
CS307 Operating Systems

Threads

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

What is a thread?

 A thread is a basic unit of CPU utilization

 contains a thread ID, a program counter, a register set, and a stack

 shares with other threads belonging to the same process

 code section

 data section

 other operating-system resources, such as open files

3Operating Systems

Single and Multithreaded Processes

4Operating Systems

Motivation

 Threads run within application

 Multiple tasks with the application can be implemented by separating
threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is light-weight

 Increase efficiency of C-S applications

 Kernels are generally multithreaded

5Operating Systems

Benefits

 Responsiveness

 A program continues running even if part of it is blocked or is performing
a lengthy operation

 Resource Sharing

 Threads share the memory and the resources of the process to which
they belong

 IPC techniques are not needed

 Economy

 Creating a thread is much faster than creating a process

 Scalability

 Multithreading on a multi-CPU machine increases concurrency

6Operating Systems

Parallel Execution on a Multi-core System

multi-core

7Operating Systems

Drawbacks

 Make the programming more complicated

 Make the debugging harder

 Possible error when threads concurrently access the shared
resources

 Poorly divided jobs can cause even worse system performance

8Operating Systems

Process

1. independent

2. carries considerably
more state information

3. has separate address
space

4. interact only through IPC

5. context switching is
relatively slow

Thread

1. exists as subsets of a
process

2. shares process state as
well as memory and other
resources

3. shares process’s address
space

4. more ways to communicate

5. context switching in the
same process is typically
faster

Process vs. Thread

9Operating Systems

Supports for Threads

 Kernel Threads

 Supported by the operating system kernel

 Examples

Windows XP/2000, Solaris, Linux, Tru64 UNIX, Mac OS X

 User Threads

 Thread management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

10Operating Systems

Thread Model

User thread

Lightweight process

Kernel thread

11Operating Systems

Multithreading Models

 Four common connections between user threads and kernel threads

 Many-to-One

 One-to-One

 Many-to-Many

 Two-Level Model

12Operating Systems

Many-to-One Model

 Many user-level threads are mapped to a single kernel thread

 Strength

 Multiple threads are hidden by user-level thread library

 Weaknesses

 The entire process will block if a thread

makes a blocking system call

 Multiple threads are unable to run in

parallel on multiprocessors

 Examples:

 Solaris Green Threads

 GNU Portable Threads

13Operating Systems

One-to-One

 Each user-level thread is mapped to a kernel thread

 Strength

 More concurrency

 Weakness

 Creating a user thread requires creating the corresponding kernel
thread, which incurs overhead

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

14Operating Systems

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 The operating system creates a sufficient number of kernel threads

 Examples

 Windows NT/2000 with

the ThreadFiber package

15Operating Systems

Two-Level Model

 Similar to Many-to-Many, except that it allows a user thread to be
bound to a kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

16Operating Systems

Thread Libraries

 Thread library provides programmer with API for creating and
managing threads

 Two primary ways of implementation

 User-level threads library

 All codes and data structures for the library exist in user
space

 Invoking a function in the library results in a local function call
in user space

 Kernel-level threads library supported by the OS

 Code and data structures for the library exist in kernel space

 Invoking a function in the library results in a system call to the
kernel

 Three primary thread libraries:

 POSIX Pthreads, Win32 threads, Java threads

17Operating Systems

Pthreads

 Is provided either in user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

 API specifies behavior of the thread library, implementation is up to
development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

18Operating Systems

Example Using Pthreads

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

/* The thread will begin control in this function */

void *runner(void *param);

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i <= upper; i++)

sum += i;

pthread_exit (0) ;

}

19Operating Systems

Example Using Pthreads (Cont.)
int main(int argc, char *argv[])

{

pthread_t tid; /* the thread identifier */

pthread_attr_t attr; /* set of thread attributes */

/* get the default attributes */

pthread_attr_init (&attr);

/* create the thread */

pthread_create(&tid, &attr, runner, argv[l]) ;

/* wait for the thread to exit */

pthread_join(tid, NULL) ;

printf (" sum = %d\n", sum) ;

}

20Operating Systems

Threading Issues

 Semantics of fork() and exec() system calls

 Does fork() duplicate only the calling thread or all threads?

 exec() will replace the entire process with the program specified in the
parameter

 Thread cancellation of target thread

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target thread
immediately.

 Deferred cancellation allows the target thread to periodically check
if it should be cancelled.

21Operating Systems

Threading Issues (Cont.)

 Signal handling

 Signals are used in UNIX systems to notify a process that a particular
event has occurred.

 Synchronous and asynchronous

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Delivery options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the process

22Operating Systems

Threading Issues (Cont.)
 Thread pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing thread
than create a new thread

 Allows the number of threads in the application(s) to be bound to the
size of the pool

 Thread-specific data

 Create Facility needed for data private to thread

 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

 Scheduler activations

 Both M:M and Two-level models require communication to maintain the
appropriate number of kernel threads allocated to the application

23Operating Systems

Operating System Examples

 Linux Thread

 Windows XP Threads

24Operating Systems

Linux Threads

 fork() and clone() system calls

 clone() takes options to determine sharing on process create

 struct task_struct points to process data structures
(shared or unique)

25Operating Systems

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known as the context
of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

26Operating Systems

Windows XP Threads Data Structures

27Operating Systems

Pop-quiz

if (pid == 0) {

pthread_attr_init (&attr) ;

pthread_create(&tid, &attr, runner, NULL);

pthread_join(tid,NULL) ;

printf(“Child: value = %d", value);

}

else if (pid > 0) {

wait (NULL) ;

printf(“Parent: value = %d", value);

}

}

int value = 0;

void *runner(void *param) {

value = 5;

pthread_exit (0) ;

}

int main(int argc, char *argv[])

{

int pid;

pthread_t tid;

pthread_attr_t attr;

pid = fork();

What are the outputs from the above program?

28Operating Systems

Homework

 Reading:

 Chapter 4

