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a b s t r a c t

In recent years, a large number of data mining tools were developed, which may reveal costumers’ pri-
vacy if proper protection measure is not taken. On the other hand, customers are becoming increasingly
concerned about privacy. They are reluctant to provide personal information unless privacy-preserving
techniques are used. In this paper, we propose a privacy-preserving protocol for mining support counts,
which maintains high accuracy and strong privacy while achieving very good efficiency. Compared with
existing works with similar privacy and accuracy guarantees, our solution is much more efficient. We use
identity-based cryptography, which has an additional advantage that no public key certificate is needed.
Further, our evaluation results show that the protocol is very efficient and practical.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, large amounts of consumer data were tracked by auto-
mated systems on the Internet. These data contain a lot of personal
information. In many cases, data mining may be misused to reveal
customers’ privacy if proper measure is not taken. This results in
that many customers are unwilling to provide personal informa-
tion unless the privacy of sensitive information is guaranteed. So
privacy-preserving data mining (Lindell and Pinkas, 2000; Agrawal
and Srikant, 2000) has become an important problem.

Generally, there are two categories of approach for privacy-
preserving data mining: perturbation-based approaches and
cryptography-based approaches. Existing approaches based on
perturbation (Agrawal and Srikant, 2000; Agrawal and Aggarwal,
2001; Du and Zhan, 2003; Evfimievski et al., 2003, 2002; Rizvi
and Haritsa, 2002) are efficient, but suffer from the tradeoff be-
tween privacy and accuracy. Approaches based on cryptography
(Lindell and Pinkas, 2000; Jagannathan et al., 2006; Jagannathan
and Wright, 2005; Kantarcioglu and Clifton, 2002; Kardes et al.,
2005; Vaidya and Clifton, 2002, 2003, 2004; Wright and Yang,
2004; Yang et al., 2005a,b) can provide strong privacy and high
accuracy, but induce heavy computational workload. To make
the mining practical, an approach that is fully private, fully
accurate and sufficiently efficient is highly needed.

In this paper, we particularly consider the problem of mining
support count in a fully distributed scenario. In this scenario, each

customer maintains a piece of data, and a data miner wishes to
count the number of pieces of data that support some pattern.
We design an efficient protocol for this problem that preserves
strong privacy without losing any accuracy. Our protocol is based
on identity-based cryptography. Here, identity-based cryptogra-
phy is a well-accepted key authentication technique that allows
any party to generate a public key from the unique identity (e.g.,
a user’s ID or email address). Consequently, the public keys in
our protocol can be distributed before establishing of private keys.
This saves the overhead for certificating the public key and makes
our protocol widely applicable in many situations.

In summary, our contributions are as follows:

– We propose a protocol for support count that preserves strong
privacy without losing any accuracy.

– There is no need for public key certificate in our protocol, due to
advantage of identity-based cryptography.

– Our protocol requires only one round of interaction between the
miner and each user, and does not need communication chan-
nels between the users.

– We did extensive evaluations. The evaluation results show that
the protocol is very efficient and practical. Using our protocol,
the processing time for the miner to survey 10,000 users is only
420 ms.

The rest of this paper is organized as follows: in Section 2 we
present related work. In Section 3, we introduce some preliminar-
ies. In Section 4, we present our identity-based privacy-preserving
mining protocol, prove its correctness, and analyze its privacy. In
Section 5, we show the results of evaluation on our protocol. Final-
ly, we conclude the paper and point out future work in Section 6.
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2. Related work

To solve privacy-preserving data mining problem, there are two
main categories of approach: perturbation-based approaches and
cryptography-based approaches.

Approaches (Agrawal and Srikant, 2000; Agrawal and Aggarwal,
2001; Du and Zhan, 2003; Evfimievski et al., 2003, 2002; Rizvi and
Haritsa, 2002) are based on perturbation of each customer’s data.
Generally, these approaches are efficient, but rely on a tradeoff be-
tween privacy and accuracy: the more accurate result the miner
gets, the less privacy can each customer preserves, and vice versa.
Since perturbation-based approaches cannot achieve high accuracy
and strong privacy simultaneously, their range of usage is limited.
It has been shown by Kargupta et al. (2003) that arbitrary data per-
turbation does not preserve privacy as we expected. Huang et al.
(2005) further studied why and how correlations affect privacy
and identified other potential factors that can influence privacy.

In contrast, the cryptography-based approaches, proposed by
Lindell and Pinkas (2000), Jagannathan et al. (2006), Jagannathan
and Wright (2005), Kantarcioglu and Clifton (2002), Kardes et al.
(2005), Vaidya and Clifton (2002, 2003, 2004), Wright and Yang
(2004), Yang et al. (2005a), and Yang et al. (2005b), provide mining
solutions with strong privacy and high accuracy. But these ap-
proaches are not as efficient as the perturbation-based approaches.
The problem solved here can be referred to as secure multiparty
computation (SMC). Some of the cryptography-based solutions rely
on expensive protocols for general purpose SMC (Goldreich et al.,
1987; Yao, 1986), while others design their own special-purpose
protocols. However, as far as we know, all solutions applicable to
our support count problem do not have sufficient efficiency to be
really practical.

A class of closely related works (Agrawal and Srikant, 2000;
Agrawal and Aggarwal, 2001; Evfimievski et al., 2003; Gilburd
and Wolff, 2004) studied the foundations for measurement of the
effectiveness of privacy preserving data mining algorithms. Confi-
dentiality models in statistical databases are given by Dinur and
Nissim (2003) and Dwork and Nissim (2004), respectively.

Unlike previous approaches, Fu et al. (2005) presented a semi-
join based approach, without using cryptography, to address pri-
vacy-preserving frequent pattern mining in a star schema with
two-dimension sites. Their result is interesting but their model
and assumptions are significantly different from ours.

Yet another piece of related work is cryptographic randomized
response techniques proposed by Ambainis et al. (2004), which
guarantees that respondents reply based on the desired probability
distributions, under the premise that privacy for the respondents
are guaranteed statistically. However, their approaches still has
to be tradeoff between privacy and accuracy. In contrast, our pro-
tocol guarantees strong privacy and high accuracy at the same
time.

3. Technical preliminaries

In this paper, we consider the support count problem in a dis-
tributed user–miner scenario and propose an efficient protocol
which preserves strong privacy in the semi-honest model. The
privacy of our protocol is based on a variant of the decisional
Diffie–Hellman assumption(DDH) called decisional bilinear Dif-
fie–Hellman (decisional BDH) assumption. The protocol is based
on bilinear maps between groups. The Weil pairing on ecliptic
curves is an example of such a mapping.

In this section, we first present the model of our support count
problem and define the required privacy. Then we recall the defini-
tion of admissible bilinear map and decisional BDH assumption, on
which the privacy of our protocol is based. Finally, we briefly

review the Boneh–Franklin identity-based encryption scheme
(Boneh and Franklin, 2001), on which our protocol is based.

3.1. Problem definition

In our model, we assume that a miner wants to mine a support
count on a database or a series of transactions; the database or
transactions are distributed among n users fU1;U2; . . . ;Ung and
each user holds a piece of data (e.g., a record of a database or a
transaction); each user Ui outputs a binary value bi (either 1 or
0) indicating whether the data it holds matches the pattern or
not.

The objective is letting the miner compute the sum b ¼
P

bi

without learning anything about users’ data. We also require that:

– There is only one round of communication between each user
and the miner.

– Users do not communicate with each other.

3.2. Definition of privacy

In the data-mining setting, an adversary can always alter its in-
put to get some information from other party’s database. Although
this attack can be mitigated by adding noise to data (e.g., perturba-
tion), the outcome is still not as good as we expected (Kargupta
et al., 2003). Here we consider the case in semi-honest model, in
which the adversary correctly follows the protocol specification,
but attempts to learn additional information by analyzing the tran-
script of messages received during the execution. Semi-honest
model is a well-accepted model used in many previous works, such
as Lindell and Pinkas(2000), Vaidya and Clifton(2002, 2003, 2004),
Wright and Yang (2004), Yang et al. (2005a,b), and Fu et al. (2005).
It was shown by Goldreich (2001) that given a multi-party protocol
that is secure in the semi-honest model, a protocol that is secure in
the malicious model, in which the adversary can arbitrarily deviate
from the protocol specification, can be constructed.

We use a simplified form of the standard definition of security
in the static semi-honest model due to Goldreich (2001).

Definition 1 (Computational indistinguishability). Two ensembles,

X ¼deffXwgw2S and Y ¼deffYwgw2S where S # f0;1g�, are computational
indistinguishable, denoted X�c Y if the following holds:

For every polynomial time circuit family, fCngn2N, every possible
polynomial pð�Þ, every sufficient large n, and every
w 2 S

T
f0;1g�,

jPr½CnðXwÞ ¼ 1� � Pr½CnðYwÞ ¼ 1�j < 1
pðnÞ ð1Þ

Specifically, in our definition of privacy, we consider the possibil-
ity that some users conclude with the miner to derive the private
information of honest users. We require that no more private infor-
mation other than the sum can the miner get from the honest users
even with help of corrupted users. Observe that, users cannot get any
more information than the miner in our model, so we do not have to
consider the case that users share information with each other.

Definition 2. Assume that each user Ui has a private key k and a
public key Pub. A protocol for the above defined mining problem
protects each customer’s privacy against the miner and t corrupted
users in the semi-honest model if, 8I # f1; . . . ;ng such that jIj ¼ t,
there exists a probabilistic polynomial-time algorithm M such
that

fMðb; ½bi; k�i2I; PubÞg�c fviewminer;fUigi2I
ð½bi; k�ni¼1Þg ð2Þ
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Here, M is also called a simulator that can generate an ensem-
ble computational indistinguishable from the miner and the cor-
rupted users’ view using only public keys, miner’s knowledge
and corrupted users’ knowledge.

3.3. Admissible bilinear map

Now we briefly review the bilinear maps ( Joux, 2000; Miller,
2004).

Let G1 and G2 be two groups of order q for some large prime q.
The bilinear map ê : G1 �G1 ! G2 required by our protocol must
has the following properties:

(i) Bilinear: We say that a map ê : G1 �G1 ! G2 is bilinear if
êðaP; bQÞ ¼ êðP;QÞab for all P;Q 2 G1 and all a; b 2 Z.

(ii) Non-degenerate: It does not map all pairs in G1 �G1 to ele-
ments in G2. We note that since G1 and G2 are groups of
prime order, if P is a generator of G1 then êðP; PÞ is a gener-
ator of G2.

(iii) Computable: There exists an efficient algorithm to compute
êðP;QÞ for any P;Q 2 G1.

A bilinear map that satisfies all the three properties above is
said to be an admissible bilinear map.

3.4. Decisional bilinear Diffie–Hellman assumption

As we stated before, the privacy of our protocol is based on deci-
sional BDH assumption. In this section, we review the standard
decisional BDH assumption.

Definition 3 (Bilinear Diffie–Hellman problem). Let G1 and G2 be
two cyclic groups of order q for some large prime q. Let ê : G1�
G1 ! G2 beanadmissiblebilinearmapandPbeageneratorofG1.The
BDH problem in hG1;G2; êi is defined as follows: given hP; aP; bP; cPi
for some a; b; c 2 Z�q, compute W ¼ êðP; PÞabc 2 G2. An algorithm A

has advantage � > 0 in solving BDH problem in hP; aP; bP; cPi if

Pr½AðP; aP; bP; cPÞ ¼ êðP; PÞabc�P � ð3Þ

where the probability is over the random choice of a, b, c in Z�q, the
random choice of P 2 G�1, and the random bits of A.

Similarly, we have the decisional BDH problem.

Definition 4 (Decisional bilinear Diffie–Hellman problem). Let G1

and G2 be two cyclic groups of order q for some large prime q. Let
ê : G1 �G1 ! G2 be an admissible bilinear map and P be a
generator of G1. The decisional BDH problem in hG1;G2; êi is
defined as follows: given hP; aP; bP; cPi for some a; b; c 2 Z�q, an
algorithm B that outputs d 2 f0;1g has advantage � > 0 in solving
decisional BDH problem in hP; aP; bP; cPi if

jPr½BðP; aP; bP; cP; êðP; PÞabcÞ ¼ 0��
Pr½BðP; aP; bP; cP; TÞ ¼ 0�jP �

ð4Þ

where the probability is over the random choice of a, b, c in Z�q, the
random choice of P 2 G�1, the random choice of T 2 G�2, and the ran-
dom bits of B.

Definition 5 (Decisional bilinear Diffie–Hellman assumption). We
say that the decisional ðt; �Þ-BDH assumption holds in hG1;G2; êi
if no t-time algorithm has advantage at least � in solving the deci-
sional BDH problem in hG1;G2; êi.

Occasionally, we drop the t and � and refer to the decisional
BDH assumption in hG1;G2; êi.Hardness of decisional BDH: So far,
there is no proof of hardness of decisional BDH problem. However,

no algorithm is known to be able to solve this problem either. We
refer to a survey ( Joux, 2002) for a detailed analysis of BDH
problem.

3.5. Boneh–Franklin identity-based encryption scheme

Our technique on support count uses Boneh–Franklin identity-
based encryption scheme (Boneh and Franklin, 2001). Their
scheme is a tuple of four algorithms hSetup; Extract; Encrypt;
Decrypti as follows:

– The Setup algorithm creates a tuple of system parameters
hq;G1;G2; ê; P; PPub;H1i and a master-key s, where
� G1 and G2 are two groups of order q for some large prime q.
� ê : G1 �G1 ! G2 is an admissible bilinear map.
� P is a random generator in G1.
� s is randomly picked from Z�q.
� PPub is set as PPub ¼ sP.
� H1 is a cryptographic hash function defined as

H1 : f0;1g� ! G�1.

– The Extract algorithm takes as input the master secret-key and a
given ID 2 f0;1g�, and returns the corresponding private key dID.

– The Encrypt algorithm takes as input the public parameters, an
identity ID 2 f0;1g�, and a message M, then outputs a ciphertext
C = Encrypt(ID, M).

– The Decrypt algorithm takes as input an identity ID, an associ-
ated private key dID, and a ciphertext C, then outputs a message
M ¼ DecryptdID

ðID;CÞ.

4. Identity-based privacy-preserving support count protocol

In this section, we go to the detail of our support count protocol,
prove its correctness and analyze its privacy.

4.1. Protocol

In our protocol, every user Ui has two identities IDi;1 2 f0;1g� and
IDi;2 2 f0;1g�, and knows the system parameters hq;G1;G2;

ê; P; PPub;H1i as defined in Boneh–Franklin IBE scheme. Additionally,
we introduce another cryptographic hash function H2 : f0;1g� ! Z�q.

Ui gets her private key hxi; yii from the Extract algorithm. Here

xi ¼ sPIDi
; where PIDi

¼ H1ðIDi;1Þ;
yi ¼ sQIDi

; where QIDi
¼ H1ðIDi;2Þ;

where s is the master key.
We define

X ¼
Pn
i¼1

riPIDi
;

Y ¼
Pn
i¼1

riQ IDi
;

where ri ¼ H2ðIDi;1kSession IDÞ. Here, k is a concatenation operation.
We note that the protocol requires that every user knows other
users’ identities.

Recall that the objective of the miner is to compute the sum
b ¼

P
bi, where bi is Ui’s binary output, without learning anything

about each user’s input. We define our privacy-preserving support
count protocol as follows:

User:
Each user Ui does the following:

(i) computes mi ¼ êðbiP; PÞ � êðX; yiÞ
ri ,

(ii) computes ni ¼ êðY; xiÞri ,
(iii) and sends Ci ¼ hmi;nii to miner.

82 F. Wu et al. / Pattern Recognition Letters 30 (2009) 80–86
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Miner:
The miner first computes Z ¼

Qn
i¼1

mi
ni

. Then it tests b, whose
value is from 1 to n. If êðP; PÞb ¼ Z then outputs b. Otherwise, it
fails to find such a b, and outputs failure.

4.2. Correctness

We prove the correctness of our protocol in this section.

Theorem 6. The above protocol for support count correctly computes
the sum of all users’ outputs.

Proof. Now, we show that the miner can figure out the desired
sum b by following the above protocol.

Z ¼
Yn

i¼1

mi

ni

¼
Yn

i¼1

êðbiP; PÞ � êðX; yiÞ
ri

êðY ; xiÞri

¼
Yn

i¼1

êðbiP; PÞ �
Yn

i¼1

êðX; riyiÞ
êðY; rixiÞ

¼ êðX;
Pn

i¼1riyiÞ
êðY;

Pn
i¼1rixiÞ

�
Yn

i¼1

êðP; PÞbi

¼ êðX; sYÞ
êðY; sXÞ � êðP; PÞ

Pn

i¼1

bi

¼ êðX; YÞs

êðY;XÞs
� êðP; PÞ

Pn

i¼1

bi

¼ êðX; YÞs

êðX; YÞs
� êðP; PÞ

Pn

i¼1

bi

¼ êðP; PÞ
Pn

i¼1

bi

Given êðP; PÞb ¼ Z, thus êðP; PÞb ¼ êðP; PÞ
Pn

i¼1
bi . It is follows that

b ¼
Pn

i¼1bi.
h

4.3. Privacy analysis

In this section, we prove the privacy guarantee of our pro-
tocol using a simplified form of a public key encryption
scheme, called BasicPub, which is proposed by Boneh and
Franklin (2001). The simplified BasicPub is described as
follows:

Setup:
The algorithm works as follows:

(i) Let G1 and G2 be two cyclic groups of order q, here q is a
large prime. Let ê : G1 �G1 ! G2 be an admissible bilin-
ear map. Choose a random generator P 2 G1.

(ii) Pick a random s 2 Z�q and set PPub ¼ sP. Pick a random
QID 2 G�1.

The message space is M ¼ G2. The ciphertext space is
C ¼ G�1 �G�2. The public key is hq;G1;G2; ê; P; PPub;Q IDi. The pri-
vate key is dID ¼ sQID 2 G�1.

Encrypt:
To encrypt M 2M, choose a random r 2 Z�q, and set the cipher-
text to be

C ¼ hrP;M � êðQ ID; PPubÞri

Decrypt:
Let C ¼ hU;Vi be a ciphertext encrypted using the public key
hq;G1;G2; ê; P; PPub;Q IDi. To decrypt C using the private key
dID 2 G�1 compute:

V � êðdID;UÞ�1 ¼ M

This completes our simplified BasicPub. Before going to the
proof of privacy of our protocol, we first show that the simplified
BasicPub is a semantically secure encryption scheme (IND-CPA) if
the decisional BDH assumption holds in hG1;G2; êi.

Lemma 7. The simplified BasicPub stated above is a semantically
secure encryption scheme (IND-CPA) assuming that decisional BDH
assumption holds in hG1;G2; êi.

Proof. Suppose A has advantage � in attacking the simplified Bas-
icPub. Then we construct an algorithm B that can solve the deci-
sional BDH problem in hG1;G2; êi. Algorithm B is given as input
the decisional BDH parameters hq;G1;G2; êi and a random instance
hP; aP; bP; cP; Ti ¼ hP; P1; P2; P3; Ti that is either sampled from PBDH

(where T ¼ êðP; PÞabc) or from RBDH (where T is uniform and inde-
pendent in G2). Algorithm B’s goal is to output 1 if T ¼ êðP; PÞabc

or 0 otherwise, by interacting with A as the following game:

Setup:
Algorithm B creates the simplified BasicPub public key
KPub ¼ hq;G1;G2; ê; P; PPub;QIDi by setting PPub ¼ P1 and Q ID ¼
P2, and gives it to A. Observe that the private key associated
to KPub is dID ¼ aQID ¼ abP, which is unknown.

Phase 1:
A issues qs private key queries. To respond to these queries, algo-
rithm B maintains a list of tuples hXi;Yii. The list is empty in the
beginning. To respond to query Xi, algorithm B does as follows:

(i) If the query Xi already exists on the list in a tuple hXi;Yii,
it responds with Yi.

(ii) Otherwise, B picks a random element Yi 2 G�2, add the
tuple hXi;Yii to the list, and responds with Yi.

Challenge:
When A decides that Phase 1 is over, it outputs two messages
M0;M1 2 G2 on which it wishes to be challenged. Algorithm B

picks a random bit d 2 f0;1g, defines C to be the ciphertext
C ¼ hP3;Md � Ti, and gives C as the challenge to A. Observe that,
if T ¼ êðP; PÞabc then C is a valid encryption of Md under the pub-
lic key KPub. On the other hand, when T is uniform and indepen-
dent in G2, then C is independent of d in A’s view.

Phase 2:
A continues to issue queries not issued in Phase 1. Algorithm B

responds the same way as before.

Guess:
A outputs a guess d0 2 f0;1g. Then algorithm B outputs 1
meaning T ¼ êðP; PÞabc if d ¼ d0, or 0 meaning T–êðP; PÞabc

otherwise.

When the input instance is sampled from PBDH (where
T ¼ êðP; PÞabc), A’s view is identical to the view in a real attack
game. Then A satisfies jPr½d ¼ d0� � 1=2j > �. On the other hand,
when the sampled instance is from RBDH (where T is uniform and
independent in G2), A satisfies Pr½d ¼ d0� ¼ 1=2. So we have

jPr½BðP; aP; bP; cP; êðP; PÞabcÞ ¼ 0��
Pr½BðP; aP; bP; cP; TÞ ¼ 0�jP jð12	 �Þ � 1

2 j ¼ �

F. Wu et al. / Pattern Recognition Letters 30 (2009) 80–86 83
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where the probability is over the random choice of a, b, c in Z�q, the
random choice of P 2 G�1, the random choice of T 2 G�2, and the ran-
dom bits of B. This completes the proof. h

Our protocol takes advantage of the homomorphic property of
bilinear: êðP1;QÞ � êðP2;QÞ ¼ êðP1 þ P2;QÞ.

Next theorem shows that our protocol protects users’ pri-
vacy as long as simplified BasicPub is semantically secure
(IND-CPA), even if up to n� 2 users corrupt with the
miner.

Theorem 8. If all keys are distributed properly before the protocol
starts, our protocol will protect honest users’ privacy against the miner
and up to n� 2 corrupted users.

Proof. It is sufficient to consider the case of up to n� 2 users col-
lude with the miner in our scenario. Without loss of generality, we
assume that I ¼ f3;4; . . . ;ng. As previously stated, we also con-
struct a simulator M, which will finish in polynomial time, to gen-
erate an ensemble using only the public keys, the miner’s
knowledge and the corrupted users’ knowledge. So far, we can
state that the miner and the corrupted users jointly learn nothing
beyond b.

Note that the simplified BasicPub is semantically secure, and
each cipher-text of the simplified BasicPub can be simulated
(Goldreich, 2001). Since our protocol is based on the simplified
BasicPub, we can combine our simulator M with a polynomial-
time simulator for simplified BasicPub cipher-texts. This completes
our simulator.

Next, we show the algorithm that computes the view of the
miner and the corrupted users. It takes the following four
encryptions as input:

ðu11; v11Þ ¼ ðr1Q ID1
; êðb1P; PÞ � êðr1PID1 ; y1Þ

r1 Þ

ðu12; v12Þ ¼ ðr2PID2 ; êðx2; r1Q ID1
Þr2 Þ

ðu21; v21Þ ¼ ðr1PID1 ; êðb2P; PÞ � êðx1; r2Q ID2
Þr1 Þ

ðu22; v22Þ ¼ ðr2Q ID2
; êðr2PID2 ; y2Þ

r2 Þ

Then it computes m1,m2, n1, and n2 as follows:

m01 ¼ v11v12ê
P
i2I

rixi;Q ID1

� �r1

m02 ¼ v21v22ê
P
i2I

rixi;Q ID2

� �r2

n01 ¼ v11v21ê
P
i2I

riyi; PID1

� �r1

ê b�
P
i2I

bi

� �
P; P

� ��

n02 ¼ v12v22ê
P
i2I

riyi; PID2

� �r2

Next we show that the combined simulator’s output is indistin-
guishable from the adversary’s view. To do this, we actually show
that, if our simulator M has the four encryptions m1;n1;m2;n2

(rather than the simulated values for these encryptions generated
by the simulator of BasicPub), then the output of M is identical to
the adversary’s view. Consequently, when we combine the two
simulators (i.e., when we replace the four encryptions with the
output of the simulator for BasicPub), the output of the combined
simulator is indistinguishable from the adversary’s view (because
the output of the simulator for BasicPub is indistinguishable from
the four encryptions).

Below are our derivations for m01 ¼ m1 and n01 ¼ n1. The
derivation for m02 ¼ m2 and n02 ¼ n2 are similar.

m01 ¼ v11v12ê
X
i2I

rixi;Q ID1

 !r1

¼ êðb1P; PÞ � êðr1PID1 ; y1Þ
r1 � êðx2; r1Q ID1

Þr2 � ê
X
i2I

rixi;Q ID1

 !r1

¼ êðb1P; PÞ � êðr1PID1 ; sQID1
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5. Evaluations

We implemented our privacy-preserving support count proto-
col using the PBC libraries (pairing-based cryptography library),
which is a C library based on the GMP library that contains routines
that aid the implementation of pairing-based crypto-systems, for
the cryptographic operations. We ran a series of evaluations on a
laptop with a 1.4 GHz processor and 768MB memory under RedHat
Linux 9. In our evaluations, the length of each cryptographic key is
set to 512 bits. We measure the computational time of the privacy-
preserving support count protocol for different numbers of cus-
tomers, from 2000 to 10,000.

We use the curve y2 ¼ x3 þ x over the field Fq for a large prime q.
It turns out #EðFqÞ ¼ qþ 1 and #EðFq2 Þ ¼ ðqþ 1Þ2. We choose
q � �1 mod 12 so we can implement Fq2 as Fq½i� (where i ¼ sqrt
ð�1Þ).

In the setup phase, it takes only 27.0 ms to generate the private
key for each user. Before each time of mining, the protocol
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parameters, X and Y, should be computed, which takes 54.9 s for
2000 users. This may look expensive. However, this computation
can be performed before the protocol starts, since these two
parameters are computed only based on user IDs and session IDs.
So computing X and Y does not really slow down our mining
protocol.

Fig. 1 demonstrates that using our privacy-preserving support
count protocol, the length of average time for computing cipher-
text in different cases is almost same, which is about 52.6 ms. This
amount of time is mainly for two bilinear mappings. In our sce-
nario, since bi is 0 or 1, êðbiP; PÞ has only two possible values cor-
responding to 0 and 1, respectively. So we can reduce a bilinear
mapping, which is time consuming, by introducing a case opera-
tion. This saves one third of the computational time.

As shown in Fig. 2, the miner’s computational time is roughly
linear with the number of users. Although it is a little longer than
the cipher time of a single user, it is still very efficient. The compu-
tational time is 420 ms, even in case of 10,000 users.

Our evaluations show that the support count protocol is capable
for large scale privacy-preserving support count.

6. Conclusion and future work

In this paper, we propose a privacy-preserving support count
protocol to solve the problem of surveying a large number of cus-
tomers without revealing users’ private input, in a fully distributed
scenario. Our protocol preserves strong privacy without losing any
accuracy. Further, we did extensive evaluations, and the results
show that our protocol is very efficient.

This paper deals with the case of horizontally partitioned data
over each user. One of the open problem is whether we can design
such a efficient support count protocol suitable with the case of
vertically partitioned data among different parties. Yet, another
problem is whether we can combine our protocol with perturba-
tion techniques to further improve efficiency without losing any
accuracy or only losing acceptable accuracy. However, we leave
these as issues for future work.

References

Agrawal, D., Aggarwal, C., 2001. On the design and quantification of privacy
preserving data mining algorithms. In: Proceedings of the 20th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, ACM Press, pp.
247–255.

Agrawal, R., Srikant, R., 2000. Privacy-preserving data mining. In: Proceedings of the
Sixth ACM SIGMOD International Conference on Management of Data, ACM
Press, pp. 439–450.

Ambainis, A., Jakobsson, M., Lipmaa, H., 2004. Cryptographic randomized response
techniques. In: Proceedings of the PKC 2004 International Workshop on Practice
and Theory in Public Key Cryptography, Springer-Verlag, pp. 425–438.

Boneh, D., Franklin, M., 2001. Identity-based encryption from the weil pairing. In:
Advances in Cryptology – CRYPTO, vol. 2139. LNCS, pp. 213–229.

Dinur, I., Nissim, K., 2003. Revealing information while preserving privacy. In:
Proceedings of 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, ACM Press, pp. 202–210.

Du, W., Zhan, Z., 2003. Using randomized response techniques for privacy-
preserving data mining. In: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data mining, ACM
Press, pp. 505–510.

Dwork, C., Nissim, K., 2004. Privacy-preserving datamining on vertically
partitioned databases. In: Advances in Cryptology – CRYPTO, vol. 3152.
LNCS, pp. 528–544.

Evfimievski, A., Gehrke, J., Srikant, R., 2003. Limiting privacy breaches in privacy
preserving data mining. In: Proceedings of the 22nd ACM SIGMOD-
SIGACTSIGART Symposium on Principles of Database Systems, ACM Press, pp.
211–222.

Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J., 2002. Privacy preserving mining
of association rules. In: Proceedings of Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM Press, pp. 217–228.

Fu, A., Wong, R., Wang, K., 2005. Privacy-preserving frequent pattern mining across
private databases. In: Proceedings of the ICDM Workshop on Privacy and
Security Aspects of Data Mining.

Gilburd, B., Schuster, A., Wolff, R., 2004. k-TTP: A new privacy model for large-scale
distributed environments. In: Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, ACM Press,
pp. 563–568.

Goldreich, O., 2001. Foundations of Cryptography. Basic Tools, vol. 1. Cambridge
University Press.

Goldreich, O., Micali, S., Wigderson, A., 1987. How to play any mental game. In:
Proceedings of the 19th Annual ACM Conference on Theory of Computing, ACM
Press, pp. 218–229.

Huang, Z., Du, W., Chen, B., 2005. Deriving private information from randomized
data. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM Press, pp. 37–48.

Jagannathan, G., Pillaipakkamnatt, K., Wright, R.-N., 2006. A new privacy-preserving
distributed k-clustering algorithm. In: Proceedings of the SDM SIAM
International Conference on Data Mining.

Jagannathan, G., Wright, R.N., 2005. Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In: Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, ACM
Press, pp. 593–599.

Joux, A., 2000. A one round protocol for tripartite Diffie–Hellman. In: Proceedings of
the Fourth ANTS-IV International Symposium on Algorithmic Number Theory,
pp. 385–394.

Joux, A., 2002. The weil and tate pairings as building blocks for public key
cryptosystems. In: Proceedings of the Fifth ANTS-V International Symposium on
Algorithmic Number Theory, Springer-Verlag, pp. 20–32.

Kantarcioglu, M., Clifton, C., 2002. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. In: Proceedings of the
DMKD ACM SIGMOD Workshop on Research Issues on Data Mining and
Knowledge Discovery, pp. 24–31.

Kardes, O., Ryger, R.S., Wright, R.-N., Feigenbaum, J., 2005. Implementing privacy-
preserving bayesian-net discovery for vertically partitioned data. In:
Proceedings of the ICDM Workshop on Privacy and Security Aspects of Data
Mining.

Kargupta, H., Datta, S., Wang, Q., Sivakumar, K., 2003. On the privacy preserving
properties of random data perturbation techniques. In: Proceedings of the Third
ICDM IEEE International Conference on Data Mining, pp. 99–106.

Lindell, Y., Pinkas, B., 2000. Privacy preserving data mining. In: Advances in
Cryptology – Crypto2000, vol. 1880. LNCS, Springer-Verlag, pp. 36–53.

Miller, V.S., 2004. The weil pairing, and its efficient calculation. J. Cryptol. 17 (4),
235–261.

52

52.2

52.4

52.6

52.8

53

2000 4000 6000 8000 10000

T
im

e(
m

s)

User Number

User Cipher Time

Fig. 1. Average time used to compute cipher-text, as a function of user number.
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Fig. 2. Time used to decrypt cipher-text and to find d, as a function of user number.
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