
1

CS307 Operating Systems

Operating-System Structures

Fan Wu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Spring 2020

2Operating Systems

Operating System Services Structure

Operating systems provide an environment for execution of
programs and services to programs and users

5Operating Systems

Bourne Shell Command Interpreter

6Operating Systems

First GUI (1973)

The first appeared
on the Xerox Alto
computer in 1973.

7Operating Systems

Mac OS System 1.0 (1984)

8Operating Systems

Amiga Workbench 1.0 (1985)

The first GUI with color graphics.

2

9Operating Systems

Windows 1.0x (1985)

10Operating Systems

IRIX 3 (released in 1986, first release 1984)

11Operating Systems

NeXTSTEP / OPENSTEP 1.0 (1989)

12Operating Systems

Windows 95 (1995)

13Operating Systems

KDE 1.0 (1998)

14Operating Systems

GNOME 1.0 (1999)

3

15Operating Systems

Windows XP (released in 2001)

16Operating Systems

Windows Vista (released in 2007)

17Operating Systems

Mac OS X Leopard (released in 2007)

18Operating Systems

KDE (v4.0 Jan. 2009, v4.2 Mar. 2009)

19Operating Systems

Windows 10 (July 2015)

20Operating Systems

A View of Operating System Services

4

21Operating Systems

System Call

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Example: System call sequence to copy the contents of one file to another
file

22Operating Systems

System Call – OS Relationship

23Operating Systems

API

 Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

 Three most common APIs

 Win32 API for Windows

 POSIX API for POSIX-based systems (UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?

 Program portability

 System calls are often more detailed and difficult to work with than the
API

24Operating Systems

Example of Standard API

 Consider the ReadFile() function in the

 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()

 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

26Operating Systems

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

31Operating Systems

Examples of Windows and Unix System Calls

5

32Operating Systems

A View of Operating System Services

33Operating Systems

Operating System Services

 Operating-system services:

 User interface - Almost all operating systems have a user interface (UI).

 Graphics User Interface (GUI), Command-Line (CLI), Batch

 Program execution - The system must be able to load a program into memory
and to run that program, end execution, either normally or abnormally (indicating
error)

 I/O operations - A running program may require I/O, which may involve a file or
an I/O device

 File-system manipulation - Programs need to read and write files and
directories, create and delete them, search them, list file Information, permission
management.

34Operating Systems

Operating System Services (Cont.)

 Communications – Processes may exchange information, on the same
computer or between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

35Operating Systems

Operating System Services (Cont.)
 Resource allocation - When multiple users or multiple jobs

running concurrently, resources must be allocated to each of
them

 Accounting - To keep track of which users use how much and
what kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control
use of that information, concurrent processes should not
interfere with each other

Protection involves ensuring that all access to system
resources is controlled

Security of the system from outsiders requires user
authentication, extends to defending external I/O devices
from invalid access attempts

CS307 Operating Systems

Operating-System Structure

Structure of Components and
Interconnections

42Operating Systems

Simple Structure

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

6

44Operating Systems

Traditional UNIX System Structure

45Operating Systems

Layered Approach

 The operating system is divided into a number of layers (levels), each
built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

 The main advantage of the layered approach is simplicity of
construction and debugging

46Operating Systems

Microkernel System Structure

 Moves as much from the kernel into “user” space

 Communication takes place between user modules
using message passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new
architectures

 More reliable (less code is running in kernel
mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel
space communication

Mac OS X Structure

47Operating Systems

Modules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexibility

 Like microkernel but more efficient

Solaris Modular Approach

48Operating Systems

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion.
It treats hardware and the operating system kernel as though they
were all hardware.

 A virtual machine provides an interface identical to the underlying bare
hardware.

 The operating system host creates the illusion that a process has its
own processor and (virtual) memory.

 Each guest is provided with a (virtual) copy of underlying computer.

49Operating Systems

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) Virtual machine

7

50Operating Systems

Architecture

51Operating Systems

Benefits of Virtualization

• Single OS image per machine
• Software and hardware tightly coupled
• Underutilized resources
• Inflexible and costly infrastructure

• Multiple OSs on a single machine
• Hardware-independence of operating
system and applications
• Better utilization of resources
• Encapsulating OS and application into
virtual machines

Before Virtualization After Virtualization

52Operating Systems

Virtual Infrastructure for Data Center

55Operating Systems

Amazon Elastic Compute Cloud (EC2)

56Operating Systems

The Java Virtual Machine

57Operating Systems

Homework

 Reading

 Chapter 2: Operating-System Structures

