critical section, then the selection of 
the processes that will enter the critical section next cannot be postponed 
indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other 
processes are allowed to enter their critical sections after a process has 
made a request to enter its critical section and before that request is 
granted

 Sequential Access – The sequence of accessing the critical section 
follows the order of the requests raised by the processes
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Mechanisms for Process Synchronization

 Synchronization Hardware

 Peterson’s Solution

 Semaphores

 Monitors
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Synchronization Hardware

 Many systems provide hardware support for critical section code

 Some machines provide special atomic hardware instructions

 Atomic = non-interruptable

 Either test memory word and set value: TestAndSet ()

 Or swap contents of two memory words: Swap()
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TestAndSet Instruction 

 Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}
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Solution using TestAndSet

 Shared boolean variable lock, initialized to FALSE

 Solution:

do {

while ( TestAndSet ( &lock ))

;   // do nothing

//    critical section

lock = FALSE;

//    remainder section 

} while (TRUE);
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Bounded-Waiting Mutual Exclusion with TestandSet()

do { 

waiting[i] = TRUE; 

key = TRUE; 

while (waiting[i] && key) 

key = TestAndSet(&lock); 

waiting[i] = FALSE; 

// critical section 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = FALSE; 

else 

waiting[j] = FALSE; 

// remainder section 

} while (TRUE);

boolean waiting[n] ;
boolean lock;
These data structures are initialized to false.
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Swap Instruction

 Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp;

}
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Solution Using Swap

 Shared Boolean variable lock initialized to FALSE; Each process has a local 
Boolean variable key

 Solution:

do {

key = TRUE;

while ( key == TRUE)

Swap (&lock, &key );

//    critical section

lock = FALSE;

//     remainder section 

} while (TRUE);
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Peterson’s Solution

 Two process solution

 The two processes share two variables:

 int turn; 

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section

 The flag array is used to indicate if a process is ready to enter the critical 
section. flag[i] = true implies that process Pi is ready!
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do { 

flag[i] = TRUE; 

turn = j; 

while (flag[ j] && turn == j); 

critical section 

flag[i] = FALSE; 

remainder section 

} while (TRUE); 

 Provable that 

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Algorithm for Process Pi
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Semaphore

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() (from proberen, “to test”)

 and V() (from verhogen, “to increment”)

 Can only be accessed via two indivisible (atomic) operations

 wait (S) { 

while S <= 0

; // no-op

S--;

}

 signal (S) { 

S++;

}
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Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has a pointer to next record in the list

 Two operations:

 sleep – suspends the process that invokes it

 wakeup – resumes the execution of a suspended process
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Semaphore Implementation with no Busy Waiting

 Implementation of wait:
wait(semaphore *S) { 

S->value--; 
if (S->value < 0) { 

add this process to S->list; 
sleep(); 

} 
}

 Implementation of signal:
signal(semaphore *S) { 

S->value++; 
if (S->value <= 0 && S->list != NULL) { 

remove a process P from S->list; 
wakeup(P); 

}
} 

 Semaphore stucture
typedef struct {

int value;
struct process *list;

} semaphore;
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Semaphore as General Synchronization Tool

 Binary semaphore – integer value can range only between 0 and 1

 Also known as mutex locks

 Counting semaphore – integer value can range over an unrestricted domain

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

Semaphore mutex;    //  initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

 Sleeping Barber Problem

 Baboons Crossing Problem

 Search-Insert-Delete Problem
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Bounded-Buffer Problem

Producer Consumer

Send to 
Buffer

Receive 
from Buffer
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Improved Solution
while (true) {

/*  produce an item and put in nextProduced  */

while (counter == BUFFER_SIZE)  ; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

wait (mutex);

counter++;

signal (mutex);

}   
while (true)  {

while (counter == 0) ; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

wait (mutex);

counter--;

signal (mutex);

/*  consume the item */

}

Producer

Consumer
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Bounded-Buffer Problem

 N buffer slots, each can hold one item

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N
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Bounded Buffer Problem (Cont.)

 Producer process

do  {

//   produce an item

wait (empty);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

signal (full);

} while (TRUE);

 Consumer process

do {

wait (full);

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

signal (empty);

//  consume the item

} while (TRUE);
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Dining-Philosophers Problem

 Philosophers spend their lives thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks 
(one at a time) to eat from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data 

 Chopsticks

 Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:

do  { 

wait ( chopstick[i] );

wait ( chopstick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );

signal ( chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

 What is the problem with this algorithm?
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Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers   – can both read and write

 Problem defined:

 allow multiple readers to read at the same time

 Only one single writer can access the shared data at each point of time

 Shared Data

 Semaphore wrt initialized to 1: ensure mutual modification to the data 
set and mutual-exclusion of reading and writing

 Integer readcount initialized to 0

 Semaphore mutex initialized to 1: ensure mutual access to readcount
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Readers-Writers Problem (Cont.)

 Writer process

do {

wait (wrt) ;

//    writing is performed

signal (wrt) ;

} while (TRUE);

 Reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)  

wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0)  

signal (wrt) ;
signal (mutex) ;

} while (TRUE);
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Readers-Writers Problem Variations

 Reader-Preferred Solution – no reader kept waiting unless writer has 
permission to use shared object

 no reader should wait for other readers to finish simply because a writer 
is waiting

 Writer-Preferred Solution – once writer is ready, it performs write asap

 if a writer is waiting to access the object, no new readers may start 
reading
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Writer-Preferred Solution

 Writer process

do {
wait (mutexwc);
writecount ++;
if (writecount == 1) 

wait (rd);
signal (mutexwc);

wait (wrt);
// writing is performed
signal(wrt);

wait (mutexwc);
writecount - -;
if (writecount == 0)

signal (rd);
signal (mutexwc); 

} while (TRUE);   

 Reader process
do {

wait (rd);
wait (mutexrc);
readcount ++;
if (readcount == 1)

wait (wrt);
signal (mutexrc);
signal (rd);

//reading is performed

wait (mutexrc);
readcount - -;
if (readcount == 0) 

signal (wrt);
signal (mutexrc);

} while (TRUE);

int readcount = 0, writecount = 0; 
semaphore mutexrc = 1, mutexwc = 1, wrt = 1, rd = 1;
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Readers-Writers Problem Variations

 Reader-Preferred Solution – no reader kept waiting unless writer has 
permission to use shared object

 no reader should wait for other readers to finish simply because a writer 
is waiting

 Writer-Preferred Solution – once writer is ready, it performs write asap

 if a writer is waiting to access the object, no new readers may start 
reading

 Both may have starvation leading to even more variations

 Find a solution to starvation-free reader-writer problem!
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No-Starvation Solution

 Writer process

do {

wait ( wrt ); 

wait ( rd ); 

// writing is performed 

signal ( rd ); 

signal ( wrt ); 

} while (TRUE);   

 Reader process
do {

wait ( wrt ); 
wait ( mutex ); 
prev = readcount; 
readcount ++; 
signal ( mutex ); 
if (prev == 0)

wait ( rd ); 
signal ( wrt ); 

//reading is performed

wait ( mutex ); 
readcount - -; 
current = readcount; 
signal ( mutex ); 
if (current == 0)

signal ( rd );
} while (TRUE);

int readcount = 0; 
semaphore mutex = 1, wrt = 1, rd = 1;
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 Larry digs the holes. Moe places a seed in each hole. Curly then fills the 
hole up.

 Moe cannot plant a seed unless at least one empty hole exists.

 Curly cannot fill a hole unless at least one hole exists in which Moe has 
planted a seed. 

 If there are MAX unfilled holes, Larry has to wait.

 There is only one shovel with which both Larry and Curly need to dig and fill 
the holes, respectively.

Stooge Farmers Problem

Larry digs holesMoe seedsCurly fills the hole

Larry and Curly 
share a shovel
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Sleeping Barber Problem

 Barber:

 The barber has a barber chair and a waiting room with N chairs. 

 If there is a waiting customer, he brings one of them back to the barber chair and 
cuts his or her hair. 

 If there is no customer waiting, he sleeps.

 Customer:

 If the barber is sleeping when he 
arrives, then he wakes the barber up. 

 If the barber is cutting hair, then he goes 
to the waiting room and sit in a free 
chair if any. 

 If there is no free chair, then the 
customer leaves.
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 A number of baboons are located on two edges of a deep canyon.

 Some of the baboons on the west side of the canyon want to get to the east 
side, and vice versa.

 A long rope has been stretched across the canyon.

 At any given time, all the baboons on the rope must be going the same 
direction.

 (The rope can hold only a certain number of baboons at a time.)

Baboons Crossing Problem
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Solution to Baboons Crossing Problem

 #EastWard:
wait(mutex);
wait(westWard);
wait(mutexEast);
waitEast = waitEast + 1;
if(waitEast == 1)

wait(eastWard);
signal(mutexEast);
signal(westWard);
signal(mutex)
//cross eastWard
wait(mutexEast);
waitEast = waitEast – 1;
if(waitEast == 0)

signal(eastWard);
signal(mutexEast);

 #WestWard:
wait(mutex)
wait(eastWard);
wait(mutexWest);
waitWest = waitWest + 1;
if(waitWest == 1)

wait(westWard);
signal(mutexWest);
signal(eastWard);
signal(mutex);
//cross westWard
wait(mutexWest);
waitWest = waitWest – 1;
if(waitWest == 0)

signal(westWard);
signal(mutexWest);

int waitEast=waitWest=0; 
semaphore eastWard=westWard=mutexEast=mutexWest=mutex=1;
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Search-Insert-Delete Problem

 Searchers access the list without changing it. Any number of 
concurrent searchers can be accessing the structure safely. 

 Inserters have the ability to add new elements to the end of the 
structure. Only one inserter can access the structure at any given 
time, but can work concurrently with any number of searchers. 

 Deleters can remove items from any position in the structure. Any 
deleter demands exclusive access to the structure. 
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Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex)  ….  wait (mutex)

 wait (mutex)  …  wait (mutex)

 Omitting  of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation
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Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that 
can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

① wait (S); ② wait (Q);

③ wait (Q); ④ wait (S);

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);

 Starvation – indefinite blocking  

 A process may never be removed from the semaphore queue in which it 
is suspended



47Operating Systems

Monitors

 A high-level abstraction that provides a convenient and effective mechanism for 
process synchronization

 Abstract data type, internal variables only accessible by code within the procedure
 Only one process may be active within the monitor at a time

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}



48Operating Systems

Schematic view of a Monitor
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Condition Variables

 The monitor construct is not powerful enough to model some 
synchronization schemes

 Need additional synchronization schemes: condition construct

 condition x;

 Two operations on a condition variable:

 x.wait () – a process that invokes the operation is suspended until 
x.signal () 

 x.signal () – resumes one of processes (if any) that invoked x.wait ()

 If no x.wait () on the variable, then it has no effect on the variable

 Different from that of wait() on the semaphore
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Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal (), with Q in x.wait () state, what should 
happen next?

 If Q is resumed, then P must wait

 Options include

 Signal and wait – P waits until Q leaves monitor or waits for another 
condition

 Signal and continue – Q waits until P leaves the monitor or waits for 
another condition

 Both have pros and cons – language implementer can decide

 P leaves the monitor immediately after executing signal, Q is resumed
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Solution to Dining Philosophers

monitor DiningPhilosophers
{ 

enum { THINKING, HUNGRY, EATING } state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

void test (int i) { 
if ( (state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}
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 Each philosopher i invokes the operations pickup() and putdown() in the 
following sequence:

DiningPhilosophers.pickup (i);

EAT

DiningPhilosophers.putdown (i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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Monitor Implementation Using Semaphores

 Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);
…
body of F;
…

if (next_count > 0)
signal(next)

else 
signal(mutex);

 Mutual exclusion within a monitor is ensured
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Monitor Implementation – Condition Variables

 For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)
int x_count = 0;

 The operation x.wait can be implemented as:

x-count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x-count--;
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Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x-count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}
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Homework

 Reading

 Chapter 6

 Exercise

 See course website
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Pop Quiz

 Given a set of five processes: A, B, C, D, and E, write pseudo-codes for 
each process to synchronize the order in which they are executed, as 
shown in the following graph:

 That is, process A must finish executing before B starts, process B must 
finish before C or D start, and process C and D must finish before process E 
starts.

A B C

ED


