
1

CS307 Operating Systems

Processes

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

Process Concept

 Process – a program in execution

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 All these activities are processes

 Textbook uses the terms job and process almost interchangeably

3Operating Systems

The Process

 Multiple parts

 The program code, also called text
section

 Data section containing global
variables

 Stack containing temporary data

 Function parameters, return
addresses, local variables

 Heap containing memory dynamically
allocated during run time

4Operating Systems

The Process (Cont.)

 What is the difference between program and process?

 Program is passive entity, process is active

 Program becomes process when the executable file is loaded into
memory

 Execution of program started via GUI clicks, command line entry of its name,
etc

 One program can be several processes

 Consider multiple users executing the same program

5Operating Systems

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

6Operating Systems

Process Control Block (PCB)

Information associated with each process

 Process state

 Process number

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

2

7Operating Systems

Process Representation in Linux

 Represented by the C structure task_struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this pro */

8Operating Systems

PCBs in UNIX

 The PCB is the box labeled process structure, but the user structure
maintains some of the information as well (only required when the process
is resident).

9Operating Systems

PCBs in Windows NT

 Information is scattered in a variety of objects.

 Executive Process Block (EPROCESS)

 Kernel Process Block (KPROCESS)

 Process Environment Block (PEB)

10Operating Systems

CPU Switch From Process to Process

11Operating Systems

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for
next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

12Operating Systems

Ready Queue And Various I/O Device Queues

3

13Operating Systems

Representation of Process Scheduling

14Operating Systems

Schedulers

 Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU

 Sometimes the only scheduler in a system

15Operating Systems

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently (milliseconds) 
(must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes)
 (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;
some long CPU bursts

17Operating Systems

Operations on Processes

 Process Creation

 Process Termination

18Operating Systems

Process Creation

 Parent process create
children processes, which,
in turn create other
processes, forming a tree of
processes

 Generally, process identified
and managed via a process
identifier (pid)

19Operating Systems

Process Creation (Cont.)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Initialization data

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

 Address space

 Child duplicate of parent

 Child has a program loaded into it

4

20Operating Systems

C Program Forking Separate Process
#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

int main()

{

int i = 1;

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

return 1;

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child */

wait (NULL);

printf ("Child Complete.");

}

return 0;

}

 UNIX examples

 fork system call creates
new process

 exec system call used
after a fork to replace
the process’ memory
space with a new
program

printf(“This is child.");

21Operating Systems

Process Execution

22Operating Systems

Process Termination

 Process executes last statement and asks the operating system to
delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating systems do not allow child to continue if its
parent terminates

– All children terminated - cascading termination

23Operating Systems

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including
sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need InterProcess Communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

24Operating Systems

Communications Models

Message PassingShared Memory

25Operating Systems

Interprocess Communication – Shared Memory

 A region of memory that is shared by cooperating processes is established.

 Processes can then exchange information by reading and writing data to the
shared region.

5

26Operating Systems

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

 unbounded-buffer places no practical limit on the size of
the buffer

 bounded-buffer assumes that there is a fixed buffer size

Producer Consumer

Send to
Buffer

Receive
from Buffer

27Operating Systems

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

28Operating Systems

Bounded-Buffer – Shared-Memory Solution

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}
while (true) {

while (in == out)

; // do nothing

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Producer

Consumer

29Operating Systems

Bounded-Buffer – Shared-Memory Solution

 Weakness:

 Busy waiting

 The solution allows only BUFFER_SIZE-1 elements at the same time

 Popquiz:

 Rewrite the previous processes to allow BUFFER_SIZE items in the
buffer at the same time

31Operating Systems

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-
consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are in fact unidirectional

 Require parent-child relationship between communicating processes

32Operating Systems

Ordinary Pipe

PipeOutput Input

Process A Process B

WRITE READ

6

33Operating Systems

Using Pipe – Part 1

 First, create a pipe and check for errors

int mypipe[2];

if (pipe(mypipe)) {

fprintf (stderr, "Pipe failed.\n");

return -1;

}

 Second, fork your threads

 Third, close the pipes you don't need in that thread

 reader should close(mypipe[1]);

 writer should close(mypipe[0]);

mypipe[0] read-end
mypipe[1] write-end

34Operating Systems

Using Pipe – Part 2

 Fourth, the writer should write the data to the pipe

 write(mypipe[1],&c,1);

 Fifth, the reader reads from the data from the pipe:

 while (read(mypipe[0],&c,1)>0) {

//do something, loop will exit when WRITER closes pipe

}

 Sixth, when writer is done with the pipe, close it

 close(mypipe[1]); //EOF is sent to reader

 Seventh, when reader receives EOF from closed pipe, close the pipe and
exit your polling loop

 close(mypipe[0]); //all pipes should be closed now

35Operating Systems

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without
resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

36Operating Systems

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically; The processes need to know
only each other’s identity to communicate

 A link is associated with exactly one pair of communicating
processes

 Between each pair there exists exactly one link

37Operating Systems

Indirect Communication

 Messages are directed to and received from mailboxes (also referred
to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

40Operating Systems

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

7

41Operating Systems

Socket Communication

42Operating Systems

Steps to Create Server Side

1. Create a socket with the
socket() system call

2. Bind the socket to an
address using the bind()
system call.

3. Listen for connections with
the listen() system call

4. Accept a connection with
the accept() system call
(This call typically blocks
until a client connects with
the server)

5. Send and receive data with
read() and write() system
calls

6. Close connection with close()
system call

socket()

bind()

listen()

accept()

read()/write()

close()

43Operating Systems

Steps to Create Client Side

1. Create a socket with the
socket() system call

2. Connect the socket to the
address of the server using
the connect() system call

3. Send and receive data with
read() and write() system
calls.

4. Close the socket with close()
system call

socket()

connect()

read()/write()

close()

44Operating Systems

Interaction Between Client and Server

socket()

bind()

listen()

accept()

read()/write()

close()

socket()

connect()

read()/write()

close()

Server Client

45Operating Systems

Internet Domain Socket

 IP address:
 32 bits (IPv4) or 128 bits (IPv6)

 C/S work on same host: just use localhost

 Port
 16 bit unsigned integer

 Lower numbers are reserved for standard services

 Transport layer protocol: TCP / UDP

46Operating Systems

Headers

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <sstream>

 #include <unistd.h>

 #include <sys/types.h>
 Definitions of a number of data types used in system calls

 #include <sys/socket.h>
 Definitions of structures needed for sockets

 #include <netinet/in.h>
 Constants and structures needed for internet domain addresses

8

47Operating Systems

Creating Socket

int sockfd

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0) {

perror(“ERROR opening socket”);

exit(2);

}

 AF_INET: address domain

 SOCK_STREAM: stream socket, characters are read in
a continuous stream as if from a file or pipe

 0: protocol. The operating system chooses the most
appropriate protocol. It will choose TCP for stream
sockets.

48Operating Systems

Binding Socket

struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(BASIC_SERVER_PORT);
bind(sockfd, (sockaddr*) &serv_addr, sizeof(serv_addr));

//error check

 INADDR_ANY: get IP address of the host automatically

 htonl, htons: data format conversion

 bind(): binds a socket to an address

49Operating Systems

Listening and Accepting Connection

listen(sockfd, 5);

 listen(): allows the server to listen on the socket for
connections, with a backlog queue of size 5.

int client_sockfd;
struct sockaddr_in client_addr;
int len = sizeof(client_addr);
client_sockfd = accept(sockfd, (sockaddr *) &client_addr,
&len);

//error check

 accept(): block process until a client connects to the
server. It returns a new socket file descriptor, if the
connection is created.

50Operating Systems

Reading and Writing

char buf[1024];

int nread = read(client_sockfd, buf, 1024);

read(): reads from the socket

write(client_sockfd, buf, len);

write(): writes to the socket

close(client_sockfd);

close(): closes the socket

51Operating Systems

Connecting A Client to A Server
int sockfd;
sockfd = socket(AF_INET, SOCK_STREAM, 0);

// error check
struct sockaddr_in serv_addr;
struct hostent *host;
serv_addr.sin_family = AF_INET;
host = gethostbyname(argv[1]);

// error check
memcpy(&serv_addr.sin_addr.s_addr, host->h_addr,

host->h_length);
serv_addr.sin_port = htons(BASIC_SERVER_PORT);
connect(sockfd, (sockaddr *) &serv_addr, sizeof(serv_addr))

// error check
52Operating Systems

Homework

 Reading

 Chapter 3

