
1

CS307 Operating Systems

CPU Scheduling

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

Basic Concepts

 Maximize CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait

 CPU burst distribution

3Operating Systems

Alternating Sequence of CPU and I/O Bursts

4Operating Systems

Histogram of CPU-burst Times

5Operating Systems

CPU Scheduler

 Selects from among the processes in ready queue, and allocates the CPU
to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready state

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive, scheduling under 2 and 3 is
preemptive

6Operating Systems

Dispatcher

 Dispatcher module gives control of the CPU to
the process selected by the short-term
scheduler. This involves:

 switching context

 switching to user mode

 jumping to the proper location in the user
program to restart that program

 Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

2

7Operating Systems

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process. The
interval from the time of submission of a process to the time of completion is
the turnaround time.

 Waiting time – amount of time a process has been waiting in the ready
queue

 Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-sharing
environment)

8Operating Systems

CPU Scheduling Algorithms

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-First (SJF) Scheduling

 Priority Scheduling (PS)

 Round-Robin Scheduling (RR)

 Multilevel Queue Scheduling

 Multilevel Feedback Queue Scheduling

9Operating Systems

First-Come, First-Served (FCFS) Scheduling

Process CPU Burst Arrival Time

P1 24 0

P2 3 1

P3 3 2

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24-1=23; P3 = 27-2=25

Average waiting time: (0 + 23 + 25)/3 = 16

 Turnaround time for P1 = 24; P2 = 27-1=26; P3 = 30-2=28

Average turnaround time: (24 + 26 + 28)/3 = 26

P1 P2 P3

24 27 300

10Operating Systems

FCFS Scheduling (Cont.)

Process CPU Burst Arrival Time

P1 24 2

P2 3 0

P3 3 1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 4; P2 = 0; P3 = 2

 Average waiting time: (4 + 0 + 2)/3 = 2

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P1P3P2

63 300

11Operating Systems

FCFS Scheduling (Cont.)

Process CPU Burst I/O Burst CPU Burst Arrival Time

P1 12 3 12 0

P2 1 2 2 1

P3 1 2 2 2

 The Gantt Chart for the schedule is:

 Waiting time for

 P1 = 15-12-3=0

 P2 = (12-1)+(27-13-2)=23

 P3 = (13-2)+(29-14-2)=24

 Turnaround time for P1 = 27; P2 = 29-1=28; P3 = 31-2=29

 CPU utilization 30/31 = 96.77%

P1 P2 P3

27 29 310 12

P2

13

P3

14

P1

15

12Operating Systems

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of
processes

 The difficulty is knowing the length of the next CPU request

3

13Operating Systems

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using exponential
moving average

 Commonly, α is set to ½

10 , 3.

burst CPUnext for the valuepredicted 2.

burst CPU oflength actual 1.

1









 n

th
n nt

  .11 nnn t  

14Operating Systems

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 = tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each successive
term has less weight than its predecessor

15Operating Systems

Prediction of the Length of the Next CPU Burst

16Operating Systems

Example of SJF

Process Burst Time

P1 6

P2 8

P3 7

P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

17Operating Systems

Example of Shortest-remaining-time-first

 We now add the concepts of varying arrival times and preemption to the
analysis

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5

P1 P1P2

1 170 10

P3

265

P4

18Operating Systems

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest
integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling, where priority is the inverse of predicted next
CPU burst time

 Problem: Starvation – low priority processes may never execute

 Solution: Aging – as time progresses increase the priority of the process

4

19Operating Systems

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

P2 P3P5

1 180 16

P4

196

P1

20Operating Systems

Round Robin (RR)

 Round Robin (RR) is similar to FCFS scheduling, but preemption is added
to switch between processes.

 Each process gets a small unit of CPU time (time quantum q), usually 10-
100 milliseconds. After this time has elapsed, the process is preempted
and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units at
once. No process waits more than (n-1)q time units before next execution.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch, otherwise
overhead is too high

21Operating Systems

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

 What’s the number of context switch?

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

22Operating Systems

Time Quantum and Context Switch Time

 Context switching

23Operating Systems

Turnaround Time Varies With The Time Quantum

80% of CPU
bursts should be
shorter than q

24Operating Systems

Multilevel Queue

 Ready queue is partitioned into separate queues, e.g.:

 foreground (interactive)

 background (batch)

 Process joins a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time, which it
can schedule amongst its processes, e.g., 80% to foreground in RR,
20% to background in FCFS

5

25Operating Systems

Multilevel Queue Scheduling

26Operating Systems

Multilevel Feedback Queue

 A process can move between the various queues; aging can be
implemented this way

 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter when that
process needs service

27Operating Systems

Example of Multilevel Feedback Queue
 Three queues:

 Q1 – RR with time quantum 8 milliseconds

 Q2 – RR with time quantum 16 milliseconds

 Q3 – FCFS

Q1

Q2

Q3

28Operating Systems

Multilevel Feedback Queue

 Scheduling

 A new job enters queue Q1 which is served FCFS/RR

When it gains CPU, job receives 8 milliseconds

 If it does not finish in 8 milliseconds, job is moved to queue Q2

 At Q2 job is again served FCFS/RR and receives 16 additional
milliseconds

 If it still does not complete, it is preempted and moved to queue Q3

 If a process does not use up its quantum in the current level, it will keep
its current queuing level and be put into the end of the queue. Then, it
can still get the same amount of quantum (not remaining quantum) next
time when it is picked.

29Operating Systems

Example of Using Multilevel Feedback Queue

ProcessAarri Arrival TimeT Burst Time

P1 0 36

P2 16 20

P3 20 12

 The Gantt chart is:

P1 P3P1

8 320 24

P1

4816

P2 P2

60

P3

64

P1

68

30Operating Systems

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules user-level
threads to run on kernel-level threads

 Known as process-contention scope (PCS) since scheduling
competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention scope
(SCS) – competition among all threads in system

6

31Operating Systems

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using PCS
scheduling

 Schedules user-level threads onto available LWPs

 Number of LWPs is maintained by the thread library

 PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

 Creates and binds an LWP for each user-level thread

 In fact, implements the one-to-one mapping

 Can be limited by OS – Linux and Mac OS X only allow
PTHREAD_SCOPE_SYSTEM

32Operating Systems

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM THREADS];
pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], &attr, runner,NULL);

33Operating Systems

Pthread Scheduling API

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread exit(0);

}

38Operating Systems

Operating System Examples

 Linux scheduling

 Solaris scheduling

 Windows XP scheduling

39Operating Systems

Linux Scheduling

 Constant order O(1) scheduling time (Version 2.5)

 Preemptive, priority based

 Two priority ranges: real-time and time-sharing

 Real-time range from 0 to 99 with nice value from -20 to 19, which maps to
global priority from 100 to 139

 Map into global priority with numerically lower values indicating higher
priority

 Higher priority gets larger time quantum

 Task run-able as long as time left in time slice (active)

 If no time left (expired), not run-able until all other tasks use their slices

 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

40Operating Systems

Priorities and Time-slice length

7

41Operating Systems

List of Tasks Indexed According to Priorities

42Operating Systems

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b

 Real-time tasks have static priorities

 All other tasks dynamic based on nice value plus or minus 5

 Interactivity of task determines plus or minus

 More interactive -> more minus

 Priority recalculated when task expired

 This exchanging arrays implements adjusted priorities

43Operating Systems

Linux Scheduling in Version 2.6.23 +
 Completely Fair Scheduler (CFS) -- O(log N)

 Scheduling classes

 Each has specific priority

 Scheduler picks highest priority task in highest scheduling class

 Rather than quantum based on fixed time allotments, based on
proportion of CPU time

 Two scheduling classes included, others can be added

1. default

2. real-time

44Operating Systems

Linux Scheduling in Version 2.6.23 + (Cont.)

 Quantum calculated based on nice value from -20 to +19

 Lower value is higher priority

 Calculates target latency – interval of time during which task
should run at least once

 Target latency can increase if say number of active tasks
increases

 CFS scheduler maintains per task virtual run time in variable
vruntime

 Associated with decay factor based on priority of task – lower
priority is higher decay rate

 Normal default priority yields virtual run time = actual run time

 To decide next task to run, scheduler picks task with lowest virtual
run time

45Operating Systems

Solaris

 Priority-based scheduling

 Six classes available

 Time sharing (default)

 Interactive

 Real time

 System

 Fair Share

 Fixed priority

 Given thread can be in one class at a time

 Each class has its own scheduling algorithm

 Time sharing is multi-level feedback queue

 Loadable table configurable by sysadmin

46Operating Systems

Solaris Dispatch Table

8

47Operating Systems

Solaris Scheduling

48Operating Systems

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-thread global priority

 Thread with highest priority runs next

 Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-
priority thread

 Multiple threads at same priority selected via RR

49Operating Systems

Windows Scheduling

 Windows uses priority-based preemptive scheduling

 Highest-priority thread runs next

 Dispatcher is scheduler

 Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-
priority thread

 Real-time threads can preempt non-real-time

 32-level priority scheme

 Variable class is 1-15, real-time class is 16-31

 Priority 0 is memory-management thread

 Queue for each priority

 If no run-able thread, runs idle thread

50Operating Systems

Windows Priority Classes

 Win32 API identifies several priority classes to which a process can belong

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME

 A thread within a given priority class has a relative priority

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,
BELOW_NORMAL, LOWEST, IDLE

 Priority class and relative priority combine to give numeric priority

 Base priority is NORMAL within the class

 If quantum expires, priority lowered, but never below base

 If wait occurs, priority boosted depending on what was waited for

 Foreground window given 3x priority boost

51Operating Systems

Windows XP Priorities

52Operating Systems

Pop Quiz

1. Draw Gantt charts to illustrate the execution of the processes using the
following scheduling algorithm:

(1) FCFS, (2) nonpreemptive SJF, (3) preemptive SJF, (4) nonpreemptive
priority, (5) preemptive priority, and (6) RR with time quantum=2

2. Calculate the average turnaround time when using each of the above
scheduling algorithms

3. Count the number of context switches when using each of the above
scheduling algorithms

Process Burst Time Priority Arrival Time

P1 10 3 0

P2 1 1 1

P3 4 3 3

P4 2 4 4

P5 5 2 5

9

53Operating Systems

Homework

 Reading

 Chapter 5

 Exercise

 See course website

