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Operating System Services Structure

Operating systems provide an environment for execution of 
programs and services to programs and users
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Bourne Shell Command Interpreter
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First GUI (1973)

The first appeared 
on the Xerox Alto 
computer in 1973.
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Mac OS System 1.0 (1984)
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Amiga Workbench 1.0 (1985)

The first GUI with color graphics.
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Windows 1.0x (1985)

10Operating Systems

IRIX 3 (released in 1986, first release 1984)
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NeXTSTEP / OPENSTEP 1.0 (1989)
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Windows 95 (1995)
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KDE 1.0 (1998)
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GNOME 1.0 (1999)
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Windows XP (released in 2001)
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Windows Vista (released in 2007)
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Mac OS X Leopard (released in 2007)
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KDE (v4.0 Jan. 2009, v4.2 Mar. 2009)
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Windows 10 (July 2015)
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A View of Operating System Services
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System Call

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Example: System call sequence to copy the contents of one file to another 
file
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System Call – OS Relationship
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API

 Mostly accessed by programs via a high-level Application Program 
Interface (API) rather than direct system call use

 Three most common APIs 

 Win32 API for Windows 

 POSIX API for POSIX-based systems (UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?

 Program portability

 System calls are often more detailed and difficult to work with than the 
API
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Example of Standard API

 Consider the ReadFile() function in the

 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()

 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used
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Standard C Library Example

 C program invoking printf() library call, which calls write() system call
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Examples of Windows and Unix System Calls
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A View of Operating System Services
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Operating System Services

 Operating-system services:

 User interface - Almost all operating systems have a user interface (UI).

 Graphics User Interface (GUI), Command-Line (CLI), Batch

 Program execution - The system must be able to load a program into memory 
and to run that program, end execution, either normally or abnormally (indicating 
error)

 I/O operations - A running program may require I/O, which may involve a file or 
an I/O device

 File-system manipulation - Programs need to read and write files and 
directories, create and delete them, search them, list file Information, permission 
management.
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Operating System Services (Cont.)

 Communications – Processes may exchange information, on the same 
computer or between computers over a network

 Communications may be via shared memory or through message 
passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user 
program

 For each type of error, OS should take the appropriate action to 
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and 
programmer’s abilities to efficiently use the system
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Operating System Services (Cont.)
 Resource allocation - When multiple users or multiple jobs 

running concurrently, resources must be allocated to each of 
them

 Accounting - To keep track of which users use how much and 
what kinds of computer resources

 Protection and security - The owners of information stored in a 
multiuser or networked computer system may want to control 
use of that information, concurrent processes should not 
interfere with each other

Protection involves ensuring that all access to system 
resources is controlled

Security of the system from outsiders requires user 
authentication, extends to defending external I/O devices 
from invalid access attempts
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Operating-System Structure

Structure of Components and 
Interconnections
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Simple Structure 

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of 
functionality are not well separated
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Traditional UNIX System Structure
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Layered Approach

 The operating system is divided into a number of layers (levels), each 
built on top of lower layers.  The bottom layer (layer 0), is the 
hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions 
(operations) and services of only lower-level layers

 The main advantage of the layered approach is simplicity of 
construction and debugging
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Microkernel System Structure 

 Moves as much from the kernel into “user” space

 Communication takes place between user modules 
using message passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new 
architectures

 More reliable (less code is running in kernel 
mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel 
space communication

Mac OS X Structure
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Modules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexibility

 Like microkernel but more efficient

Solaris Modular Approach
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Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion.  
It treats hardware and the operating system kernel as though they 
were all hardware.

 A virtual machine provides an interface identical to the underlying bare 
hardware.

 The operating system host creates the illusion that a process has its 
own processor and (virtual) memory.

 Each guest is provided with a (virtual) copy of underlying computer.
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Virtual Machines (Cont.)

(a) Nonvirtual machine                           (b) Virtual machine
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Architecture
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Benefits of Virtualization

• Single OS image per machine
• Software and hardware tightly coupled
• Underutilized resources
• Inflexible and costly infrastructure

• Multiple OSs on a single machine 
• Hardware-independence of operating
system and applications
• Better utilization of resources
• Encapsulating OS and application into 
virtual machines

Before Virtualization After Virtualization
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Virtual Infrastructure for Data Center
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Amazon Elastic Compute Cloud (EC2)
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The Java Virtual Machine
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Homework

 Reading

 Chapter 2: Operating-System Structures


