
1

CS307 Operating Systems

Threads

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

What is a thread?

 A thread is a basic unit of CPU utilization

 contains a thread ID, a program counter, a register set, and a stack

 shares with other threads belonging to the same process

 code section

 data section

 other operating-system resources, such as open files

3Operating Systems

Single and Multithreaded Processes

4Operating Systems

Motivation

 Threads run within application

 Multiple tasks with the application can be implemented by separating
threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is light-weight

 Increase efficiency of C-S applications

 Kernels are generally multithreaded

5Operating Systems

Benefits

 Responsiveness

 A program continues running even if part of it is blocked or is performing
a lengthy operation

 Resource Sharing

 Threads share the memory and the resources of the process to which
they belong

 IPC techniques are not needed

 Economy

 Creating a thread is much faster than creating a process

 Scalability

 Multithreading on a multi-CPU machine increases concurrency

6Operating Systems

Parallel Execution on a Multi-core System

multi-core

2

7Operating Systems

Drawbacks

 Make the programming more complicated

 Make the debugging harder

 Possible error when threads concurrently access the shared
resources

 Poorly divided jobs can cause even worse system performance



8Operating Systems

Process

1. independent

2. carries considerably
more state information

3. has separate address
space

4. interact only through IPC

5. context switching is
relatively slow

Thread

1. exists as subsets of a
process

2. shares process state as
well as memory and other
resources

3. shares process’s address
space

4. more ways to communicate

5. context switching in the
same process is typically
faster

Process vs. Thread

9Operating Systems

Supports for Threads

 Kernel Threads

 Supported by the operating system kernel

 Examples

Windows XP/2000, Solaris, Linux, Tru64 UNIX, Mac OS X

 User Threads

 Thread management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

10Operating Systems

Thread Model

User thread

Lightweight process

Kernel thread

11Operating Systems

Multithreading Models

 Four common connections between user threads and kernel threads

 Many-to-One

 One-to-One

 Many-to-Many

 Two-Level Model

12Operating Systems

Many-to-One Model

 Many user-level threads are mapped to a single kernel thread

 Strength

 Multiple threads are hidden by user-level thread library

 Weaknesses

 The entire process will block if a thread

makes a blocking system call

 Multiple threads are unable to run in

parallel on multiprocessors

 Examples:

 Solaris Green Threads

 GNU Portable Threads

3

13Operating Systems

One-to-One

 Each user-level thread is mapped to a kernel thread

 Strength

 More concurrency

 Weakness

 Creating a user thread requires creating the corresponding kernel
thread, which incurs overhead

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

14Operating Systems

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 The operating system creates a sufficient number of kernel threads

 Examples

 Windows NT/2000 with

the ThreadFiber package

15Operating Systems

Two-Level Model
 Similar to Many-to-Many, except that it allows a user thread to be

bound to a kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

16Operating Systems

Thread Libraries

 Thread library provides programmer with API for creating and
managing threads

 Two primary ways of implementation

 User-level threads library

 All codes and data structures for the library exist in user
space

 Invoking a function in the library results in a local function call
in user space

 Kernel-level threads library supported by the OS

 Code and data structures for the library exist in kernel space

 Invoking a function in the library results in a system call to the
kernel

 Three primary thread libraries:

 POSIX Pthreads, Win32 threads, Java threads

17Operating Systems

Pthreads

 Is provided either in user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

 API specifies behavior of the thread library, implementation is up to
development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

18Operating Systems

Example Using Pthreads

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

/* The thread will begin control in this function */

void *runner(void *param);

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i <= upper; i++)

sum += i;

pthread_exit (0) ;

}

4

19Operating Systems

Example Using Pthreads (Cont.)
int main(int argc, char *argv[])

{

pthread_t tid; /* the thread identifier */

pthread_attr_t attr; /* set of thread attributes */

/* get the default attributes */

pthread_attr_init (&attr);

/* create the thread */

pthread_create(&tid, &attr, runner, argv[l]) ;

/* wait for the thread to exit */

pthread_join(tid, NULL) ;

printf (" sum = %d\n", sum) ;

}

20Operating Systems

Threading Issues

 Semantics of fork() and exec() system calls

 Does fork() duplicate only the calling thread or all threads?

 exec() will replace the entire process with the program specified in the
parameter

 Thread cancellation of target thread

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target thread
immediately.

 Deferred cancellation allows the target thread to periodically check
if it should be cancelled.

21Operating Systems

Threading Issues (Cont.)

 Signal handling

 Signals are used in UNIX systems to notify a process that a particular
event has occurred.

 Synchronous and asynchronous

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Delivery options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the process

22Operating Systems

Threading Issues (Cont.)
 Thread pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing thread
than create a new thread

 Allows the number of threads in the application(s) to be bound to the
size of the pool

 Thread-specific data

 Create Facility needed for data private to thread

 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

 Scheduler activations

 Both M:M and Two-level models require communication to maintain the
appropriate number of kernel threads allocated to the application

23Operating Systems

Operating System Examples

 Linux Thread

 Windows XP Threads

24Operating Systems

Linux Threads

 fork() and clone() system calls

 clone() takes options to determine sharing on process create

 struct task_struct points to process data structures
(shared or unique)

5

25Operating Systems

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known as the context
of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

26Operating Systems

Windows XP Threads Data Structures

27Operating Systems

Pop-quiz

if (pid == 0) {

pthread_attr_init (&attr) ;

pthread_create(&tid, &attr, runner, NULL);

pthread_join(tid,NULL) ;

printf(“Child: value = %d", value);

}

else if (pid > 0) {

wait (NULL) ;

printf(“Parent: value = %d", value);

}

}

int value = 0;

void *runner(void *param) {

value = 5;

pthread_exit (0) ;

}

int main(int argc, char *argv[])

{

int pid;

pthread_t tid;

pthread_attr_t attr;

pid = fork();

What are the outputs from the above program?

28Operating Systems

Homework

 Reading:

 Chapter 4

