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Abstract. With the help of distributed hash tables, the structured peer-
to-peer system has a short routing path and good extensibility. However,
the mismatch between the overlay and physical network is the barrier to
build an effective peer-to-peer system in the large-scale environment. In
this paper, we propose a generic approach to solve this problem, which is
quite different from other protocol-dependent methods. We reserve the
structure of system and break the coupling between the node and its
identifier by swap operations. We also propose several policies to reduce
the traffic overhead. The policies include adaptive probing and shadow
scheme. The experiment shows that our approach can greatly reduce the
average latency of overlay networks and the overhead is controllable.
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1 Introduction

Several recent peer-to-peer (P2P) systems (CAN [1], Chord [2], Pastry [3], etc.)
provide a self-organizing substrate for large-scale P2P applications. These struc-
tured P2P systems can be viewed as providing a scalable, fault-tolerant dis-
tributed hash table (DHT). Any item (content) can be located with in a bounded
number of hops, using a small per-node routing table. However, as a node is
hashed to a random identifier (node ID), the mismatch between physical topolo-
gies and logical overlays is a major factor that delays the lookup response time.
In this situation, “hop” is no longer a reasonable metric to measure the delay. We
usually call it mismatching or topology-aware problem. There are several meth-
ods to solve the problem. Most of methods solve it in two basic steps [4]: 1) to
gather some information about network proximity, and 2) to construct or repair
the overlay network using information above. In order to show the limitations
of recent work, we will discuss these two steps in the following two subsections.

1.1 Collect Proximity Information

To solve the mismatching problem, some sort of proximity information of the
underlying network is needed. There are two general ways which have been pro-
posed – landmark clustering and flooding or heuristic-based search. Landmark
clustering is based on the intuition that nodes close to each other are likely to
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have similar distances to a few landmark nodes. S. Ratnasamy et al [5] utilize
this idea to optimize CAN system. The main limitation of this solution is that
it is a coarse method to discover the proximity of different nodes. Besides, the
landmarks are like servers in the system, introducing some single-point failure
problems [6]. Flooding or heuristic-based search is another choice to get proxim-
ity information. It is like searching method in a P2P system. Instead of getting
contents, it tries to get delay information. In this way, we can gather more de-
tailed knowledge about the physical network than landmark method. However,
uncontrollable searching will be too expensive for topology matching. So the
challenge is to make tradeoff between effectiveness and probing cost.

1.2 Utilize Proximity Information

When we have got some knowledge about the proximity, the next step is to uti-
lize the proximity information to construct or repair the structured peer-to-peer
system. Three basic approaches have been suggested for exploiting proximity
in DHT protocols [7] – proximity routing, proximity neighbor selection and geo-
graphic layout. There are several systems which use one of these three policies.
Topologically-Aware CAN [5] is an example with geographic layout. This ap-
proach unfortunately creates uneven distribution of nodes on the overlay. Pastry
uses proximity neighbor selection to construct the routing table [8]. However,
the ID prefix of Pastry is a constraint to limit the selection range. As a matter
of fact, all of these have a common limitation – protocol-dependent. For instance,
geographic layout ensures that nodes that are close in the network topology are
close in the node ID space, which is only suitable for the system like CAN [9].
Because in CAN, the nearness in node ID means less hops in routing. In systems
like Pastry or Tapestry, we have some degree of freedom to choose nodes in the
routing table. But in Chord or CAN, the entries in routing table are determin-
istic. Proximity routing also has the requirement that there must be more than
one choice for next hop, which is not suitable for systems like Chord.

The further problem is the dynamism in peer-to-peer systems. As nodes ar-
rive or depart, the existing routing tables need to be repaired. Without timely
repairing, the structure of overlay will digress from optimal condition as in-
efficient routes gradually accumulate in routing tables. So an effective overlay
should be adaptive to the system’s dynamic change.

In order to solve all problems mentioned above, we propose a novel method
to make the structured P2P system topology-aware. This method periodically
adjusts the node ID and preserves the structure of P2P systems. By iteratively
reducing the average logical link latency, the overlay trends to match the phys-
ical network. This method is protocol-independent and easy to be built on any
structured P2P systems. Through our experiment based on Chord, we find that
this approach can greatly reduce average logical/physical link latency. Besides,
the overhead of adjustment is very low when using adaptive policies.

This paper is organized as follows. In section 2 we describe our approach
in detail, including basic policy and several overhead-reducing mechanisms. In
section 3, we illustrate the results of our experiment and give some explanations.
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Other related work is introduced in section 4. Finally, in section 5 we conclude
the paper and point out some future work.

2 Variable Node ID

2.1 Basic Method

We propose a novel solution to the mismatching problem of distributed hash
table, which is based on variable node ID. As we know, in a DHT system, one
node is hashed into a unique identifier which is called node ID. Usually, the node
ID will not change during the node’s lifetime. The advantage of this scheme is
obvious. It is very easy to manage a large-area system using these identifiers.
Besides, the hashing process is totally random. In other words, each peer in the
system is anonymous. The disadvantage of invariable node ID is also apparent.
There are many constraints of routing and some constraints are unreasonable.
“Mismatching problem” is an example. Figure 1 gives a mismatching situation. If
node A wants to route a message to B in structure (b), the cost is 12 (A → C →
B) or 14 (A → D → B), both larger than routing in (a). The essential cause of
mismatching is that each node is always combined with an identifier. When one
node joins into the system, its position is unchangeable. We consider whether it
is possible to make the node ID more flexible, without weakening the power of
DHT scheme. There are several guidelines we should follow when making some
kind of node ID varying . First, the change of node ID should not change the
structure of a P2P system. As we mentioned in section 1, the common limitation
of most recent methods is that they rely on the specific protocols. If our change
breaks the original structure, we can not reconstruct it without specific protocol
information. In other words, it will also be protocol-dependent. Second, this
change should not be arbitrary. As we know, one of the basic characteristics of
the P2P system is its anonymity. If the node ID can be changed discretionarily,
the system will become fragile and easily attacked by hackers. Last, the overhead
of changing should be controllable. If the overhead is too expensive, the method
can not achieve good performance.
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Fig. 1. A mismatching example. (a) is the physical topology with four nodes, and the
latencies are marked with integer numbers. (b), (c) are both overlay structures on
that physical topology. We assume that neighbors’ latencies in overlay are the shortest
paths between them. For example, the latency of A → D in (b) is calculate as the path
A → C → D in (a). So it equals to 3.
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Table 1. The notation table

Notation Meaning
t0 the time before nodes a and b swap
t1 the time after nodes a and b swap
Nti(a) the neighbor set of node a at time ti

d(ij) latency between nodes i and j
Lti the accumulated latency value of overlay at ti

We explain our method as follows. In a structured P2P system, each item is
hashed into a unique identifier. All of these identifiers constitute a “ID space”
At the same time, each node also has one identifier. We call the set of these
identifiers “node ID space”. It is a subset of ID space. Regardless of peers’
dynamism, node ID space is relatively invariable. In our method, each node
can not arbitrarily choose an identifier in id space. However, each one has the
freedom to choose a better identifier in the node ID space. In this way, the
logical structure which is built on node ID space will not be broken (following
guideline one). In addition, as the identifiers in node ID space is totally random,
the anonymity will be preserved (following guideline two). To achieve this kind
of node ID re-assignment, the basic operation is swap: swap the node ID, and
exchange the corresponding routing tables. For example, if we want to adjust
the identifiers in figure 1(b) or 1(c), we will just swap node B’s id and D’s or
swap C’s and D’s correspondingly. After the adjustment, the overlay will totally
match the physical network.

Figure 1 just illustrates a simple and ideal case. In a real P2P system, things
are more difficult. Table 1 gives several useful notations for our expression. We
assume there is a swapping try between nodes a and b. Node a is the counterpart
of b, and vice versa. Two different situations t0 and t1 represent the time before
and after a swap . In fact, t1 is not actually the time after the swap, but the
hypothetical time if we make the swap. In addition, Nti(a) represents the neigh-
bor set of node a at time ti. It is worth to emphasize the fact that neighbors
of one node N are not just the entries in its routing table. The nodes which
point to node N should be also included. At the beginning, nodes a and b will
exchange their neighbors’ addresses. Then both of them probe the counterpart’s
neighbors and measure these latencies d(ij). Node a calculates the accumulated
latency of its current neighbors

∑
i∈Nt0 (a) d(ai) and the one if the swap is done

∑
i∈Nt1(a) d(ai). The similar results are calculated by node b. The difference

between before and after swap is shown in equation 1.

Diff =
∑

i∈Nt0 (a)

d(ai) +
∑

j∈Nt0 (b)

d(bj) −
∑

i∈Nt1 (a)

d(ai) −
∑

j∈Nt1 (b)

d(bj) (1)

If Diff > 0, nodes a and b will exchange their identifiers and routing tables.
Unfortunately, in many structured P2P systems, it is not enough to change the
state of these two nodes. The reason is that the routing in most systems is
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unidirectional1. As a result, the change of any node N will impact the nodes
which have an entry E = N in their routing tables. However, the unidirectional
property will not complicate the implementation of our approach. Because the
change of each node can be realized using leave() and join() procedures, which
are already implemented in any P2P system. Until now, we just illustrate a
single swap operation. In a distributed environment, every node will periodically
contact a random node. The TTL-packet is used to realize this contact. At the
beginning, we set TTL = k. When TTL becomes zero, the target node is located.
Given that the method is totally distributed, each node tries to make a swap
at a fixed interval. If a swap can improve the match degree, many swaps at the
same time will achieve accumulated effect. In the next subsection, we will try to
explain the effectiveness of node swap.

2.2 Effectiveness of Node Swap

To explain the effectiveness of node swap, we make several definitions and explain
the meaning of notations first. We define stretch as the ratio of the average
logical link latency over the average physical link latency. Stretch is a common
parameter to quantify the topology match degree. Average latency (AL) is a
basic parameter to quantify the property of a network. If there are n nodes in a
network, and accumulated latency of any two nodes is Acc(n), then2

AL = Acc(n)/n2 (2)

We analyze the change of average latency after a swap between nodes a and
b. Supposing that the number of nodes is invariable during t0 → t1, so the
accumulated latency (Lti) is analyzed instead. Next two equations show this
change:

Lt0 = C +
∑

i∈Nt0 (a)

αid(ai) +
∑

j∈Nt0 (b)

βjd(bj) (3)

Lt1 = C +
∑

i∈Nt1(b)

γid(bi) +
∑

j∈Nt1 (a)

δjd(aj) (4)

In equation 3 and 4, C represents the invariable part before and after one swap
operation. The coefficients of the summations α, β, γ, δ represent the times each
neighbor link used. We notice that nodes a and b just exchange their neighbors,
so Nt1(b) = Nt0(a) and Nt0(b) = Nt1(a). Besides, assuming that each link has
the same probability to be visited, then αi ≈ γi and βj ≈ δj . To calculate
the variation by (3) − (4), we get that if Diff > 0 then Lt0 > Lt1 , which
implies that a swap makes the stretch reduced. It is worth to mention that it is
an approximate analysis. In fact, when the positions of the nodes changed, the
times each neighbor link visited are variable. In other words, those coefficients
are different, that is why not all swaps can reduce the average latency. We will
see that in our experiment.
1 CAN is an exception. Its routing is bidirectional.
2 We assume the latency between one node and itself is zero.
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2.3 Controllable Overhead

In section 2.1, we have given three guidelines to change node ID. However, we
have not given the method to control the overhead yet. The overhead of our
approach includes four aspects: (1) the probing of neighbors, (2) the probing
of random nodes, (3) exchanges of the routing tables, and (4) exchanges of
the contents. We believe that the cost (1) is limited as it can be realized as a
piggyback process when constructing the P2P system. So we just give solutions
to reduce cost of (2-4).

Adaptive Probing. Cost (2) and (3) are relative to swap times. In our basic
method, we do probing periodically at a fixed interval. However, as the system
trends to be steady, this periodic adjustment becomes costly and not necessary.
The ideal time to stop the periodic adjustment is when the system’s average
latency doesn’t change obviously. Due to the limitation of distributed systems,
we can only make decisions based on the local information. So we propose an
adaptive policy to reduce the operations of probing and swapping. From a local
view, every node lives in an environment consisting of its neighbors. If neighbors
of one node change continually, this node lives in an unstable environment. So
it will try to do probing and make swapping. Oppositely, if the node’s neighbors
do not change at a relatively long interval, we can believe that this node is
stable. To realize this idea, a parameter activity is used as the description of
node’s state and the criterion of periodic probing. At the beginning, the activity
parameter is set as an initial number. If one node makes a swap operation, it
will move to a new environment, so this parameter will increase to make probing
continue. Besides, it will also notify its neighbors to increase activity number.
As the fixed intervals pass, the activity number will be reduced. Algorithm 1
is the pseudo code of adaptive probing. Tow parameters – initial number and
threshold both have an effect on the number of probing operations. Appropriate
value of the two parameters will make the system achieve a better performance.
In our experiment, both of them are zero. The results show that this adaptive
method greatly reduce the number of the nodes’ probing and swap operations
without sacrificing the effectiveness of stretch reduction too much.

Shadow Scheme. In a real P2P system, all contents reside on different nodes.
In other words, each node owns one part of id space. After exchanging the
identifiers of nodes a and b, the contents that they owns should be exchanged
respectively. This process may be most expensive one among four aspects men-
tioned above. Inspired by Baumann et al’s work in mobile agent area [10], we
propose a shadow scheme to reduce the overhead. We view the nodes a and b
as mobile agents. After they swap their identifiers, they will not exchange the
contents immediately. Instead, both of them own their counterpart’s shadow,
which records the specific lifetime of the shadow and the address information
of their counterpart. So before the lifetime becomes zero, the content queries
will be forwarded by the counterpart to the correct destination. When the nodes
become stable and the lifetime is over, the contents will be exchanged. The value
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Algorithm 1. Adaptive probing of each node
activity = initial number
while activity ≥ threshold do

probe one node
if swap is necessary then

exchange the node ID and routing tables
activity = activity + 1
notify neighbors to increase activity

end if
activity = activity − 1
wait for an fixed interval

end while

of the lifetime is related to the state of a node which we describe above. Uti-
lizing shadow scheme, the content distribution times are reduced. Obviously, it
will take a longer path to locate the content. So it’s necessary to consider the
tradeoff between the query latency and the distribution overhead in a real P2P
application. As the content distribution is relative to specific applications, we
propose a generic scheme here and will not consider it in our experiments.

3 Performance Evaluation

3.1 Simulation Methodology

We use the GT-ITM topology generator [11] to generate transit-stub models
of the physical network. In fact, we generate two different kinds of topologies.
The first topology, ts-large has 70 transit domains, 5 transit nodes per transit
domain, 3 stub domains attached to each transit node and 2 nodes in each stub
domain. The second one, ts-small, differs from ts-large in that it has only 11
transit domains, but there are 15 nodes in each sub domain. Intuitively, ts-large
has a larger backbone and sparser edge network than ts-small. Except in the
experiment of physical topology, we always choose ts-large to represent a situa-
tion in which the overlay consists of nodes scattered in the entire Internet and
only very few nodes from the same edge network join the overlay. We also assign
latencies of 5, 20 and 100ms to stub-stub, stub-transit and transit-transit links
respectively. Then, several nodes are selected from the topology as overlay nodes,
with the node number n = {300, 600, 1200}. Chord is chosen as the platform of
our simulation because the limitation of Chord makes it unsuitable for many
mismatching solutions. We have discussed the limitation in section 1.

3.2 Effectiveness of Swap

The stretch is used to characterize the match degree of the overlay to the physical
topology. The time interval is fixed as one minute. Figure 2 shows the impact
of the TTL scale on stretch. We choose node number n = 600 and four typical
scenes of probing node. In a centric scene, we can just choose a random node as



A Generic Approach to Make Structured P2P Systems Topology-Aware 823

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

0 20 40 60 80 100

st
re

tc
h

time

TTL=1(neighbor)
TTL=2(neighbor’s neighbor)

TTL=4(diameter/2)
random

Fig. 2. Varying the TTL scale

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90

st
re

tc
h

time

node=300
node=600

node=1200

Fig. 3. Varying the system size

the probing target. In a distributed system, we use TTL = {1, 2, 4}. TTL = 1
means probing neighbors; TTL = 2 means probing neighbors’ neighbors and
TTL = 4 means probing the node half of diameter away from the original node3.
We can find that neighbors’ swap is not suitable as it can’t greatly reduce the
stretch, while other three different ways have nearly the same impact on stretch
reduction. The reason is obvious, as TTL = 1 gets only neighbor information
which is too limited. Given that random probing is not practical in a distributed
system, only when TTL ≥ 2 can achieve a good performance in a P2P system.
In order to minimize cost, TTL = 2 may be a better choice, and it will be used
in next several experiments. In figure 2, we can also discover that the stretch is
not reduced all the time, which is consistent with our approximate analysis in
section 2.2.
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Figure 3 illustrates the impact of system size. We choose n = 300, 600, 1200.
The effectiveness is reduced as the size becomes larger. This situation can be

3 As node number is 600, we suppose that the diameter d = log2 n ≈ 8.
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explained in two different directions. First, when the system has a large size
and probing method fixes TTL as 2, the information we get is relatively limited.
Second, as we choose the nodes from the same physical network, when the overlay
becomes larger, it is closer to the physical topology. And the effectiveness will
be not so obvious.

The impact of physical topology is presented in figure 4. We have generated
two different types of topologies ts-large and ts-small by GT-ITM tools. Both of
them contain 2200 nodes. It is obvious that ts-large topology has much better
performance. In ts-large topology, only a few stub nodes attach to transit nodes.
So the probability that two stub nodes belong to different transit nodes is rela-
tively high. Accordingly, the probability that these nodes exchange is also great.
It means that two far nodes make adjustment to match the physical topology
with a high probability. This kind of swap will greatly improve the performance
of the system. As we mentioned above, ts-large topology is much like the Inter-
net, so our method will significantly improve performance in a real large-scale
system.

3.3 Dynamic Environment

Dynamism is a very important property in P2P systems. In this part, we try to
discover the impact of dynamism on our approach. Although people do several
searches about dynamism of the P2P system [12], there is not a standard model
to describe it. In our simulation, we just set a very simple dynamic environment.
There are δ percent of nodes join and δ percent of nodes leave at a time interval t.
δ = {0, 1, 5} and t = 1min. Figure 5 shows the results. It is obvious that stretch
fluctuates greatly when the system is under a dynamic situation in which 5
percent of nodes change per minute. However, we can see that nodes’ arrival
and departure may not lead the system to a poor match degree. It’s possible
that nodes’ changes have the similar effect as our swap operation which reduces
the stretch of the system. Although there is a fluctuation, our method can be
still effective in dynamic environment.

3.4 Adaptive Probing

Regardless of the distribution of the content, the largest overhead is related to
times of swapping. In section 2, we introduce an adaptive method to reduce
swapping times. Figure 6 illustrates the effect of this method. We compare two
different policies. The first one is to probe at a fixed interval, while the second one
is to probe with an additional parameter – activity. Initial number and threshold
are both zero. In this figure, x axis represents stretch and y axis represents the
swap times. One point records the swap times in one minute and the stretch value
after these swap operations. The adaptive method significantly reduces the swap
times. At the same time, it sacrifices the effectiveness of stretch reduction. The
points at the high-stretch interval of fixed method are less than adaptive one.
However, it is not as significant as the reduction of swap operation. So we choose
the adaptive method to reduce the overhead.
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4 Related Work

There are several methods that try to solve the mismatching problem. The most
related one to our work is a method called “SAT-Match” [13]. The basic oper-
ation in this system is jump. When one node discovers several nearby nodes by
flooding, it will jump to the nearest node in the nearby area. In fact, it is one
kind of variable node ID. However, this method has several limitations. First, the
node ID space changes after jumping. So the original overlay structure is bro-
ken. Arbitrary change of ID also violates the anonymity of the P2P system. One
node which is controlled by a hacker can easily jump to a specific area. Second,
although author mentioned the impact of the dynamism, we can not find detail
evaluation in different dynamic environments. Last, with respect to the overhead,
SAT-Match didn’t give a solution to reduce the cost of the content movement.

5 Conclusion

This paper proposes a novel method to solve the mismatching problem in struc-
tured P2P systems. This method is totally protocol-independent, which can be
easily used on any P2P system based on DHT. Besides, we propose a series of
solutions to minimize the overhead cost, including adaptive probing and shadow
scheme. Our experiment has shown that node swap greatly reduces the stretch
of overlay networks, and the number of swap operations is also greatly reduced
when using adaptive probing. In the near further, we will try to combine our
method with other different solutions like proximity neighbor selection (PNS)
together to achieve better performance.
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