
1

CS307 Operating Systems

Virtual Memory

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

Background

 Code needs to be in memory to execute, but entire program rarely used

 Error code, unusual routines, large data structures

 Entire program code not needed at the same time

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory

 Program could be larger than physical memory

3Operating Systems

Virtual Memory That is Larger Than Physical Memory

4Operating Systems

Virtual Memory

 Virtual Memory – separation of user logical memory from physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical
address space

 Allows memory address spaces to be shared by several processes

 Allows for more efficient process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9Operating Systems

Demand Paging

 Could bring entire process into memory at load time

 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O

 Less memory needed

 Faster response

 More users

 Page is needed reference to it

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper (pager) – never swaps a page into memory unless page will
be needed

10Operating Systems

Swap Paged Memory to Disk Space

2

11Operating Systems

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v in-memory – memory resident, i not-in-memory)

 Initially, valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

is i page fault

v
v
v

v

i

i
i

….

Frame # valid-invalid bit

page table

12Operating Systems

Page Table with Pages Not in Main Memory

13Operating Systems

Page Fault

 If there is a reference to a page and the page is not in memory, the
reference will trap to operating system:

page fault

1. Operating system looks at page table to decide:

 Invalid reference abort

 Just not in memory

2. Get empty frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

14Operating Systems

Steps in Handling a Page Fault

15Operating Systems

What Happens if There is no Free Frame?

 Page replacement – find some page in memory, but not really in use, page
it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in minimum number
of page faults

18Operating Systems

Page Replacement

f

0

3

19Operating Systems

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk

 Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

20Operating Systems

Page Replacement Algorithms

 Page-replacement algorithm

 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

 String is just page numbers, not full addresses

 Repeated access to the same page, which is still in memory, does not
cause a page fault

 In all our examples, the reference string is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

21Operating Systems

Page-Replacement Algorithms

 First-In-First-Out (FIFO) Page Replacement

 Optimal Page Replacement

 Least Recently Used (LRU) Page Replacement

 LRU Approximation Page Replacement

 Counting Page Replacement

22Operating Systems

FIFO Page Replacement

 When a page must be replaced, the oldest page is chosen.

 Page faults: 15

 Consider the following reference string:

0 1 2 3 0 1 2 3 0 1 2 3 ……

23Operating Systems

Optimal Page Replacement

 Replace page that will not be used for longest period of time

 Page faults: 9

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

24Operating Systems

Least Recently Used (LRU) Page Replacement

 Use past knowledge rather than future

 Replace page that has not been used in most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

4

27Operating Systems

LRU Approximation Algorithms

 Reference bit/ byte

 With each page associate a bit, initially = 0

 When page is referenced, bit set to 1

 Replace any with reference bit = 0 (if one exists)

We do not specify the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Circular replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 Reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

28Operating Systems

Second-Chance Algorithm

29Operating Systems

Pop Quiz

 A memory system has three frames. Consider the following reference string

0 1 2 3 2 3 0 4 5 2 3 1 4 3 2 6 3 2 1 2
Draw a diagram to show the page replacement using Second-Chance

Algorithm and calculate the number of page faults.

0 1 2 3 2 3 0 4 5 2 3 1……

0

0

0

01

0

0

0

1

1

1

0

0

1

2

1

1

1

3

1

2

1

0

0

3

1

2

1

0

1

3

1

2

1

0

1

3

0

2

1

1

1

3

0

4

0

0

1

5

0

4

1

0

1

5

2

4

1

1

1

5

2

3

0

0

1

1

2

3

1

0

1

30Operating Systems

Counting Algorithms

 Keep a counter of the number of references that have been made to each
page

 Least Frequently Used (LFU) Algorithm: replaces page with smallest
count

 Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be
used

 Not commonly used

32Operating Systems

Homework

 Reading

 Chapter 9

 Exercise

 See course website

33Operating Systems

Demand Paging

System Characteristics

Size of memory 16 bytes

Frame Size 4 bytes per frame

Memory Management Structure Inverted Page Table

Replacement Policy LRU, Global Replacement

Virtual Page Size 4 bytes per page

Logical Addressing Space Size 32 bytes

Backing Store Size 12 blocks

Backing Store Block Size 4 bytes per block

5

34Operating Systems

Process Table

Process ID 0 1 2

Process Size (Bytes) 12 14 13

Pages allocated 3 4 4

Backing Store Map
(Page Block)
Page 0 BS 0 BS 3 BS 7

Page 1 BS 1 BS 4 BS 8

Page 2 BS 2 BS 5 BS 9

Page 3 BS 6 BS 10

35Operating Systems

System Snapshot

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Contents O T O N G F U N - - - - A D * F

Block 0 1 2 3 4 5 6 7 8 9 10
Contents THRE AD*F UN-- RATE *MON OTON IC-- DEMA ND*P AGIN G---

Main Memory

Frame Page # PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 2 T 1 T
2 - - F - -
3 1 0 T 3 F

Inverted Page Table

Backing Store

36Operating Systems

PID 0 : Write ‘A’ at logical memory Address 11

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Contents O T O N G F U N - - - - A D * F
Change U N - A

Block 0 1 2 3 4 5 6 7 8 9 10
Contents THRE AD*F UN-- RATE *MON OTON IC-- DEMA ND*P AGIN G---
Change

Frame VP # PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 2 T 1 T
2 - 2 - 0 F T - 4 - T
3 1 0 T 3 F

Main Memory

Inverted Page Table

Backing Store

Process ID 0

Process Size (Bytes) 12

Pages allocated 3

Backing Store Map
(Page Block)
Page 0 BS 0

Page 1 BS 1

Page 2 BS 2

Page 3

37Operating Systems

PID 1 : Read logical memory Address 6

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Contents O T O N G F U N - - - - A D * F
Change * M O N U N - A

Block 0 1 2 3 4 5 6 7 8 9 10
Contents THRE AD*F UN-- RATE *MON OTON IC-- DEMA ND*P AGIN G---
Change GFUN

Frame VP # PID Valid Bit Ref Word (Low = older) Modified Bit
0 2 1 T 2 F
1 3 1 2 1 T 1 5 T F
2 - 2 - 0 F T - 4 - T
3 1 0 T 3 F

Main Memory

Inverted Page Table

Backing Store

Process ID 1

Process Size (Bytes) 14

Pages allocated 4

Backing Store Map
(Page Block)
Page 0 BS 3

Page 1 BS 4

Page 2 BS 5

Page 3 BS 6

