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Abstract—With the popularity of cloud computing, many
companies would outsource their social network data to a cloud
service provider, where privacy leaks have become a more and
more serious problem. However, most of the previous studies
have ignored an important fact, i.e., in real social networks,
users possess various attributes and have the flexibility to decide
which attributes of their profiles are sensitive attributes by
themselves. These sensitive attributes of the users should be
protected from being revealed when outsourcing a social network
to a cloud service provider. In this paper, we consider the problem
of resisting privacy attacks with neighborhood information of
both network structure and labels of one-hop neighbors as
background knowledge. To tackle this problem, we propose a
Global Similarity-based Group Anonymization (GSGA) method
to generate a anonymized social network while maintaining
as much utility as possible. We also extensively evaluate our
approach on both real data set and synthetic data sets. Evaluation
results show that the social network anonymized by our approach
can still be used to answer aggregation queries with high
accuracy.

I. INTRODUCTION

Cloud computing has become a booming computing

paradigm in recent years, offering great facilities for storage

and computing [1], [2]. It allows companies to migrate their

burden (e.g., data maintenance and computing utilities) to

a cloud server, which has sufficient resources to maintain

very large datasets and provide quick response to customers’

requests. Besides, the cloud services are available in a pay

as-you-go manner at a low cost. A number of companies

have employed cloud computing to publish their large social

network data. However, the biggest problem with this approach

is privacy disclosure. Therefore, as a cloud service provider,

such as Google and Amazon, it is very essential to protect

users’ privacy from being leaked while keeping these data

useful.

Social networks are normally modeled as graphs with nodes

and edges, where users are denoted as nodes and social

relationships are denoted as edges [3]. Users’ privacy could

be easily breached by attacks with background knowledge.
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Many approaches have been proposed to protect the privacy

of published social networks [14], [15]. These early works

mainly concern identity and link disclosures. However, most

of them do not consider an important fact that users in real

social networks possess attributes, which may be exploited by

the attacker to identify a targeted user and should also be well

protected.
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Fig. 1. Example of privacy preservation in a social network

In many real-world social networks (e.g., Facebook and

LinkedIn), users have plenty of personal information, such

as name, gender, age, address and profession. We usually

refer to these information as attributes in the users’ profile.

In the graphs of social networks, attributes are denoted by

labels. An individual can select which attributes she wants to

conceal in her profile. So labels can be either sensitive or non-

sensitive. As a specific example, we consider a synthesized

social network of “friends” as shown in Fig. 1(a). Labels

attached to the nodes show the professions of the users. For

clearance, we use capital letters to represent the professions as

listed in Fig. 1(b). Some people do not mind their professions

being known by the others, but some do for personal reasons.

Therefore the professions are either sensitive (labelled in red)

or non-sensitive (labelled in black).

Zhou et al. [4] considered 1-neighborhood attack, where
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Fig. 2. Alice’s label-neighborhood graph

an attacker who has the knowledge of a target’s one-hop

neighbors and the connections between them, can re-identify

the target with high confidence. To resist this attack, they

proposed a k-anonymous approach, in which an attacker with

the knowledge of any target’s 1-neighborhood graph (e.g.,

Alice’s 1-neighborhood graph in Fig. 1(c)) cannot re-identify

the target with a confidence higher than 1/k. As shown in

Fig. 1(d), by adding a noise edge between Eve and Carry, the

1-neighborhood graph of every vertex becomes not unique.

From this anonymized graph, we can see that, if the attacker

with the background knowledge of Alice’s 1-neighborhood

graph, she cannot identify Alice with probability higher than

1/2. However, Zhou et al. did not consider labels of users as

the background knowledge of the attacker, although the labels

are easy to get from users’ profiles in the social network.

In this paper, we consider a more comprehensive and

practical privacy attack, i.e., label-neighborhood attack, in

which an attacker exploits sensitive information based on

the background knowledge of 1-neighborhood graph of a

target node and the labels of its neighboring nodes. In the 2-

anonymized social network in Fig. 1(d), Bob and Carry have

the same 1-neighborhood graph as Alice, as shown in Fig. 1(c).

Besides this neighborhood structure information, if the attacker

also knows that the target has four friends and the jobs of them

are B(banker), D(doctor), L(lawyer), T(teacher), respectively,

then she can re-identify accurately that which node is Alice

and what her profession is. In addition, a k-anonymous social

network may still leak sensitive information, when there are

not enough diversities in the sensitive attributes. That is to say,

if an attacker can link a target to a group of anonymized nodes

of which are all associated with the same sensitive attribute,

then the attacker can still identify the sensitive attribute of the

target. In the above example, if an attacker has the background

knowledge of the 1-neighborhood graph of Alice, although

Alice, Bob and Carry have the same 1-neighborhood graph in

Fig. 1(c), the attacker can recognize exactly the profession of

Alice, since the professions of Alice, Bob and Carry are all

lawyers.

Given the above problems, we consider the case in

which the attackers have the background knowledge of

both 1-neighborhood structure and label information (label-

neighborhood attack). Our design objective is to protect the

users with sensitive attributes from being re-identified and

their sensitive information from being disclosed. In this paper,

we propose a Global Similarity-based Group Anonymization

(GSGA) method to anonymize the original graph of a social

network into a graph where any node with a sensitive label is

indistinguishable from at least ℓ−1 other nodes. Our approach

consists of two steps, including grouping and anonymizing. We

group the nodes in the graph with as similar neighborhood

information as possible so that the original graph can be

changed as little as possible in the following anonymization

step. Meanwhile, we ensure that each group has at least ℓ
nodes with different sensitive labels. Then, we propose an

effective anonymization algorithm to make suitable modifi-

cations to each group to make any node’s label-neighborhood

graph be isomorphic with at least ℓ− 1 other nodes.

Our contributions are summarized as follows.

• To the best of our knowledge, we are the first to consider

the problem of label-neighborhood attack and propose

counter-measure, when outsourcing the social network

data to a cloud.

• To tackle the problem, we propose a ℓ-diverse approach,

namely GSGA, which can prevent users with sensitive at-

tributes from being re-identified as well as their sensitive

attributes from being breached.

• We implement and evaluate GSGA on both a real data set

and synthetic data sets. Our evaluation results show that

the anonymized social network generated by our approach

can still be used to answer aggregation queries with high

accuracy.

The rest of the paper is organized as follows. In Section II,

we introduce our system model and problem definition. We

propose our practical solution in Section III. We conduct

evaluations on both a real data set and synthetic data sets

in Section IV. Then the related work is shown in Section V.

Finally, in Section VI, we draw our conclusion and point out

possible future work directions.

II. PRELIMINARIES

In this section, we present our system model and give

problem definition of privacy preservation in outsourced social

network.

A. System Model

We consider a system model that mainly includes four

parts, i.e., a cloud service provider, a social network publisher,

an attacker, and a set of users. The cloud service provider,

such as Google or Amazon, typically has enough resources

to hold very large storage spaces and make rapid response

to users’ requests with its powerful parallel and distributed

architecture. The social network publisher, such as Facebook

or LinkedIn, usually chooses to outsource their social network

data to a cloud platform. The attacker possesses some back-

ground knowledge of the target which comprises neighborhood

information of both network structure and labels of one-

hop neighbors. With this background knowledge, the attacker

always wants to analyze the outsourced social network to re-

identify the target. The users are considered to be particularly

interested in aggregation queries on the social networks [4]. An

aggregation query computes the aggregating on selected paths
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Fig. 3. Privacy-preserved social network

based on some given conditions, e.g., the average shortest

distance from a banker to a lawyer in a network.

In our system, we model the social network as a labeled and

undirected graph G, in which users are nodes and social con-

nections are edges. To prevent the privacy of users from being

disclosed, the social network publisher chooses to anonymize

G to G′ before outsourcing.

B. Problem Definition

In this paper, we model a social network as G =
(V, Vs, E, L,̥), where V is the set of all nodes, Vs is the

set of nodes with sensitive attributes, E is the set of edges,

L is the set of labels, and ̥ is a labeling function, which

maps nodes to their labels, ̥ : V → L. For a graph G,

V (G), Vs(G), E(G), L(G), and ̥G denote, the set of all

nodes , the set of nodes with sensitive attributes, the set of

edges, the set of labels and the labeling function in G, respec-

tively. We propose a privacy model, where we assume that an

attacker is interested in the identity and sensitive information

of a target victim with sensitive attributes. To initiate this

attack, the attacker may have background knowledge about

the target’s label-neighborhood graph, which consists of 1-

neighborhood graph of the target and the labels of the target’s

one-hop neighbors.

In this model, node labels are treated as both a part of an

attacker’s background knowledge and the sensitive information

which we need to protect. Some concepts are clarified by the

following definitions:
Definition 1 (1-Neighborhood Graph [4]): For any node u

in G, the corresponding 1-neighborhood graph is Gu. Gu =
(Vu, Eu), where Vu = {v|(u, v) ∈ E(G)∨ (v = u)}, denoting
a set of nodes. Eu = {(x, y)|(x, y) ∈ E(G) ∧ {x, y} ∈ Vu},
denoting a set of edges.

Definition 2 (Label-Neighborhood Graph): For each node
u ∈ V (G), the related label-neighborhood graph of node u
is defined as Gl(u). Gl(u) = (Gu, NLSu), in which Gu is
the 1-neighborhood graph of node u, and NLSu is a sequence
of labels of node u’s immediate neighbors.

Definition 3 (ℓ-Diversity [5]): An equivalence class is ℓ-
diverse if there are at least ℓ “well-represented” values in it.
A table is said to be ℓ-diverse if every equivalence class of
the table is ℓ-diverse.

Definition 4 (ℓ-Graphic-Diversity): For each node u ∈
V (G) that attaches with a sensitive label, there must be at least
ℓ−1 other nodes with the same label-neighborhood graph, but
possesses different sensitive labels.

The privacy issue in this paper is mainly from the disclosure

of sensitive labels. To protect the sensitive attributes of users

satisfactorily, one might recommend that such labels should be

simply removed. However, such a way would result in a partial

view of the real social network, and would hide some valuable

statistical information which does not breach users’ privacy.

A more sophisticated approach is to release these sensitive

attributes about the users, while guaranteeing that the identities

and sensitive attributes of these users cannot be revealed. In

this paper, we ensure that the identity and sensitive attributes

of any individual with sensitive attributes cannot be identified

correctly in the anonymized social network with a probability

higher than 1/ℓ, where ℓ is a user-specified parameter carrying

the same meaning in the ℓ-diversity model [5]. In Fig. 1(a),

node Alice, Bob, Ida and Fred have sensitive labels, by

adding noise nodes and noise edges, and merging some nodes’

labels. The graph in Fig. 3 satisfies 2-graphic-diversity. That

is because, in this graph, node Ida and node Bob have four

neighbors with label B, {D,L}, L, T respectively, and the

same neighborhood structure, so they are indistinguishable.

Likewise, node Alice and node Fred are indistinguishable, as

they also have the same label-neighborhood graph.

III. DESIGN OF GSGA

In this section, we propose a Global Similarity-based Group

Anonymization (GSGA) approach to anonymize an outsourced

social network. The approach mainly consists of two key

steps. The first step is to make suitable grouping for nodes.

We want to group nodes with as similar label-neighborhood

graph as possible so that we can change the graph of original

social network as little as possible. The second step is to

make appropriate modifications to each group to satisfy the

ℓ-graphic-diversity requirement.

A. Node Grouping

A good grouping contributes significantly to reduce the cost-

s of modification on the graph. We group nodes by using the

metric: neighborhood label sequence similarity (NLSS) [7].

For two nodes v1 with neighborhood label sequence (NLSv1),
and v2 with neighborhood label sequence (NLSv2

), their

neighborhood label sequence similarity can be calculated as

follows:

NLSS(v1, v2) =
|NLSv1

∩NLSv2 |

|NLSv1
∪NLSv2 |

, (1)

The larger the value is, the larger similarity between the two

nodes’ neighborhood label sequences is. Some other metrics,

e.g., neighborhood structure, clustering coefficient and nodes

degree, can also be used for grouping. Since our anonymized

social network is mainly used to answer aggregation queries,

we only use the metric mentioned above. We verify experi-

mentally that it is very effective to modify graph by utilizing

the above metric to divide nodes into groups.

Our approach is illustrated in Algorithm 1. The algorithm

generates the groups, such that each group’s size is at least ℓ.
Here, we process nodes in the degree descending order, the

nodes with sensitive labels that have not yet been grouped are



Algorithm 1: GROUPING(G)

Input: A social network G, the privacy parameter ℓ;
Output: A group set C;

1 Sort(V );
2 Vs = the nodes with sensitive label in V ;
3 while Vs 6= ∅ do
4 us = the first node in Vs;
5 V = V − {uf};
6 group g = new group {us};
7 while |g| < ℓ do
8 Candidates = ∅;
9 for Each node u ∈ V do

10 if u.label does not be included in g then
11 candidates = candidates ∪ {u};

12 if |candidates| > 0 then
13 for Each node u ∈ candidates do
14 umax = argmax

u∈V

NLSS(u, us);

15 g = g ∪ {umax};
16 V = V − {umax};

17 else
18 break;

19 C = C ∪ {g};
20 if |g| < ℓ then
21 C = C − {g};
22 for Each node u ∈ g do
23 g′ = the group in C with the maximum label

similarity with u;
24 g′ = g′ ∪ {u};

first taken into account. Iteratively, we choose the first node uf

in Vs and create a new group g for this node (line 4-6). Then in

line 7-19, the nodes having the maximum neighborhood label

sequence similarities with node uf in the group are clustered

into the group until the group has ℓ nodes with different labels.

If the size of group g cannot reach ℓ in line 20-24, we first

remove this group, then for each node in this group, we insert

it into an existing group which has the maximum (estimated)

neighborhood label sequence similarity with the node. Finally,

when the algorithm terminates, we can get the node group set

C where each group size is at least ℓ.

B. Anonymization

After grouping, we need to design an anonymization al-

gorithm to ensure that the nodes in each group are indistin-

guishable in terms of their label-neighborhood graph. Before

anonymization, we first state an important property in the

large social network. The property has been acknowledged in

different kinds of social networks including friends networks,

collaboration networks, and email networks, and can help us

to design proper anonymization approach.

In the real social network, the degrees of nodes usually

follow the power law distribution [6], which indicates that

most of the node degrees are relatively low, and only a small

number of nodes in practice have high degrees.

Since the degrees of nodes in a large social network follow

the above property, we first process those nodes with high

degrees, which can maintain the information loss low and keep

high quality in the anonymization. Besides, since it is relatively

easy to anonymize those low degree nodes, we can utilize

these low degree nodes to anonymize high degree nodes. So

our anonymization algorithm processes nodes in the degree

descending order.
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Fig. 4. Anonymizing the label-neighborhood graphs of two nodes

1) Anonymization cost: Information loss in our anonymiza-

tion model of social network contains both structure infor-

mation loss and label information loss. To modify graph

with as small information loss as possible, we devise three

modification operations: label generalization, edge insertion

and node insertion.

Label generalization is to make the nodes within each group

have the same neighborhood label sequence. In order to keep

the nodes’ labels distribution of each group unchanged in the

anonymized graph, we do not generalize all the labels to be

the same value. Instead, we add the missing labels by creating

a super-label which is composed of several label values of

nodes in the group. In this sense, a super-label contains the

true label value of a node. Edge insertion is to keep node’s

neighborhood structure similar. After such edge insertion and

label generalization operations, if we cannot still make nodes

indistinguishable in terms of label-neighborhood graph, nodes

with non-sensitive label need to be inserted into the graph in

order to make the nodes’ label-neighborhood graphs in each

group isomorphic.

Each of the above three operations can lead to some

information loss, we measure the loss in the following way:

for any node u ∈ V , label generalization cost is :

LGC(lu, l
′

u) = 1−
|lu ∩ l′u|

|lu ∪ l′u|
, (2)

where lu is the set of u’s labels in the original graph and l′u
is the set of labels in the anonymized graph. The information

loss due to adding edge and node can be measured by the total

number of edges added and nodes added, separately.

We consider a social network G are anonymized to G′.

For two nodes u, v ∈ V (G), let T = Gl(u) ∪ Gl(v) and



Algorithm 2: ANONYMIZATION ALGORITHM

Input: A social network G, the parameters α, β and γ;
Output: An anonymized social network G′;

1 G′ = G;
2 C = grouping(G);
3 CandidateSet = ∅;
4 Sort C in descending order of the number of nodes;
5 mark each node in V (G′) and each group in C as

“unanonymized”;
6 while |C| > 0 do
7 gf = the first group in C and remove it from C;
8 uf = the first node in gf and remove it from gf ;
9 for Each node ui ∈ gf do

10 Using Eq. (3) to calculate cost(uf , ui);
11 ui.cost = cost(uf , ui);

12 Sort nodes of group gf in ascending order of the cost
value of each node;

13 for Each node ui ∈ gf do
14 Using the method in Section III-B.2 to

anonymize Gl(uf ) and Gl(ui);
15 mark node uf and node ui as “anonymize”;

16 mark group gf as “anonymize”;
17 CandidateSet = CandidateSet ∪ {gf};
18 for Each group gi ∈ CandidateSet do
19 if gi is unanonymized then
20 remove it from CandidateSet and insert it

into C;

T ′ = G′

l(u) ∪G′

l(v). The anonymization cost is defined as

cost(u, v) = α ·
∑

u∈T
LGC(lu, l

′

u)

+ β · (|E(T ′)| − |E(T )|)

+ γ · (|V (T ′)| − |V (T )|), (3)

where α, β and γ are weights associated with each part of the

information loss.

The similarity between node u’s label-neighborhood graph

and node v’s label-neighborhood graph is measured with their

anonymization cost. The smaller the anonymization cost is,

the more similar the two label-neighborhood graphs are.

2) Anonymizing two label-neighborhood graphs: Consider

two nodes u, v ∈ V (G), Gl(u) and Gl(v) are the label

neighborhood graphs of u and v, respectively. A greedy

approach is proposed to anonymize Gl(u) and Gl(v).
This approach conducts a label-first and degree-later match-

ing. The node matching procedure is processed in the de-

scending order of node degrees in Gl(u). First, the nodes

in Gl(u) are matched with the nodes in Gl(v) such that

they have the same label. If multiple nodes in Gl(v) are

found, we select a node whose degree is the closest to the

degree of that unmatched node in Gl(u). Then, we consider

the remaining unmatched nodes in Gl(u) that have the same

degree as the nodes in Gl(v). If there are no nodes in Gl(u)
with the same degree as nodes in Gl(v), again, we relax the

matching condition and pick a node in Gl(v) whose degree is

the closest to the degree of the unmatched node in Gl(u).
Finally, if there are still some unmatched nodes in Gl(u),
some unanonymized nodes in V (G) which have the same

labels as these unmatched nodes are added into Gl(v), and are

matched in pairs. If we cannot find such nodes in V (G), we

create some new nodes which attach the same labels as these

unmatched nodes to add them into Gl(v). When all the nodes

are matched, we insert some edges into Gl(u) and Gl(v) to

make them isomorphic. The anonymization cost of two nodes

can be calculated according to this matching procedure.

For example, the label-neighborhood graphs Gl(u) and

Gl(v) of two node u and v are shown in Fig. 4. Each

neighbor node of u and v is denoted in the form of (id, label).
According to the above matching procedure, we can find that,

node u1, u2, u3 match with node v1, v2, v3, respectively.

However, node u4 cannot find any node matching in Gl(v),
so we add a node which has the same label as node u4 into

Gl(v). Finally, we insert some edges into Gl(u) and Gl(v)
so that they are anonymized to the same, namely, Gl(w).
In this example, the anonymization cost of node u and v is

α · 1 + β · 2 + γ · 1.

3) Anonymizing the social network: Suppose that we get

the group set C after grouping, where each group size is at

least ℓ. We propose a greedy algorithm to anonymize a social

network as shown in Alg. 2.

First, we sort group set C in descending order based on

the number of nodes and mark all the nodes and groups as

“unanonymized” (line 4-5). Each time, we pick the first group

in C as the processing group and the first node in the first

group as the seed node. Then in line 9-12, for each node

u in the processing group, we use Eq. (3) to calculate the

anonymization cost of the seed node and node u, then we sort

nodes in ascending order of the anonymization cost values.

In line 13-17, the label-neighborhood graphs of seed node

and each node in the processing group are anonymized to

the same in turn, then we mark them as “anonymized”. In

order to maintain the ℓ-graphic-diversity for a group of nodes,

any change to the label-neighborhood graph of seed node

will be also put into use in the previous anonymized nodes.

After anonymizing all nodes in the processing group to the

same, we mark the group as “anonymized” and insert it

into the CandidateSet. During anonymizing, it may cause

some other nodes that have been marked as “anonymized”

in another group (e.g., label generalization and edge insertion

between an unanonymized node and an anonymized node) to

be altered. Once those nodes are changed, they and the groups

that those nodes belong to are marked as “unanonymized”.

Finally, in line 18-20, We remove those groups which are

marked as “unanonymized” from CandidateSet and insert

into the group set C again. The anonymization algorithm stops

when all the nodes in the soical network graph are marked as

“anonymized”.

In this algorithm, when we anonymize two nodes, label

generalization and edge insertion are better than node inser-

tion, as they can give rise to less variation to the overall

structure of the graph. Since we only anonymize the nodes
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Fig. 5. Distribution of node degrees
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Fig. 6. Average shortest path length
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with sensitive labels, for the purpose of anonymization, many

nodes with non-sensitive labels can be used to link to the

anonymized nodes. So the modification operation about node

insertion is rarely used. Besides, due to the important property

of real social networks (node degree in power law distribution),

our algorithm can stop very rapidly in practice, and the total

anonymization cost is relatively small.

IV. EVALUATION

In this section, we evaluate our anonymization approach

on both a real data set and two synthetic data sets. All the

evaluations run on a desktop with Intel Core(TM) i3-2330M

2.20GHz, 4G RAM, and Windows 7 Ultimate operating sys-

tem.

A. Data sets

1) Real Data set: We use a real data set (ca-CondMat)

to validate the performance of our anonymization algorithm.

This real data set presents a Arxiv COND-MAT (Condense

Matter Physics) collaboration network [10]. It covers scientific

collaborations between authors, submitted papers to Condense

Matter category in the period from January 1993 to April 2003,

and contains 23133 nodes and 186936 edges. The average

degree of nodes is 8.08. For two author i and j, a undirected

edge from i to j is created in the graph if author i co-

authored a paper with author j. If the paper is co-authored

by k authors, a completely connected (sub)graph on k nodes

will be generated.

Due to the lack of node labels in the ca-CondMat, we use

a random number generator to generate what we need. First,

we assign a uniformly distributed random number in the range

[0,1000] to each node as its label. Then, we also use random

number generator to set half of the total number of nodes

with sensitive attribute, and the remainder nodes are with non-

sensitive attribute.

2) Synthetic Data sets: We use Pajek [11] to generate

some random graphs with scale-free property for large network

analysis. The degree of a scale-free network follows the power

law distribution, at least asymptotically. In our experiments,

the default number of nodes is 1000, and we use two kinds

of graphs with different average node degree in synthetic data
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Fig. 8. Aggregate query result on the ca-CondMat dataset

sets, namely 4 and 6. In order to assign a label to each node

and set whether it is a sensitive label or not, we use the same

method as the above in the real data set.

B. Data Utilities

The data utilities are mainly based on the preservation of

some graph properties. In our experiment, we adopt several

measurements to measure the utilities of the anonymized

graph. The first measurement is degree distribution, which

is the probability distribution of degrees of all nodes over

the whole network. The second measurement is average path

length. It is defined as the average number of steps along

the shortest paths for all possible pairs of network nodes.

The last measurement is clustering coefficient, also known as

transitivity. It reflects the degree to which nodes in a graph

tend to cluster together. We test these measurements on real

data set and synthetic data sets, respectively. Besides, we test

on the real data set whether the anonymized graph can be used

to answer aggregation queries.

Fig. 5-7 show some graph properties and experimental

results for the two data sets. In Fig. 5, we compare the

distribution of node degrees in original graph with that in

the anonymized graph with l = 2, 4, 6, 8. We observe that,

the number of nodes with low degree in anonymized graph is

smaller than the number in the original graph, especially when

the degree is 1 and 2. The reason is that our anonymization

algorithm processes nodes in the degree descending order,

and many low degree nodes are used to anonymize those

nodes with high degree. From the overall view, the degree

distributions between the anonymized graph and the original

graph are very similar, especially when l is small. Fig. 6 shows

the results of average shortest path length in the three graphs.

As the edge insertion is conducted during anonymization, the

average shortest path length of anonymized graph decreases

slightly. However, the value in the anonymized graph is still

close to the original value. We also plot the clustering co-

efficient (CC) of the anonymized graph and original graph in

Fig. 7. The clustering co-efficient in the anonymized graph is

tending towards stability when l = 8, 10. This is because,

some new nodes are created to anonymize the graph as l
increases. Besides, We can see that the clustering co-efficient

distributions between the anonymized graph and the original

graph are quite similar. Even then l = 8, the difference is only

0.021 in the ca-CondMat data set.

To further evaluate the utility of the anonymized graph, we

conduct the aggregation queries on the ca-ConMat data set.
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Fig. 9. Information loss on various synthetic datasets

For any two different labels l1 and l2, we calculate the average

shortest path length from the node with label l1 to the node

with label l2. If d and d′ are denoted as the average shortest

path length in the original graph and in the anonymized graph,

separately, the error rate is (d− d′)/d. Since some labels are

generalized to super-label in the anonymized graph, we adopt

a probabilistic approach to randomly sample a graph which

is consistent with the anonymized graph [19]. That is, for

each node with super-label, we choose a random label from

this super-label to assign the node as its label. We conduct

this process several times to generate 10 sample graphs and

perform the queries over these resulting graphs to get a average

value. We randomly choose 20 different label pairs from the

data set, then calculate their average error rate. The related

results are shown in Fig. 8. We compare our approach with k-

anonymity method [4]. The result of k-anonymity is slightly

better than our approach. However, it cannot protect nodes’

sensitive attributes. From Fig. 8, we can see that the error rate

is relatively small even when l is up to 25.

C. Information Loss

To measure the information loss during anonymization, we

first need to set the parameters α, β and γ. We use the

same method as [4] to test the impact of the three parameters

on the anonymization cost. In this method, we set β to 10
as the base, and vary the values of α and γ to measure

the label generalization cost and the number of nodes added

on the synthetic data sets. Due to space limitation, we omit

some experimental results, such as the tradeoff between label

generalization and nodes added. We see that, when α = 65,

β = 10 and α = 25, the total anonymization cost is minimum.

We compare information loss of our approach and the fol-

lowing baseline algorithm. In this algorithm, when anonymiz-

ing two nodes’ label-neighborhood graphs, we use a degree-

first and label-later method to try to match nodes in the two

label-neighborhood graphs. The other parts of this algorithm

are the same with our algorithm in this paper.

We test anonymization costs on the two synthetic data sets,

and the parameters α, β and γ in two algorithms are set to

65, 10 and 25, respectively. The related results are shown in

the Fig. 9. We can observe that, our approach surpasses the

baseline algorithm. When l increases, the information loss also

increases. Besides, when the average node degree increases,

the information loss increases as well. This is because, the

nodes’ label-neighborhood graphs are more complicated in the



dense graph and we need more edges and nodes to anonymize

different label-neighborhood graphs.

V. RELATED WORKS

Privacy protection for social network data was first pre-

sented in [9], where they showed that naive anonymization

is insufficient to protect users from privacy leaking, as the

structure of the published social network might reveal the

identity of the individuals, and discussed both active and

passive attacks using small subgraph. Hay et al. [12] empha-

sized this problem and quantified the risk of re-identification,

then they proposed that we need to protect privacy against

this subgraph background knowledge. However, they did not

provide a solution to counter these attacks. Being aware of

this problem, several works in [13]–[18] proposed methods

that could be used to anonymize the social network graph

while providing certain privacy guarantee.

Most of the above works in privacy preserving publishing of

social network aim at the issue of node re-identification, which

means that the adversary is not able to link any individual to

a node with high confidence in the published social network.

Zhou and Pei [4], [20] and Yuan et al. [21] first considered

that social networks were modeled as labeled graphs, which

is similar to what we consider in this paper. To resist re-

identification attacks by attackers with one-hop neighborhood

structural background knowledge, Zhou and Pei [4] proposed

a k-anonymity method that each node must have at least k−1
others with the same neighborhood structure, and they focused

on the case of labels drawn from a hierarchy. However, as with

the situation of microdata, a social network graph that satisfies

a k-anonymity privacy requirement may still leak sensitive

information. This problem had been identified in [5]. In [20],

to protect the textual attributes of users as well, the idea of

ℓ-diversity was introduced by them to offer stronger privacy

guarantee. However, Zhou and Pei did not have a systematic

introduction to ℓ-diversity method. Besides, they have different

problem background with us in this paper. Yuan et al. [21]

considered that users have different privacy demands, and

classified privacy requirements into three levels. To every

level privacy demand, they designed corresponding methods to

anonymize the social network graph. Nevertheless, they did not

consider neighborhood information of both network structure

and labels of neighbors as background knowledge possessed

by the attackers. Once attackers have label information of n-

odes, their methods cannot achieve the same privacy guarantee

as ours.

Our work is mainly to study and solve privacy issues when

outsourcing a social network to a cloud. The area is still in

its initial stage. To our best knowledge, the work in [22], [23]

were the first to consider this problem in this area. However,

they only devoted to the issue of node re-identification. In

our work, we also protect the sensitive attributes of users

from being disclosed and identify a more comprehensive and

practical attack model. Our method can offer stronger privacy

guarantees.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the issues on the protection of

the identities and sensitive attributes of users when publishing

an outsourced social network in a cloud. We have considered

a more comprehensive and reasonable attack, namely label-

neighborhood attack, where attackers possess the background

knowledge about a node’s neighborhood structure and the

labels of its neighbors, and can utilize this background knowl-

edge to infer the identity and sensitive labels of targets.

To resist this attack, we have proposed GSGA to prevent

users sensitive information from being leaked. The approach

offers stronger privacy guarantees than existing work. Our

evaluation results on both real data set and synthetic datasets

have indicated that the social network anonymized by our

GSGA method can still be used to answer aggregation queries

with satisfying accuracy. For future work, we will consider

how to protect against d-label-neighborhood (d > 1) attacks.

Moreover, we will try to introduce stronger privacy methods

to protect the privacy in outsourced social network. e.g., t-
closeness and differential privacy.
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