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Abstract—Efficient wireless channel allocation is becoming a
more and more important topic in wireless networking. Dynamic
channel allocation is believed to be an effective way to cope
with the shortage of wireless channel resource. In this paper,
we propose SPECIAL, which is a Strategy-Proof and EffiCIent
multi-channel Auction mechanism for wireLess networks. SPE-
CIAL guarantees the strategy-proofness of the channel auction,
exploits wireless channels’ spatial reusability, and achieves high
channel allocation efficiency.

I. INTRODUCTION

With the surging deployment of wireless communication

devices and the emergence of software-defined radios, the

shortage of radio spectrum is becoming a more and more

serious problem. Among the best-known market-based alloca-

tion mechanisms, auctions are outstanding on both perceived

fairness and allocation efficiency [5]. Thus, auction is a natural

way to distribute goods, including wireless channels. For ex-

ample, since 1994, the Federal Communications Commission

(FCC) and its counterpart across the world have been using

auctions to assign channels. However, designing a feasible

channel auction mechanism has its own challenges. The first

challenge, which is not only limited to channel auctions but

applies to auctions in general, is strategy-proofness meaning

that each buyer can maximize her payoff only by reporting

true valuation of the good as the bid. The second chal-

lenge is the efficiency of the channel allocation. Different

from conventional goods, wireless channels have a property

of spatial reusability, which means that wireless users that

are well geographically separated can use the same channel

simultaneously. With this property, the well-known Vickrey-

Clarke-Groves auction becomes invalid, because even if a pow-

erful central authority exists, computing the optimal channel

allocation is NP-complete in a multi-hop wireless network [2].

In recent years, a number of elegant channel auction mech-

anisms in wireless network (e.g., [11], [13], [14]) have been
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proposed to solve the problem of dynamic channel allocation.

In these papers, it is commonly assumed that every buyer

either bids for only one channel, or bids for multiple chan-

nels with the same per-channel price. However, doubling the

number of channels, especially contiguous channels, a buyer’s

valuation does not necessarily double. It has been shown that

the saturated throughput is a concave non-decreasing function

on channel width [1]. Consequently, according to the saturated

throughput on a channel, a buyer’s valuation is reasonably

expected to be a concave non-decreasing function on the

width of the channel she gets. Different buyers may have

different valuation functions. Therefore, considering the need

for various numbers of channels due to various valuations, it

is more reasonable to give the buyers the flexibility to submit

various combinatorial bids for contiguous channels.

In this paper, we present SPECIAL, which is a Strategy-

Proof and EffiCIent multi-channel Auction mechanism for

wireLess networks. As far as we know, we are the first to

combine flexible bids with combinatorial auction to study

the problem of dynamic channel allocation. Combinatorial

auction, in which a large number of items are auctioned

concurrently and bidders are allowed to express preferences

on bundles of items [7], has the capability of providing the

proper expression of the problem of combinatorial wireless

channel allocation. Furthermore, SPECIAL is fundamentally

different from traditional combinatorial auction, as it allows

multiple users that are geographically separated to use the

same channel due to spatial reusability. In SPECIAL, all the

buyers simultaneously submit their sealed bids for available

channels. A bid specifies the maximal price the buyer would

like to pay for each combination of contiguous channels. Then,

SPECIAL decides the auction winners, channel allocation,

and charges based on the bids. SPECIAL exploits wireless

channels’ spatial reusability, and achieves strategy-proofness.

We make the following contributions in this paper:

• We present a combinatorial auction mechanism, namely

SPECIAL, for the problem of channel allocation in multi-

hop wireless networks. To the best of our knowledge,

we are the first to introduce flexible bids for different

numbers of contiguous channels.

• Our analysis shows that SPECIAL is a strategy-proof

channel auction mechanism.
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The rest of the paper is organized as follows. In Section II,

we present technical preliminaries. In Section III, we describe

SPECIAL in detail. In Section IV, we briefly review the related

works. Finally, we conclude the paper and point out potential

future works in Section V.

II. TECHNICAL PRELIMINARIES

In this section, we present our auction model for the prob-

lem of combinatorial channel allocation, and review several

solution concepts from game theory and mechanism design.

A. Auction Model

We model the problem of wireless channel allocation as

a combinatorial channel auction. In this auction, there is

a wireless service provider, called “seller”, who possesses

the license of a number of wireless channels and wants

to lease out regionally idle channels; and there is a set of

static nodes, called “buyers”, such as WiFi access points and

WiMAX base stations, who want to lease channels in order to

provide services to their customers. A channel can be leased

to multiple buyers, if these buyers can transmit simultaneously

and receive signals with an adequate Signal to Interference and

Noise Ratio (SINR). Different from existing channel auction

mechanisms, our combinatorial channel auction allows buyers

to bid for various numbers of contiguous channels.1 The

auction is sealed-bid and private, meaning that the buyers

simultaneously submit their bids privately to the “auctioneer”

without any knowledge of others, and do not collude.

We assume that the seller has a set of contiguous, orthog-

onal, and homogenous channels K = {1, 2, . . . , k} to lease

out. The available channels are numbered from 1 to k. As

is shown in paper [1], contiguous original channels can be

combined to get a wider channel. In Figure 1, we present

the function of effective saturated throughput of a channel

on the multiple of the bandwidth of the original channel. In
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Fig. 1. Effective saturated throughput as a function on the multiple of the
bandwidth of the original channel

our auction, a (combined) channel can be leased to one or a

group of non-conflicting buyers. (We will define buyer group

in Section III-A.)

We denote the set of buyers by N = {1, 2, . . . , n}, where

each buyer has a unique identification number from 1 through

1Our model of combinatorial channel auction is a variant of traditional
combinatorial auctions, which allow buyers to place bids on any combinations
of discrete items. In our model, the buyers bid for contiguous channels, which
can be accessed with a single radio.

n. We assume that each of the buyers only has a single radio,2

and can tune its radio to work on an original channel or a wider

channel combined by several contiguous original channels. Let

vqi be buyer i’s valuation of a wider channel combined by q
(1 ≤ q ≤ k) contiguous original channels. Then the valuation

vector of a buyer i can be denoted as:

~vi = (v1i , v
2
i , . . . , v

k
i ).

A buyer’s valuation function is private information to the buyer

herself and is commonly named type. According to Figure 1,

we assume that the valuation function is also a concave non-

decreasing function, which means

vxi
x
≥

vyi
y
, ∀i ∈ N, ∀x, y, s.t. x < y ∧ 1 ≤ x, y ≤ k, (1)

In practice, it is more reasonable to give the buyers the

flexibility to submit various combinatorial bids for channels.

In our combinatorial channel auction, we allow each buyer to

submit an independent bid bqi for each number q (1 ≤ q ≤ k)

of contiguous channels. Similarly, we denote a buyer i’s bid

vector by:
~bi = (b1i , b

2
i , . . . , b

k
i ).

According to inequation (1), we have

bxi
x
≥

byi
y
, ∀i ∈ N, ∀x, y, s.t. x < y ∧ 1 ≤ x, y ≤ k, (2)

when buyers truthfully submit their bids.

In our combinatorial channel auction, the strategy si of a

buyer i ∈ N is to report a bid vector, in which bqi = si(v
q
i , q),

based on her channel valuation vqi , for each q(1 ≤ q ≤ k).
The strategy profile ~s of all the buyers is represented by the

follwoing vector:

~s = (s1, s2, . . . , sn).

According to the notation convention, let ~s−i represent the

strategy profile of all the buyers except buyer i.
We assume that all the buyers are rational, and their objec-

tives are to maximize their own utilities. Here, we define the

utility of a buyer i ∈ N as

ui(~s) = vi(~s)− pi(~s), (3)

where vi(~s) is player i’s valuation on the outcome of the

strategy profile ~s, and pi(~s) is a charge for using the allocated

channel(s). We assume that a buyer has no preference over

different outcomes, if the utility is the same to the buyer

herself.

B. Solution Concepts

We recall several important solution concepts from game

theory and mechanism design.

Definition 1 (Dominant Strategy [8]): A dominant strategy

of a player is one that maximizes her utility regardless of what

strategies the other players choose. Specifically, s⋆i is player i’s

2We note that our channel auction mechanism can be extended to the case
of multiple radios by modeling each radio as a virtual buyer [11].
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dominant strategy, if for any s′i 6= s⋆i and any strategy profile

of the other players ~s−i, we have

ui(s
⋆
i , ~s−i) ≥ ui(s

′
i, ~s−i). (4)

Definition 2 (Strategy-Proof Mechanism [6]): A direct-

revelation mechanism is a mechanism, in which the only

strategy available to players is to make claims about their

preferences to the mechanism. A direct-revelation mechanism

is strategy-proof if it satisfies both incentive-compatibility

and individual-rationality. Incentive-compatibility means

reporting truthful information is a dominant strategy for

each player. Individual-rationality means each player can

always achieve at least as much expected utility from faithful

participation as without participation.

In our combinatorial channel auction, the strategy-proofness

means that no buyer i ∈ N can increase her utility by reporting

a bid bqi 6= vqi for any q (1 ≤ q ≤ k). In other words, it is

every buyer’s best strategy to simply submit her valuation as

the bid in our combinatorial channel auction.

III. DESIGN OF SPECIAL AND STRATEGY-PROOFNESS

In this section, we present our design of SPECIAL, and

prove its strategy-proofness.

A. Auction Design

The design of SPECIAL is composed of three main com-

ponents: buyer grouping and bid integration, group-channel

allocation, and winner selection and charging.

1) Buyer Grouping and Bid Integration: Considering the

spatial reusability of the channels, SPECIAL divides all the

buyers into multiple non-conflicting groups. Each group can

be assigned with a distinct channel. The assigned channel is

either an original channel or a wider channel that is composed

of several original contiguous channel. To prevent the buyers

from manipulating the auction, here we group the buyers using

a bid-independent method. As in [11], [14], SPECIAL uses a

conflict graph to capture the radio transmission interference

among the buyers. Any pair of buyers, who are in the radio

transmission interference range of each other, have a line

connecting them in the conflict graph. Then the calculation

of bid-independent groups can be implemented by a certain

existing graph coloring algorithm (e.g., [9]), such that no

two buyers have interference between each other in the same

group. We note that the buyers have no control on which group

they are in, when the above grouping strategy is used.

We denote the set of buyer groups by G = {g1, g2, . . . , gm},
where m is the number of the buyer groups. The buyer groups

in G should satisfy:
⋃

1≤j≤m gj = N , meaning that all the

buyers are involved, and gj ∩ gf = ∅, ifj 6= f , meaning that

no buyer can be in multiple groups. Figure 2 shows a toy

example with 6 buyers (A-F). There exists several feasible

grouping results, e.g., g1 = {A,C,E} and g2 = {B,D,F}.
From now on, we consider the buyer groups as competitors

in the combinatorial channel auction. We now define the

integrated group bid for each of the buyer groups. To guarantee

the strategy-proofness of the auction, we let the group bid be

Fig. 2. A toy example with 6 buyers (A-F)

proportional to the smallest bid for each number of contiguous

channels in the group, and sacrifice the buyers who may benefit

from manipulating the group bid. The sacrificed will not be

granted any channel. Two types of buyers have to be sacrificed

when computing a group’s bid for q contiguous channels:

(1) The buyer who submits the smallest bid for q contiguous

channels in the group. In the case of ties, i.e., more than

one buyer submit the smallest bid in the group, the tied

buyer with smallest identification number will be selected

as the sacrificed buyer.

(2) The buyer who can benefit by manipulating her bid for

other numbers of contiguous channels than q in order

to make herself win q contiguous channels. In Section

III-A3, we will present our scheme to identify such

cheating buyers in order to achieve strategy-proofness.

Here, we claim that the number of sacrificed buyers is

always no more than two in a buyer group. So we define

the integrated group bid (IGB) ϕq
j for each group gj ∈ G on

q contiguous channels as

ϕq
j = max((|gj | − 2) · θqj , 0), (5)

where

θqj = min
l∈gj

(bql ). (6)

We denote the IGB vector of group gj as

~ϕj = (ϕ1
j , ϕ

2
j , . . . , ϕ

k
j ).

According to inequation (2), we can get that ϕq
j is also a

concave non-decreasing function on q, for every gj ∈ G.

We note that even if ϕq
j = 0, the valid winning buyers in

group gj will still be charged when they successfully win q
contiguous channels.

2) Group-Channel Allocation: After forming the buyer

groups, we present our algorithm that allocates contiguous

channels to the buyer groups based on their IGBs.

For ease of comparison between IGBs, we define per-

channel integrated group bid (PIGB) ξqj for each buyer group

gj on q contiguous channels:

ξqj = ϕq
j/q. (7)

Similarly, we denote the PIGB vector of group gj as

~ξj = (ξ1j , ξ
2
j , . . . , ξ

k
j ).

Since ϕq
j is a concave non-decreasing function on q, we can

get that ξqj is a non-increasing function on q, such that

ξxj ≥ ξyj , ∀x < y ∧ 1 ≤ x, y ≤ k, ∀gj ∈ G. (8)
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For the ease of comparison between PIGBs, we define the

preference relations as

(a, h) ≺ (b, j)⇔ a < b ∨ (a = b ∧ h < j),

where a and b are values of PIGBs, and h and j are the

identification numbers of buyer groups. In the case of ties,we

determine that the group with higher group number has higher

priority to be allocated a channel.

Algorithm 1 Algorithm for Group-Channel Allocation GCA()

Input: The set of buyer groups G, the number of available

channels k, and a set ξ = {ξqj |gj ∈ G, 1 ≤ q ≤ k} of

PIGBs.

Output: A vector ~r of numbers of channels allocated to every

group, and a channel allocation vector ~ca.

1: ~r ← 0m, ~ca← (0, 0)m, k′ ← k
2: while k′ > 0 do

3: ξqj ← max(ξ), rj ← q
4: k′ ← k′ − 1, ξ ← ξ \ {ξqj }
5: end while

6: k′ ← 1
7: for j = 1 to m do

8: if rj > 0 then

9: caj ← (k′, k′ + rj − 1), k′ ← k′ + rj
10: end if

11: end for

12: return (~r, ~ca).

We note that although Algorithm 1 can efficiently allocate

the channels to the buyer groups according to their PIGBs,

it cannot guarantee strategy-proofness. In the next subsection,

we will present a method to strengthen Algorithm 1 in order

to achieve strategy-proofness.

3) Winner Selection and Charging: In this section, we

consider how to determine winners in each winning buyer

group who has been assigned channel(s) and their charges for

using the assigned channel(s).

Our analysis shows that there are three cheating actions,

say, preemptive bidding, depreciated bidding, and retreat for

advancing, through which a buyer may improve her utility.

We provide a method to prevent each of the cheating actions,

respectively, and strengthen our winner selection and charging

scheme step by step to achieve strategy-proofness. In the

following, we continue to use the toy example shown in

Figure 2 to illustrate the effect of buyers’ cheating actions.

a) Preemptive Bidding: The cheating action of preemp-

tive bidding means that a buyer i ∈ gj submits a cheating bid

vector to make PIGB ξ′qj be selected as a winning bid, which

would never be a winning group bid if i bids truthfully. Thus,

group gj wins q channels, and so does i.
Figure 3(a) shows the effect of preemptive bidding. We

observe that buyer A’s truthful bid b⋆3A must be the minimum

bid in {b⋆3A , b3C , b
3
E}. So v3A = b⋆3A = θ31 . If we charge every

winner in group g1 the price θq1, where q channel(s) will be

allocated to group g1, then even if buyer A successfully get 3

channels, her utility will be negative or zero, because θ31 will

be at least as large as v3A.

Formally, we define the charging scheme as follows. If a

group gj wins q contiguous channels, each potential winning

buyer i ∈ gj is charged a uniform price, which is equivalent to

the smallest bid for q contiguous channel in the group. Here,

we define the charge of every buyer for using the allocated

channels as

pi = θqj · ηi, (9)

where ηi decides whether i is selected as a winner or not.

Lemma 1: For any winning group bid ξqj , if we charge each

winner i ∈ gj with θqj , preemptive bidding can be prevented.

b) Depreciated Bidding: The cheating action of depreci-

ated bidding means that a buyer i ∈ gj may submit a lower

cheating bid b′qi than the truthful one b⋆qi = vqi , with no

influence on the channel allocation. Such a cheating action

may decrease the charge to the winners in gj , if ξ′qj is a

winning PIGB and b′qi appears to be the smallest bid for

q channels in the group gj . As a result, if i is selected

as an auction winner, her utility can be increased through

depreciated bidding.

Figure 3(b) shows the effect of depreciated bidding. We

observe that if a buyer i ∈ gj can benefit from depreciated

bidding, she must appear to be the one who has the smallest

bid for q channels when ξqj is a winning PIGB. Therefore,

after allocating q channels to buyer group gj , the buyer, who

has the smallest bid for q channels in the group gj , should be

excluded from the set of winners.

Lemma 2: If ξqj is a winning PIGB, we can prevent depre-

ciated bidding by excluding the buyer i = argmin
i∈gj

(bqi ) from

the winner set. i.e., let ηi = 0.

c) Retreat for Advancing: The cheating action of retreat

for advancing means that if a buyer i ∈ gj bids truthfully,

PIGB ξqj will be selected as a winning PIGB for group gj ;

but if buyer i submits several cheating bids, another PIGB ξq
′

j

(q′ < q) is selected as the final winning PIGB for group gj .

Consequently, buyer i’s utility ui may be increased.

Figure 3(c) shows the effect of retreat for advancing. We

can observe that if a buyer i ∈ gj benefit from winning q′+1
(≤ q) channels instead of q through retreat for advancing, then

the auction must exhibit the following two properties:

i = argmin
l∈gj

(bq
′+1

l ), (10)

and

(min
h 6=j

(ξrhh ), argmin
h 6=j

(ξrhh ))

≺









max

(

(|gj | − 2) · min
l 6=i∧l∈gj

(bq
′+1

l ), 0

)

q′ + 1
, j









(11)

To guarantee strategy-proofness, we have to exclude each

such buyer who satisfies the above two criteria from the set

of winners in each group.
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ξξ ξξξξξξξξξξ

ξξ ξξξξ ξξξξ ξξ‛

(a) Preemptive bidding. A buyer in group
g1, who can only get 2 channels by bidding
truthfully, may get 3 channels by submitting
an untruthful bid for 3 channels.

ξξ ξξξξξξξξξξ

ξξ ξξξξ ξξξξ ξξ‛

(b) Depreciated bidding. A buyer in group
g1 can increase her utility by submitting an
untruthful bid that is lower than any others’
bids in the group and her own valuation for
2 channels.

ξξ ξξξξξξξξξξ

ξξ ξξξξ ξξξξ ξξ‛

(c) Retreat for advancing. A buyer in group
g1 may get her utility increased, by sub-
mitting an untruthful bid for 2 channels to
make group g1 wins 1 channel instead of 2
channels won when bidding truthfully.

Fig. 3. Illustrations of cheating actions. All PIGBs are sorted in non-increasing order, among which truthful PIGBs are indicated by solid-border round
corner squares, and untruthful ones caused by cheating bids are represented by dashed-border round corner squares.

Lemma 3: For every buyer group gj ∈ G, if there exists

buyer i ∈ gj satisfying the condition 10 and 11, we can

exclude such buyers from winners to prevent the cheating

action of retreating for advancing. i.e., let ηi = 0.

Algorithm 2 Algorithm for Winner Selection WIN()

Input: The set of buyer groups G, the number of available

channels k, and a set ξ = {ξqj |gj ∈ G, 1 ≤ q ≤ k}.
Output: A set W of winners in the combinatorial channel

auction.

1: W ← ∅, pm← 0, ξ′ ← ξ
2: (~r, ~ca)← GCA(G, k, ξ′)
3: for all rj > 0 do

4: T ← gj \ {argmin
i∈gj

(b
rj
i )}

5: if rj < k then

6: pm← argmin
i∈gj

(b
rj+1
i ), d← argmin

h 6=j

(ξrhh )

7: if (ξrdd , d) ≺





max((|gj |−2)· min
l6=pm∧l∈gj

(b
rj+1

l
),0)

rj+1 , j





then

8: T ← T \ {pm}
9: end if

10: end if

11: W ←W ∪ T
12: end for

13: return W .

Finally, we use Algorithm 2 to summarize our method to

determine winners.

B. Strategy-proofness

Theorem 1: SPECIAL is a strategy-proof combinatorial

channel auction mechanism.

Due to limitation of space, we do not present the proof in

this paper.

IV. RELATED WORK

In this section, we review the works on channel allocation

involved with selfish participants. Earlier, Felegyhazi et al. [3]

studied Nash Equilibria in a static multi-radio multi-channel

allocation game. Later, Wu et al. [12] designed a mechanism

for the multi-radio multi-channel allocation game, converging

to strongly dominant strategy equilibrium. Recently, a number

of strategy-proof auction-based spectrum allocation mecha-

nisms (e.g., TRUST [14], VERITAS [13], and SMALL [11])

for multiple collision domains have recently been proposed to

solve the channel allocation problem. A min-max coalition-

proof Nash equilibrium channel allocation scheme has been

proposed in [4] to study the multi-radio channel allocation

problem in multi-hop wireless networks. In [10], Wu et al.

have studied the problem of adaptive-width channel allocation.

V. CONCLUSION AND FUTURE WORK

In this paper, we have modeled the spectrum allocation

problem as a combinatorial auction, and proposed a strategy-

proof and efficient spectrum allocation mechanism, called

SPECIAL. For future work, one interesting direction is to

extend SPECIAL to be resistant to collusion.
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