Processes

Fan Wu

Department of Computer Science and Engineering
Shanghai Jiao Tong University

Spring 2020

@:7iart

Process Concept

m Process — a program in execution

® An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
e All these activities are processes

m Textbook uses the terms job and process almost interchangeably

Operating Systems 2

The Process

® Multiple parts
pep stack

The program code, also called text

section —1—
Data section containing global

variables

Stack containing temporary data

» Function parameters, return
addresses, local variables

L . heap
o Heap containing memory dynamically
allocated during run time
data
text

Operating Systems 3

The Process (Cont.)

m What is the difference between program and process?
o Program is passive entity, process is active

e Program becomes process when the executable file is loaded into
memory

= Execution of program started via GUI clicks, command line entry of its name,
etc

® One program can be several processes
o Consider multiple users executing the same program

Operating Systems 4

Process State

m As a process executes, it changes state
e new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

admitted

interrupt axit terminated

scheduler dispatch

1D or event completion 11D or event walt

Operating Systems 5

Process Control Block (PCB)

Information associated with each process

®m Process state process stale
® Process number process number
® Program counter

program counter
m CPU registers
® CPU scheduling information registers
® Memory-management information
m Accounting information memory limits
m /O status information list of open files

.

Operating Systems 6

Process Representation in Linux

m Represented by the C structure task_struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this pro */

e TN TN

struct task_struct
process nformation

struct task_struct
process information

struct task_struct
e process infermation

W t L
currant
(currently executing proccess)

Operating Systems 7

PCBs in UNIX

m The PCB is the box labeled process structure, but the user structure
maintains some of the information as well (only required when the process
is resident).

Operating Systems 8

PCBs in Windows NT

m Information is scattered in a variety of objects.
e Executive Process Block (EPROCESS)
e Kernel Process Block (KPROCESS)
o Process Environment Block (PEB)

i

!

Operating Systems 9

CPU Switch From Process to Process

process Py opening systam process Py
intarrupt or system call
enculing L

redoad stata from PCB, |

s Intarrupt or system call axecuting

save stale inlo PCB,

. o

J
ENECUINg [M\H“-‘-_

Operating Systems 10

Process Scheduling

m Maximize CPU use, quickly switch processes onto CPU for
time sharing

® Process scheduler selects among available processes for
next execution on CPU

® Maintains scheduling queues of processes
e Job queue — set of all processes in the system

Ready queue - set of all processes residing in main
memory, ready and waiting to execute

Device queues — set of processes waiting for an I/0 device
Processes migrate among the various queues

Operating Systems L

Ready Queue And Various I/0 Device Queues

quesis hendar PCE. PcB,

raady [hoad - !] { i
quos |

sk
unit 0

tarminal
unit 0

Operating Systems 12

Representation of Process Scheduling

] ety queve | (e —
12 Ly

s I]
‘\I?/’P_l VO queue -—|_ VO request —j

: :
| timeslice

| expired
..... et i
¢ ehild | forka
'\ghxecuiey | child |
.mlerrupqh | wai for an P
\\DC(:JrE/’ | interrupt
p—— B @rriict

Schedulers

® Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

®m Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU

e Sometimes the only scheduler in a system

Operating Systems 14

(CELISE

Schedulers (Cont.)

m Short-term scheduler is invoked very frequently (milliseconds) =
(must be fast)

m Long-term scheduler is invoked very infrequently (seconds, minutes)
= (may be slow)

®m The long-term scheduler controls the degree of multiprogramming

® Processes can be described as either:
e 1/0O-bound process — spends more time doing 1/O than
computations, many short CPU bursts
e CPU-bound process — spends more time doing computations;
some long CPU bursts

(CELISE

Operating Systems 15

Operations on Processes

B Process Creation

m Process Termination

Operating Systems 17

(CELISE

Process Creation

m Parent process create
children processes, which,
in turn create other
processes, forming a tree of
processes

Sched
pd=0
G&D
pid=2

GED
pid=1
pd = 251

m Generally, process identified ’/m
and managed via a process
identifier (pid) eI,

Operating Systems 18

Process Creation (Cont.)

m Resource sharing
o Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources

® |[nitialization data

® Execution
o Parent and children execute concurrently
o Parent waits until children terminate

® Address space
e Child duplicate of parent
e Child has a program loaded into it

Operating Systems 19

(CELISE

C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>
o fork system call creates X
int main()

new process {

m UNIX examples

exec system call used int i=1;
after a fork to replace pid_t pid;
the process’ memory /* fork another process %/

) pid = fork():
space with a new if (pid < 0) { /% error occurred %/
program fprintf (stderr, “Fork Failed”);
return 1;
}
else if (pid == 0) (/* child process */
printf(“This is child.”);
}
else { /* parent process ¥/
/% parent will wait for the child %/
wait (NULL);
printf (“Child Complete.”);
}
return 0;

@2aiict

Operating Systems 20

Process Execution

@2aiict

Operating Systems 21

Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

e Output data from child to parent (via wait)
e Process’ resources are deallocated by operating system

m Parent may terminate execution of children processes (abort)
e Child has exceeded allocated resources
e Task assigned to child is no longer required
o If parent is exiting

» Some operating systems do not allow child to continue if its
parent terminates

All children terminated - cascading termination

@2aiict

Operating Systems 22

Interprocess Communication

m Processes within a system may be independent or cooperating

m Cooperating process can affect or be affected by other processes, including
sharing data

m Reasons for cooperating processes:

o Information sharing

e Computation speedup

o Modularity

e Convenience
m Cooperating processes need InterProcess Communication (IPC)
= Two models of IPC

e Shared memory

e Message passing

@2aiict

Operating Systems 23

Communications Models

I: process A process A 7
shared memory :I process B
process B
message queue
o[[mafma] - ol
kernel
kemel

Shared Memory Message Passing

Operating Systems 24

Interprocess Communication — Shared Memory

m A region of memory that is shared by cooperating processes is established.

m Processes can then exchange information by reading and writing data to the
shared region.

@2aiict

Operating Systems 25

Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

e unbounded-buffer places no practical limit on the size of
the buffer

o bounded-buffer assumes that there is a fixed buffer size

Receive o —
aé

o e (AT (@ e
.—:\y =) / = Iy

Producer Consumer

Operating Systems 26 @ :.“‘_ ‘.?

Bounded-Buffer — Shared-Memory Solution

® Shared data
#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin =0;
int out = 0;

Operating Systems 27 @ :.“‘_ ‘.?

Bounded-Buffer — Shared-Memory Solution

while (true) { Producer
I* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)
; I* do nothing -- no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;

Consumer
! while (true) {
while (in == out)
; Il do nothing
Il remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
return item;
}
Operating Systems 28 @ :.“‘_ ‘.?

Bounded-Buffer — Shared-Memory Solution

® Weakness:
o Busy waiting
e The solution allows only BUFFER_SIZE-1 elements at the same time

® Popquiz:

o Rewrite the previous processes to allow BUFFER_SIZE items in the
buffer at the same time

Operating Systems 29 @ :.“‘_ ‘.?

Ordinary Pipes

® Ordinary Pipes allow communication in standard producer-
consumer style

e Producer writes to one end (the write-end of the pipe)
e Consumer reads from the other end (the read-end of the pipe)

®m Ordinary pipes are in fact unidirectional

m Require parent-child relationship between communicating processes

Operating Systems 3 @ :.“‘_ ‘.?

Ordinary Pipe

’ \ ’ N
I’ \ ’ \

! 1 1 '

1 1 1 1

1 1 1 1

1 1 1 1

1 1 ! 1

! 1 1 H

| Output WRITE | Pipe | READ :

I 1

i : . |

1 1 1 1

1 1 ! 1

1 1 1 1

1 1 ! 1

! 1

Y Process A ' ! Process B i
Y N /, A N /I
Operating Systems 32 @ rFiiss

Using Pipe — Part 1

m First, create a pipe and check for errors
int mypipe[2];

mypipe[0] read-end

if (pipe(mypipe)) { mypipe[1] write-end

fprintf (stderr, "Pipe failed.\n");
return -1;

}
m Second, fork your threads

® Third, close the pipes you don't need in that thread
o reader should close(mypipe[1]);
o writer should close(mypipe[0]);

Operating Systems 33 @ :‘..“.i_’- "'.?

Using Pipe — Part 2

m Fourth, the writer should write the data to the pipe
o write(mypipe[1],&c,1);

m Fifth, the reader reads from the data from the pipe:
o while (read(mypipe[0],&c,1)>0) {
/Ido something, loop will exit when WRITER closes pipe

}

m Sixth, when writer is done with the pipe, close it
o close(mypipe[1]); /EOF is sent to reader

m Seventh, when reader receives EOF from closed pipe, close the pipe and
exit your polling loop

o close(mypipe[0]); //all pipes should be closed now

Operating Systems 34 @ :‘..“.i_’- "'.?

Interprocess Communication — Message Passing

® Mechanism for processes to communicate and to synchronize their actions

m Message system — processes communicate with each other without
resorting to shared variables
m |PC facility provides two operations:
o send(message) — message size fixed or variable
o receive(message)

®m If P and Q wish to communicate, they need to:
o establish a communication link between them
e exchange messages via send/receive

Operating Systems 35 @ XFiiLE

Direct Communication

m Processes must name each other explicitly:
e send (P, message) — send a message to process P
o receive(Q, message) — receive a message from process Q

®m Properties of communication link

e Links are established automatically; The processes need to know
only each other’s identity to communicate

e Alink is associated with exactly one pair of communicating
processes

e Between each pair there exists exactly one link

Operating Systems 36 @ XFiiLE

Indirect Communication

m Messages are directed to and received from mailboxes (also referred
to as ports)

e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox

® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

m Properties of communication link
e Link established only if processes share a common mailbox
e Alink may be associated with many processes
e Each pair of processes may share several communication links

Operating Systems 37 @ :‘..“.i

Sockets

m A socket is defined as an endpoint for communication

m Concatenation of IP address and port

m The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

® Communication consists between a pair of sockets

Operating Systems 40 @ XFiiLE

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

Steps to Create Server Side

1. Create a socket with the
socket() system call

2. Bind the socket to an
address using the bind()
system call.

3. Listen for connections with
the listen() system call

4. Accept a connection with
the accept() system call
(This call typically blocks
until a client connects with
the server)

5. Send and receive data with
read() and write() system

read()/write()

calls
6. Close connection with close()
system call
Operating Systems 4 @ SELdLE Operating Systems 42 @ SELdLE
Steps to Create Client Side Interaction Between Client and Server
1. Create a socket with the socket()
socket() system call
socket()

2. Connect the socket to the
address of the server using
the connect() system call

read()/write()

3. Send and receive data with
read() and write() system
calls.

4. Close the socket with close()
system call

Operating Systems 43 @ XFiiLE

<:| connect()

read()/write() read()/write()

Server Client

Operating Systems a4

@2riict

Internet Domain Socket

m |P address:
e 32 bits (IPv4) or 128 bits (IPv6)
e C/S work on same host: just use localhost

m Port
e 16 bit unsigned integer
e Lower numbers are reserved for standard services

m Transport layer protocol: TCP / UDP

Operating Systems 45 @ XFiiLE

Headers

m #include <stdio.h>
m #include <stdlib.h>
| #include <string.h>
m #include <sstream>
m #include <unistd.h>
| #include <sys/types.h>
o Definitions of a number of data types used in system calls
m #include <sys/socket.h>
o Definitions of structures needed for sockets
m #include <netinet/in.h>
e Constants and structures needed for internet domain addresses

Operating Systems 46

@2riict

Creating Socket

int sockfd
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {

perror(“ERROR opening socket”);

exit(2);

}

® AF_INET: address domain

m SOCK_STREAM: stream socket, characters are read in
a continuous stream as if from a file or pipe

m 0: protocol. The operating system chooses the most
appropriate protocol. It will choose TCP for stream

Binding Socket

struct sockaddr_in serv_addr;

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_addr.sin_port = htons(BASIC_SERVER_PORT);

bind(sockfd, (sockaddr*) &serv_addr, sizeof(serv_addr));
/lerror check

m INADDR_ANY: get IP address of the host automatically
m htonl, htons: data format conversion
m bind(): binds a socket to an address

sockets.
Listening and Accepting Connection Reading and Writing

listen(sockfd, 5);

- - char buf[1024];
m listen(): allows the server to listen on the socket for . _ .)

connections, with a backlog queue of size 5. int nread = read(client_sockfd, buf, 1024);
int client sockfd: read(): reads from the socket
§truct socl.(addr_i.n client_addr; ’write(client_sockfd, buf, len); ‘
int len = sizeof(client_addr);
client_sockfd = accept(sockfd, (sockaddr *) &client_addr, write(): writes to the socket
&len);

/lerror check

o ’ close(client_sockfd); ‘

m accept(): block process until a client connects to the

server. It returns a new socket file descriptor, if the close(): closes the socket

connection is created.

Connecting A Client to A Server

int sockfd;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
/I error check
struct sockaddr_in serv_addr;
struct hostent *host;
serv_addr.sin_family = AF_INET;
host = gethostbyname(argv([1]);
/I error check
memcpy(&serv_addr.sin_addr.s_addr, host->h_addr,
host->h_length);
serv_addr.sin_port = htons(BASIC_SERVER_PORT);
connect(sockfd, (sockaddr *) &serv_addr, sizeof(serv_addr))
/I error check

Operating Systems 51

@2aiict

Homework
m Reading
o Chapter 3
Operating Systems 52 @ :‘..“.i_’- "'.?

