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In recent years, mobile devices have gained increasing development with stronger computation capability and
larger storage space. Some of the computation-intensive machine learning tasks can now be run on mobile
devices. To exploit the resources available on mobile devices and preserve personal privacy, the concept
of client-based machine learning has been proposed. It leverages the users’ local hardware and local data
to solve machine learning sub-problems on mobile devices and only uploads computation results rather
than the original data for the optimization of the global model. Such an architecture can not only relieve
computation and storage burdens on servers but also can protect the users’ sensitive information. Another
benefit is the bandwidth reduction because various kinds of local data can be involved in the training process
without being uploaded. In this paper, we provided a literature review on the progressive development of
machine learning from server-based to client-based. We revisited a number of widely-used server-based and
client-based machine learning methods and applications. We also extensively discussed the challenges and
future directions in this area. We believe that this survey will give a clear overview of client-based machine
learning and provide guidelines on applying client-based machine learning to practice.
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1 INTRODUCTION
Machine learning, especially deep learning, has become a hot topic, attracting tremendous attention
from both academia and industry. The core idea of machine learning is to use large amounts of data
to train a model that can generalize well to unseen test samples. However, with the increase of data
volume and the enhancement of model capacity, it is infeasible for a single server to accomplish
complex learning tasks in a centralized way. To address this problem, the concept of server-based
distributed machine learning was proposed in [82], where multiple servers, connected through
shared data buses or a fast local area network, exchange essential information (e.g., training losses
and gradients) to collaboratively train a model. Although this framework is highly scalable and
has been widely deployed in practice, it may not always be cost effective and efficient to build a
high-performance server cluster. In addition to cost, security and privacy are major concerns when
machine learning involves sensitive user data, such as typed texts in natural language processing,
user profiles in personalized recommendations, and health records in medical diagnosis. Specifically,
the servers in both centralized and distributed machine learning frameworks require direct accesses
to training data and thus need to collect and store user data, which inevitably suffers outsider and
insider attacks [79–81]. For example, a malicious hacker may invade the datacenter, compromise
part of servers, and leak private databases. Further, if the servers are untrusted, they may share
user data with other unauthorized entities or even trade for profits. In a nutshell, how to reduce
the server cluster’s operation cost, how the trusted servers can securely maintain user data, and
how to defend untrusted servers are bottlenecks of the server-based machine learning.
Meanwhile, with rapid proliferation and development of mobile devices, the idea of doing

machine learning tasks on mobile devices has also emerged. For example, applications, such as face
recognition and speech recognition, are all based on machine learning and are common among
mobile phones. To support these applications, a full-sized machine learning model is first trained
on servers using large amounts of data, and then it is tailored and delivered to mobile devices to do
inference and make predictions locally. This framework brings all the burdens to the central servers,
wasting the resources of mobile devices, whose processors, memory space, and disk space are now
powerful and abundant enough to support various kinds of computation tasks. In addition, many
off-the-shelf machine learning frameworks (e.g., the TensorFlow Lite module in TensorFlow [1]) are
now available. Developers can now readily adopt these end-to-end tools to build machine learning
models for their mobile applications. The above evidences have shown that it is feasible to deploy
distributed training tasks on mobile devices, which is also called client-based training.
Client-based training has advantages in cost reduction and privacy preservation. In particular,

machine learning problems are distributed to mobile devices and solved locally so that high-
performance servers and user data transmission/maintenance are no longer required. The idea
of client-based training can be traced back to 2015, when Shokri et al. [100] proposed distributed
deep learning without sharing datasets among multiple parties. Later that year, Google researchers
designed federated optimization [54], aiming to improve communication efficiency during learning
with decentralized datasets. The idea was also referred to as Federated Learning and further
developed in the following years [53, 55, 56, 70]. These works can be generally viewed as a specific
type of client-based training which mainly focuses on how to make use of data without uploading
them to the server, so that the privacy of users can be well preserved. If we enable on-device training
and only upload the computation results, the leakage of sensitive information can be relieved. The
reason is that attacks against the computation results without accessing the raw data are much
harder. Moreover, since raw data is processed locally, client-based training is now able to make use
of the data that is too much to be uploaded (so that centralized machine learning doesn’t take them
into consideration), which gives us great opportunity to improve the model performance.
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Compared to existing surveys in this area, this survey focuses on the evolution process of
machine learning. From server-based machine learning to client-based machine learning, the
application scenarios and the research problems have greatly changed. We summarize the changes
and further investigate the underlying motivations. We also review the research focuses at different
stages of machine learning development. In particular, considering that a lot of new features and
new demands have emerged in client-based machine learning, we analyze the applicability of
existing server-based algorithms to client-based machine learning. We finally point out some
future directions of client-based machine learning. In a nutshell, this survey not only is a review of
the development of machine learning, but also can work as a good reference for designing new
client-based learning algorithms on the basis of conventional server-based methods.
The rest of this survey is organized as follows. In Section 2 and Section 3, we introduce the

general machine learning process and the methodology of server-based distributed training. In
Section 4 and Section 5, we explain the motivations of client-based machine learning (including
inference and training), list the challenges, and discuss current advances of client-based training
using federated learning and split learning as examples. In Section 6, we discuss the open problems
and future directions of client-based training. Finally, we conclude the survey in Section 7.

2 CENTRALIZED MACHINE LEARNING
Machine learning [11] is a study of mathematical models that can automatically learn and make
predictions based on a set of observed data. The concept of centralized machine learning means
that operations and executions of the model are all done on a central machine. Centralized machine
learning has been widely used to extract insights behind huge amounts of data.
In this section, we briefly review concepts and techniques of centralized machine learning.

To better understand the methodology of machine learning, we first introduce the paradigms of
machine learning methods in Section 2.1. Next, several concepts that are commonly used in machine
learning will be illustrated in Section 2.2. Then, the task of machine learning will be defined in
Section 2.3. A general process of machine learning will be presented in Section 2.4. After that,
several machine learning optimizers will be introduced in Section 2.5. Finally, the applicability of
these optimizers to client-based training will be discussed in Section 2.6.

2.1 Machine Learning Paradigm
If we classify machine learning algorithms based on the kind of input data samples and the kind of
output, we have the following three basic machine learning paradigms as shown in Fig. 1a.

Supervised Learning. In supervised learning, every data sample is made up of several input
features and a label. The learning process is to approximate a mapping function from the features
to the label. After that, given new input features, the label for the data can be predicted using the
mapping function. This scheme is the most popular machine learning scheme which has been used
in a variety of tasks. An example of supervised learning is the classification task, which is to classify
an object based on its features, such as classifying fruit according to its color, shape, and weight. If
the supervised learning task is to predict a continuous variable such as market pricing, then this is
a regression task. We can further classify supervised learning based on the model type, as shown in
Fig. 1b. We mainly focus on supervised learning (especially discriminative models) in this survey.

Unsupervised Learning. In contrast to supervised learning, unsupervised learning is where
we only have input features but no corresponding labels. Thus, the goal for unsupervised learning
is to learn the distribution of the data and show how the data points are different from each other.
A typical example of unsupervised learning is the clustering problem, which is to discover the
groupings of the data, such as grouping users by their behaviors.
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theÊobservedÊstate sequence

(b) Supervised Learning

Fig. 1. Taxonomy of machine learning and supervised learning.

Reinforcement Learning. Reinforcement learning is quite different from supervised learning
and unsupervised learning. Labelled input/output pairs and explicit correction on sub-optimal
options are not needed for training an agent using reinforcement learning. Instead, the agent tries to
find a trade-off between exploration and exploitation through its interaction with the environment.
For good choices or actions, the agent gains rewards from the interpreter. Otherwise, it is punished.
Reinforcement learning is widely used in research about robots or computer gaming agents.

Others. In addition to the three basic paradigms, there also exists some other paradigms that can
be viewed as a combination of the basic ones (e.g., semi-supervised learning). Usually, the choice of
machine learning paradigms depends on the kind of the problem going to be solved.

2.2 Machine Learning Concepts
To better understand machine learning, in this section, we introduce and illustrate several key
concepts that are commonly used in machine learning (especially supervised learning).

Stage and Dataset. The whole process of machine learning is mainly made up of three kinds of
stages, which are training, validation, and test. The dataset𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} is the set of all 𝑛 data
samples used for the machine learning process. A data sample 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 ) contains a feature vector
𝑥𝑖 and a corresponding label 𝑦𝑖 . Usually 𝐷 can be divided into three disjoint sub-sets which are the
training set 𝐷𝑡𝑟𝑎𝑖𝑛 , the validation set 𝐷𝑣𝑙𝑑 , and the test set 𝐷𝑡𝑒𝑠𝑡 , corresponding to the three stages.
𝐷𝑡𝑟𝑎𝑖𝑛 accounts for the largest proportion of 𝐷 . In the training stage, loss is calculated on 𝐷𝑡𝑟𝑎𝑖𝑛

and then optimization to the model is done. The validation stage aims to prevent overfitting. Since
samples in 𝐷𝑣𝑙𝑑 are not used in any training iterations, the error calculated on them will increase
significantly if the model overfits 𝐷𝑡𝑟𝑎𝑖𝑛 . Moreover, 𝐷𝑣𝑙𝑑 is also helpful for tuning hyperparameters
between training epochs. The test stage is to evaluate the performance of the final model on 𝐷𝑡𝑒𝑠𝑡 .
Thus, a typical machine leaning process is as follows: (1) Run training and validation iteratively
until the model converges; and (2) Run test to evaluate the model performance.

Feature. In machine learning, a feature vector 𝑥 is a 𝑘-dimensional vector containing numerical
features which are observable or measurable properties of instances, objects, or phenomena. We
input feature vectors to the machine so that it knows how instances are different from each other.

ACM Comput. Surv., Vol. ?, No. ?, Article ?. Publication date: ? 2020.



From Server-Based to Client-Based Machine Learning: A Comprehensive Survey ?:5

Label. A label 𝑦 is the identity of the instance. Unlike features that describe the instances to the
machine, labels tell the machine what the instances really are.

Model. The machine learning model 𝑓 (𝑤 ; ·) includes a structure 𝑓 and a parameter vector 𝑤 .
The model 𝑓 (𝑤 ; ·) is the core of machine learning. It serves as the mapping function that maps the
input feature vector 𝑥 to the output label 𝑓 (𝑤 ;𝑥). For a good model, its output label 𝑓 (𝑤 ;𝑥) is close
to the true label 𝑦 of the feature vector 𝑥 . Usually, the structure and the parameters of the model are
stored as multiple vectors or matrices. The mapping process is done through matrix multiplication.
Various kinds of models such as support vector machines and artificial neural networks have been
designed for different machine learning tasks.

Loss Function. The loss function 𝐿(𝑦, 𝑓 (𝑤 ;𝑥)) (e.g., mean square error, hinge loss, and softmax
loss) describes how far the predicted label 𝑓 (𝑤 ;𝑥) deviates from the true label 𝑦. Since a pair (𝑥,𝑦)
is also known as a data sample 𝑑 , we can also denote the loss function by 𝐿(𝑤 ;𝑑) for convenience.
The design of the loss function 𝐿 reflects the goal of the training process which is to train the model
to make predictions as accurate as possible. For example, mean square error is defined as

MSE =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑤 ;𝑥𝑖 ))2, (1)

where 𝑛 is the number of samples,𝑤 stands for the model parameters, 𝑥𝑖 is the feature vector of
the 𝑖-th sample, 𝑓 (𝑥𝑖 ) is the predicted label for the 𝑖-th sample, and 𝑦𝑖 is the true label of the 𝑖-th
sample. Thus, in a regression problem using mean square error as the loss function, the model𝑤
will get more punishment if the predicted label 𝑓 (𝑥𝑖 ) is further from the true label 𝑦𝑖 . The value of
the loss function 𝐿 over 𝐷𝑡𝑟𝑎𝑖𝑛 is calculated as

𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛) =
1

𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

𝐿(𝑤 ;𝑑𝑖 ) =
1

𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓 (𝑤 ;𝑥𝑖 )), (2)

where 𝑛𝑡𝑟𝑎𝑖𝑛 is the number of samples in 𝐷𝑡𝑟𝑎𝑖𝑛 . Here 𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛) is also known as the empirical
risk. The change in the value of 𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛) shows the training progress of the model𝑤 . The lower
the value of 𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛) is, the better the model 𝑤 is trained on 𝐷𝑡𝑟𝑎𝑖𝑛 . Note that norms should
be added to the loss function to avoid the overfitting problem. In particular, overfitting means the
model is too closely fit to 𝐷𝑡𝑟𝑎𝑖𝑛 and has a poor performance when dealing with new data.

Training (Optimization). After the loss is calculated, the model will be optimized iteratively
to achieve a better generalization ability. This is also known as the training process. Typical
optimization algorithms such as gradient decent are used to adjust parameters of the model
according to the loss and the model structure. Considering that heavy calculation is required in this
step, computational tricks like back-propagation are usually applied to improve system efficiency.

Inference (Prediction). With a trained model 𝑓 (𝑤 ; ·), we can input a feature vector 𝑥 to it. Then,
after some calculation, the model outputs a predicted label 𝑓 (𝑤 ;𝑥). This process is also known as
the inference process. Usually inference is done by doing several times of matrix multiplication.

2.3 Task Definition
In machine learning, we first design the model structure 𝑓 according to what kind of problem
we are going to solve. Then the goal is to find out a parameter vector 𝑤 which minimizes the
expectation of the loss function. This can be expressed as

arg min
𝑤

E[𝐿(𝑦, 𝑓 (𝑤 ;𝑥))], (3)

ACM Comput. Surv., Vol. ?, No. ?, Article ?. Publication date: ? 2020.



?:6 Gu et al.

where 𝑥 ∈ 𝑋 is the input feature and 𝑦 ∈ 𝑌 is the output label. It is assumed that the feature
space 𝑋 and the label space 𝑌 obey a joint probability distribution 𝑃 (𝑥,𝑦). Since the real 𝑃 (𝑥,𝑦)
is unknown and is impossible to be figured out on most occasions, we are not able to directly
optimize our model parameter𝑤 to minimize the expectation of the loss function E[𝐿(𝑦, 𝑓 (𝑤 ;𝑥))].
As an approximation, we minimize the empirical risk 𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛) on our training set 𝐷𝑡𝑟𝑎𝑖𝑛 . This
approximation requires 𝐷𝑡𝑟𝑎𝑖𝑛 to be a set which contains Independent and Identically Distributed
(IID) random variables drawn from 𝑃 (𝑥,𝑦). Now the core learning task is expressed as

arg min
𝑤

𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛)) = arg min
𝑤

1
𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

𝐿(𝑤 ;𝑑𝑖 ) = arg min
𝑤

1
𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓 (𝑤 ;𝑥𝑖 )), (4)

where 𝑛𝑡𝑟𝑎𝑖𝑛 is the number of samples in 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 ) is the 𝑖-th sample in 𝐷𝑡𝑟𝑎𝑖𝑛 .

2.4 Machine Learning Process
The procedure of machine learning can be divided into two parts: (1) Designing a suitable model
structure based on the machine learning task; and (2) Examining the performance of the model and
optimize it accordingly using large amounts of data.

Model Design. For the model design part, there already exists many well-designed models
that have been proposed to solve different kinds of tasks, as shown in Fig. 1b. A good survey
on popular traditional machine learning algorithms and models can be found in [116]. What’s
more, in recent years, deep learning [58] is proved to be very effective in many areas such as
image recognition and natural language processing. The word “deep” is used to describe the
multi-layer structure of the neural network used by it. The concept of deep learning can be
further divided into Convolutional Neural Networks (CNN), Recursive Neural Networks (RNN),
Generative Adversarial Networks (GAN), and so on according to the neural network structure.
Considering that the scale of a deep learning model can be very large, it is usually trained on
high-performance servers. In general, deep learning is a powerful machine learning technique
which is based on neural network and benefited from the increase in the amount of training data.

Model Optimization. Regarding the model optimization part, it is done through machine learn-
ing optimizers. Generally speaking, an optimizer focuses on how to optimize the model to reach
its best performance based on the given dataset. For example, Gradient Descent (GD) calculates
the gradient of the loss function and uses this gradient to optimize the model parameters. In each
training iteration, according to the calculated gradient, the model parameters𝑤 takes a step toward
the optimal point where 𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛) is minimized. However, the computation cost of GD is so
high that it is not suitable for being applied to those models with a large number of parameters.
Thus, many different schemes have been designed to find a better balance between the convergence
speed and the computational cost. For those machine learning algorithms which are not suitable
for using GD-based methods as their optimizers, they have their specific optimization algorithms,
such as Sequential Minimal Optimization (SMO) for SVM and Canopy for 𝑘-means.

2.5 GD-Based Optimizers
Although there are many kinds of optimizers in centralized machine learning, in this survey, we
mainly focus on the GD-based optimizers which originate from centralized machine learning and
are now being widely used in distributed training and deep learning. In this section, we introduce
several GD-based optimizers and analyze their advantages. We list the basic information of them
in Table 1. Note that the column “Speed” in the table has considered both the computational cost
per iteration and the total number of iterations to reach convergence. Among these optimizers,
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Table 1. GD-based optimizers.

Name Mathematical Format Convergence Speed Experimental Scale

SGD Gradient (1 sample) Sublinear (all) Baseline An email dataset (100 machines) [127]

SVRG Gradient (all samples)
Linear (strongly convex)

Sublinear (convex)
Sublinear (non-convex)

Slow ↓ MNIST [59] and CIFAR-10 [39] (1 machine)

ADAM SGD + Moment Not Guaranteed Fast⇈ MNIST and CIFAR-10 (1 machine)

Hogwild! SGD
Linear (strongly convex,

constant stepsize)
Equivalent

RCV1 [60], Netflix, KDD, Jumbo, DBLife,
and Abdomen (10 machines)

ASGD SGD Sublinear (strongly convex) Equivalent A speech dataset and ImageNet [90] (128 workers)
EASGD SGD + Elastic Update ? (complicated form) Fast ↑ CIFAR-10 (16 workers), ImageNet (8 workers)

DC-ASGD SGD + Delay Compensation Sublinear (strongly convex) Fast ↑ CIFAR-10 (8 workers), ImageNet (16 workers)

SGD, SVRG, ADAM, and Hogwild! are designed for serial centralized machine learning or parallel
multi-threads centralized machine learning. ASGD, EASGD, and DC-ASGD are actually designed
for a server-worker scheme, which means they should be classified as distributed training techniques.
However, we still choose to introduce them here for the convenience of comparing them with other
optimizers and studying how GD-Based optimizers have developed from centralized to distributed.

SGD. Stochastic Gradient Descent (SGD) [89] was first proposed in 1951. The main advantage of
SGD is that it greatly reduces the computational cost in each iteration compared with GD. Its core
equations are very similar to those of GD and are shown as follows:

𝑔𝑡 = ∇𝐿 (𝑤𝑡−1;𝑑𝑖 ) , 𝑤𝑡 = 𝑤𝑡−1 − 𝜂 · 𝑔𝑡 , (5)

where 𝑡 is the timestamp for the current training iteration,𝑤𝑡−1 is the model at time 𝑡 − 1, 𝑔𝑡 is the
gradient of the loss function 𝐿 with model𝑤𝑡−1 and a randomly selected data sample 𝑑𝑖 , and 𝜂 is the
learning rate. The feature that it only uses one sample to compute gradients in each iteration greatly
reduces the computational cost. However, SGD should not be directly applied to client-based training
since it cannot handle the bias caused by the non-IID local dataset (will be introduced in Section 5.4).
Modification to SGD is necessary to fit the scenario of client-based training (e.g., FedAvg [70]).
Although the solution for client-based training on mobile devices is unlikely to choose the original
SGD as the optimizer, we have to say that SGD still works well on many other occasions (such as
server-based distributed training) due to its low computational cost and high training efficiency.

SVRG. Stochastic Variance Reduced Gradient (SVRG) [46] aims at accelerating the convergence
speed of SGD by applying noise reduction methods. Compared with GD, SGD does much less
computation in each iteration but has a lower convergence speed. Bottou et al. [14] discovered
that one reason for this is the existence of noise in the estimate of the gradient, which can be also
considered as the variance of gradients. Thus, SVRG uses the overall gradient to make corrections
and thus reduces the noise. The core equations are shown as follows:

𝑔′𝑡 = ∇𝑓 (𝑤𝑡−1;𝑑𝑖 ) − ∇𝑓 (�̄� ;𝑑𝑖 ) + 𝑔, 𝑤𝑡 = 𝑤𝑡−1 − 𝜂 · 𝑔′𝑡 , (6)

where �̄� is an averaged model which is updated every 𝑘 iterations and 𝑔 is the gradient averaged
among all data samples at point �̄� . The first term∇𝑓 (𝑤𝑡−1;𝑑𝑖 ) on the right side of the first equation is
exactly the 𝑔𝑡 used in SGD. The core idea of SVRG is to make the upper bound of gradients’ variance
keep reducing during training by using correction (−∇𝑓 (�̄� ;𝑑𝑖 ) +𝑔). McMahan et al. [70] found out
that SVRG can cooperate well with some distributed optimization algorithms like DANE [96] by
working as the local optimizer. The main factor which limits SVRG’s applicability to client-based
training is the high computational cost of periodically calculating the overall gradient 𝑔.
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ADAM. Adam is an optimization algorithm based on SGD aiming to accelerate the convergence
speed by adaptively tuning the learning rate. It was proposed in 2014 [50]. Before Adam, there al-
ready exists some algorithms trying to improve SGD throughmaking use of themoment/momentum
of gradients, such as SGD with Momentum (SGDM) [83], AdaGrad [26], and RMSProp [111]. Adam
combines the advantage of AdaGrad and RMSProp and uses both the first moment estimate and
the second moment estimate. Its equations are given as follows:

𝑚𝑡 = 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡 , 𝑣𝑡 = 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2) · (𝑔𝑡 )2,

�̂�𝑡 =
𝑚𝑡

1 − (𝛽1)𝑡
, 𝑣𝑡 =

𝑣𝑡

1 − (𝛽2)𝑡
, 𝑤𝑡 = 𝑤𝑡−1 − 𝜂 · �̂�𝑡√

𝑣𝑡 + 𝜖
.

(7)

Here,𝑚𝑡 is the first moment estimate and 𝑣𝑡 is the second moment estimate. 𝛽1, 𝛽2 ∈ [0, 1) are
exponential decay rates for the moment estimates. �̂�𝑡 and 𝑣𝑡 are the bias-corrected version of the
moment estimates. 𝜖 is a small constant used to prevent division by zero. Experiments show that
Adam can accelerate training. Considering that the number of communication rounds may be
limited in client-based training, an efficient optimizer which can speed up the training process
may help a lot. However, Wilson et al. [115] and Reddi et al. [92] discovered that on some special
occasions, ADAM may fail to reach convergence. This can be the main barrier for applying ADAM
to client-based training.

Hogwild!. Hogwild! [86] aims to prove that parallel SGD can be implemented without any
locking. It shows that when the optimization problem is strongly convex and sparse, most updates
only modify small subsets of all parameters, which means the whole update process can be run
asynchronously without locking. However, it has only been tested on traditional machine learning
problems like sparse SVM and matrix completion. Whether Hogwild! is suitable for complex tasks,
such as deep learning and client-based training, still remains unknown.

ASGD. Asynchronous SGD (ASGD) [24] is a simple attempt for making use of more workers to
train a huge deep network through asynchronous methods with SGD. Compared with synchro-
nous SGD, ASGD won’t suffer from the straggler problem which is a huge obstacle to deploying
distributed machine learning on heterogeneous mobile devices. Since no waiting is needed, all
workers can make best use of their resources and together accelerate the training. The problem is
that in asynchronous methods, the delayed gradients may be unsuitable for being applied to the
current updated model. The delay error can cause fluctuation in weights and have negative effects
on the model according to [8, 63]. This delay error problem can be even worse in client-based
training due to the large number of workers and the high frequency of model update.

EASGD. The purpose of Elastic ASGD (EASGD) [123] is to reduce the communication cost
between workers and the parameter server during parallel training. Each worker’s local model is not
replaced by the global model in each communication round. The communication and coordination
of work among all workers is controlled by an elastic force that links the local parameters with a
center variable stored by the parameter server. The update rules are shown as follows:

𝑤 𝑖
𝑡 = 𝑤 𝑖

𝑡−1 − 𝜂 ·
(
𝑔𝑖𝑡 + 𝜌 ·

(
𝑤 𝑖
𝑡−1 − �̄�𝑡−1

) )
, �̄�𝑡 = �̄�𝑡−1 + 𝜂 ·

𝑝∑
𝑖=1

𝜌 ·
(
𝑤 𝑖
𝑡−1 − �̄�𝑡−1

)
, (8)

where 𝑖 is a random index of a worker, 𝑝 is the number of workers, 𝜌 is the control parameter for
the elasticity, and �̄�𝑡 is the center variable. The center variable �̄�𝑡 is updated as a moving average
which is taken in both time and space over all local parameters. The elastic design allows workers
to do more exploration in its nearby parameter space, which can do good to the model performance.
The effectiveness of EASGD has only been analyzed for quadratic and strongly convex objectives.
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It is worthy to worry about that the model may become even worse if the elastic hyperparameter
isn’t set properly and causes the workers to explore too far away from the center variable.

DC-ASGD. Delay Compensated ASGD (DC-ASGD) [126] focuses on mitigating the error caused
by delayed gradients in ASGD. The main idea of DC-ASGD is to use the first-order term in Taylor
series to compensate for the delayed gradient and use an approximation of the Hessian Matrix to
reduce the computational cost. At time 𝑡 + 𝜏 , to update model𝑤𝑡+𝜏 , the original delayed gradient
𝑔(𝑤𝑡 ) for old model𝑤𝑡 will be replaced by the delay-compensated gradient which is expressed as:

𝑔 (𝑤𝑡 ) + 𝜆𝑔 (𝑤𝑡 ) ⊙ 𝑔 (𝑤𝑡 ) ⊙ (𝑤𝑡+𝜏 −𝑤𝑡 ) , (9)

where 𝜆 is a variance control parameter set by the server. The only additional information needed for
compensation is the historical model𝑤𝑡 , which means this method is easy to implement. However,
since experiments have been done with no more than 16 workers, DC-ASGD’s performance under
large numbers of workers still needs to be studied. In addition, another key problem of applying
it to client-based training is that the server needs to spend large additional storage to store the
historical models for all workers.

2.6 Applicability of GD-Based Optimizers to Client-Based Training
In this section, we compare the applicability of the GD-based optimizers to client-based training in
detail, as shown in Table 2. Themain difficulty of applying these optimizers to client-based training is
that mobile devices may not have enough resources to run them on large models. A possible solution
is to use distributed optimization algorithms (will be introduced in Section 3.5) to decompose an
original large problem into multiple small sub-problems. The aforementioned optimizers should
cooperate with distributed optimization algorithms and work as the local optimizer. Therefore,
we analyze the applicability of GD-based optimizers from two aspects: (1) whether the time and
space complexities are acceptable and affordable for mobile devices; and (2) whether the optimizers
support distributed computing in terms of scalability, asynchronization, and delay solution.

Time Complexity. For client-based training, optimizers with lower time complexity are pre-
ferred since they require fewer resources. Hard et al. [37] demonstrate that running SGD on mobile
devices is feasible. We regard SGD as the baseline here. For SVRG, its periodical calculation of the
overall gradient incurs huge local computation overhead. For ADAM, to accelerate the gradient
descent step, it introduces additional gradient processing steps which contains several times of
matrix multiplication. So ADAM’s time complexity is relatively higher but still acceptable. For other
GD-based optimizers, the local computation step is just SGD. Thus, regarding the time complexity,
most of these GD-based optimizer (except for SVRG) are applicable to client-based training.

Space Complexity. Some optimizers use additional information to accelerate training or mitigate
errors. This incurs additional space overhead. For SVRG, it keeps an overall gradient and a model to
reduce the variance of gradients. For ADAM, it keeps the last gradient and the moment to accelerate
training. For DC-ASGD, it needs to store a historical model for each worker for delay compensation.
Therefore, these three optimizers require additional memory and storage space. For other GD-based
optimizers, they do not need additional space. Therefore, regarding the space complexity, SGD,
Hogwild!, ASGD, and EASGD are preferred.

Scalability. We use “machines” to express that multiple machines cooperate with each other.
We use “workers” to show that a group of workers are managed by a central server and may not
need to communicate with each other. For synchronous optimizers, their scalability is limited by
the time-consuming synchronization step. The “thundering herd” problem also add difficulty to
implementing large-scale synchronous systems. For asynchronous optimizers, the obstacles are the
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Table 2. Applicability of GD-based machine learning optimizers to client-based training.

Name Time Complexity Space Complexity Scalability Asynchronization Delay Solution

SGD Baseline! Basic Model! 100 machines! No% /

SVRG High⇈%
Historical Gradient,
Historical Model%

1 machine No% /

ADAM High↑ Historical Gradient% 1 machine No% /
Hogwild! Equivalent! Basic Model! 10 machines Yes! None%
ASGD Equivalent! Basic Model! 128 workers! Yes! None%
EASGD Equivalent! Basic Model! 8 workers Yes! Not Needed!

DC-ASGD Equivalent! Historical Model% 16 workers Yes! Compensating!

update covering problem (i.e., later updates rewrite parameters and cover earlier updates.) and the
delay error problem. With more workers, asynchronous training becomes less stable. However,
the impact of these problems has not been clearly analyzed yet. Thus, we only list the number of
machines/workers used in experiments to reflect the potential scalability. According to Table 2,
SGD and ASGD have shown good scalability.

Asynchronization. SGD, SVRG, and ADAM are designed for centralized machine learning
with only one machine. They require a costly synchronization step to ensure convergence when
being applied to parallel training. By allowing the asynchronous update of the global model, the
time-consuming synchronization step can be avoided. For example, Hogwild!, ASGD, EASGD, and
DC-ASGD are designed for asynchronous machine learning.

Delay Solution. The unstable network condition and the limited resources in client-based
training can easily cause update delay. In asynchronous training scheme, the global model may
have already been updated by others when the gradient arrives at the server. The delayed gradient
thus becomes less accurate for the current global model. Directly applying delayed gradients to the
global model can slow down the convergence speed due to the delay error. Hogwild! and ASGD
have no solution for delayed gradients. They just ignore the delay error. EASGD does not need a
delay solution because its global model is a moving average instead of being updated by gradients.
DC-ASGD compensates delayed gradients by using Taylor series expansion. Therefore, regarding
delay solution, EASGD and DC-ASGD outperform Hogwild! and ASGD.

3 SERVER-BASED DISTRIBUTED TRAINING
Although centralized machine learning has shown good performance in many kinds of tasks, it
cannot catch up with the growing demand of processing more data and training larger models.
Under this circumstance, server-based distributed training techniques have been developed. The
concept of server-based training means that operations and executions of the machine learning
model are all done on servers. In this section, we first introduce the motivations and then discuss
distributed parallelism categories and distributed optimization algorithms.

3.1 Motivations
Training Acceleration. The original centralized machine learning scheme can only use the com-

putation power of a single machine, which indicates that it may require a long time to train a good
model when dealing with large amounts of data. A potential solution is to distribute data on different
machines and let them process data samples simultaneously. As the heavy calculation is distributed
to multiple machines and executed parallel, the training process is significantly accelerated.
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Fig. 2. Architectures of model parallelism and data parallelism for server-based distributed training.

Large Model Support. Large-scale deep learning has shown its effectiveness in many areas and
has gained rapid development. However, for those large models that have billions and trillions of
parameters to be optimized, the resources on a single machine can hardly support the learning
task. Thus, researchers have studied the feasibility of dividing the large model into different parts
and training them in parallel with multiple machines.

3.2 Task Definition
In Section 2.3, we have mentioned that the objective function is: arg min𝑤 𝐿(𝑤 ;𝐷𝑡𝑟𝑎𝑖𝑛)). There are
three key components in the formula: (1) Loss Function 𝐿; (2) Model parameters𝑤 ; and (3) Dataset
𝐷𝑡𝑟𝑎𝑖𝑛 . For these three components, we determine which of them to be divided:

• Loss Function 𝐿: Since 𝐿 usually takes only a little storage, it is not necessary to divide it.
• Dataset𝐷𝑡𝑟𝑎𝑖𝑛 : If𝐷𝑡𝑟𝑎𝑖𝑛 is large, we can divide and store it on several machines. After machines
generate model updates through local training, the updates are transferred and aggregated
to generate a new global model. This is known as distributed training with data parallelism.

• Model𝑤 : If𝑤 is large and contains huge amounts of parameters, we can let each machine
process only one part of 𝑤 . Intermediate results over parts of the model are transferred
between machines. This is known as distributed training with model parallelism.

Note that both data parallelism and model parallelism let the whole dataset flow through the whole
model, which guarantees the effectiveness of training. We normally do not divide the dataset and the
model at the same time because this may cause incomplete training and result in performance loss.

3.3 Parallel Training Categories
As shown in Fig. 2, there are two complementary architectures for distributed machine learning,
namely data parallelism and model parallelism.

Data Parallelism. In most occasions, a large dataset that contains various kinds of data samples
is very helpful for training a well-performed model. Sometimes the dataset is so large that it cannot
be stored on a single machine. It is also possible that the huge amount of data results in prohibitively
slow training process. According to [77], distributed machine learning with data parallelism has
emerged to solve the data storage problem and accelerate the training. In this scheme, the whole
dataset is divided into sub-sets and distributed on machines. Each machine keeps a copy of the

ACM Comput. Surv., Vol. ?, No. ?, Article ?. Publication date: ? 2020.



?:12 Gu et al.

Storage

Data 1

Data 4

Data 3

Data 2

Mapper 1
Map()

MapperÊ2
Map()

MapperÊ3
Map()

Temp
Map Result 1

Map Result 2

Map Result 3

Map Result 4

Map Result 5

Map Result 6

Reducer 1
Reduce()

Reducer 2
Reduce()

Storage

Result
Part 1

Result
Part 2

Fig. 3. Process of MapReduce.

model and trains it based on the locally available part of data. After several iterations of training, the
local models may become quite different from each other. The information is gathered to generate
an updated global model. This process is called data aggregation. Then, if the performance of the
new global model is still not satisfying, another round of training is started. With data parallelism,
more data is processed simultaneously, which means it speeds up the training.

Model Parallelism. In some special machine learning tasks, the model can be so large that it is
too slow and even not able to be trained and run on a single machine. This problem is particularly
serious in deep learning tasks. Thus, large-scale distributed deep networks are proposed in [24]
trying to deal with it. Model parallelism methods are adopted and used to train large models with
billions of parameters. In this scheme, each machine keeps a small part of the whole model. During
training, the data flows through machines in order to be processed by the local sub-models. On
most occasions, every round of training needs the cooperation of all machines. Therefore, this
process should be done sequentially since the inputs of some machines depend on the outputs
of others. In this situation, using a scheduler to manage the training process may be helpful for
solving the dependency between machines. Compared with data parallelism, model parallelism is
more complex and also harder to implement due to the strong cooperation among machines.

3.4 Parallel Communication Frameworks
Parallel communication frameworks help realize parallel training. Without a well-designed commu-
nication scheme, the limitation on the network bandwidth may become a troublesome bottleneck
for the whole system. The frameworks can be divided into the following three kinds: (1)MapRe-
duce/AllReduce; (2) Parameter Server; and (3) Data Flow. We briefly introduce their design in
Section 3.4.1 - 3.4.3. Then we give a simple discussion on this topic in Section 3.4.4.

3.4.1 MapReduce/AllReduce.

Design of MapReduce. In MapReduce, the map operation distributes data and tasks to workers
and the reduce operation aggregate all results. The general process of MapReduce is shown in
Fig. 3. To accomplish the distributed computation task, several mappers and reducers are set on
available nodes. Mappers read data from the storage, perform the mapping in parallel, and generate
intermediate results. Reducers then aggregate intermediate results and generate the final result.

Design of AllReduce. One problem of MapReduce is that it takes huge communication costs
to transfer intermediate results to the reducers. To deal with this problem, AllReduce is proposed
and integrated into Message Passing Interface (MPI). In AllReduce, all worker nodes also work as
reducers. Parts of the intermediate results are transferred between workers if necessary. With this
design, the amount of transferred data decreases. The network burden is also relieved since all the
workers’ bandwidths are used during reducing. AllReduce has been realized using many different
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topologies [76]. Here we use ring topology (Fig. 4) as an example to explain AllReduce. For 𝑘 (here
𝑘 = 3) nodes, we first use (𝑘 − 1) steps to make each node keeps 1

𝑘
of the final aggregated result.

Then with another (𝑘 − 1) ring communication steps, the result on each node can be completed.

Pros/Cons. In machine learning, MapReduce/AllReduce is commonly used to make multiple
machines cooperate with each other. One advantage of MapReduce/AllReduce is that it is easy to
deploy. MapReduce has been applied to server-based distributed training in [33, 72]. Here, mapping
is to retrieve the global model and generate model updates. Reducing is to aggregate model updates
and update the global model. Baidu brought Ring AllReduce technique to deep learning in 2017 [34].
AllReduce has now been supported in TensorFlow. In addition, we can use a third-party library,
called Horovod [95], to simplify the implementation of AllReduce in deep learning. One problem of
MapReduce/AllReduce is that it can be easily blocked by stragglers as synchronization is needed.

3.4.2 Parameter Server.

Design of Parameter Server. The parameter server (PS) can be either a single server or a server
cluster that takes charge of the task arrangement but doesn’t do the task by itself. The tasks are
actually done by the workers. Each worker only has to communicate with the central server to
pull or push data and has no need to be aware of other participators. This means one worker’s
computation task is independent of others’ so that asynchronous working is possible. PS is more
robust than MapReduce/AllReduce since it supports asynchronous communication and thus won’t
suffer from the straggler problem. An example of PS has been shown in Fig. 2b.

Development of Parameter Server. The idea of PS came from the parallel Latent Dirichlet Al-
location (LDA) architecture [107]. This first-generation PS used Memcached as the storage of
parameters and managed the synchronization of workers. The lack of flexibility and performance is
its main disadvantage. After that, YahooLDA [4] and Distbelief [24] followed this idea and improved
PS’s design for specific applications. Petuum [40] was a more general platform based on YahooLDA
but it placed more constraints on worker threading models. These works are all considered as the
second-generation PS. To build a more robust system, the third-generation PS was proposed and
implemented in [61]. PS has been applied to distributed deep learning tasks by Google in [24].

Pros/Cons. Here, we first introduce the advantages of the third-generation PS: (1) Efficient
Communication: Communication has been optimized for learning tasks to reduce overhead, and
asynchronous communication is supported; (2) Flexible Consistency: The system allows three
consistency models, including sequential consistency, eventual consistency, and bounded delay
consistency; (3) Elastic Scalability: New servers can join without rebooting the whole system; and
(4) Fault Tolerance and Durability: Chain replication is used to backup data entries on servers. The
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vector clock design enables a failed node to be quickly recovered to its original working status.
Compared to AllReduce, one disadvantage of PS is that all transferred data must pass through the
server. This can bring huge communication burden to the server. On the other side, the support
for asynchronous training and the elastic scalability are great advantages of PS. Although the PS
architecture is originally designed for server-based machine learning, some of its features such as
efficient communication are also strongly needed in client-based machine learning.

3.4.3 Data Flow.

Design of Data Flow. For distributed machine learning with model parallelism, a specially
designed scheme called data flow can be applied. Unlike the above-mentioned two schemes in
which each node has similar functions for the whole task, in data flow, different parts of the
model are distributed on different machines, so their jobs vary from one to another. The whole
computation process is organized using a directed acyclic graph. Nodes are units of the model,
and edges describe how data flows. If data flows between two units which are stored on different
machines, communication will be taken place. An example of this scheme has been shown in Fig. 2a.

Pros/Cons. The disadvantage of this scheme is that the failure of any machine can cause the
graph to be incomplete and the system can no longer run. If we use redundancy to solve this
problem, backups for every machine is necessary. This may result in an expensive cost. Thus, the
data flow scheme is more suitable for the cooperation among several powerful and stable machines.

3.4.4 Discussion. From these techniques, we can see that server-based distributed training focuses
on the cooperation between powerful machines. Its core idea is using data parallelism or model
parallelism to solve large-scale learning tasks. The different communication schemes are designed
for dealing with the low bandwidth of the local area network compared with the shared memory.
However, in client-based training, the challenges are mainly due to the limited resources and the
unstable network, which is quite different from those of server-based distributed training. Even if
some techniques such as data parallelism and parameter server can be referred to for designing
client-based training, we still have to pay attention to the special limitations in its scenario.

3.5 Distributed Optimization Algorithms
This kind of algorithms focus on how to better manage a large scale of workers and how to use
their resources to solve a huge complex task in a distributed way. A typical solution is to transform
the original hard problem into much easier sub-problems. In this section, we introduce several
distributed optimization algorithms. We list their key features in Table 3.

ADMM. Alternating Direction Method of Multipliers (ADMM) [15] makes use of both the
decomposability of Dual Ascent and the superior convergence properties of Method of Multipliers.
Machines distributedly use augmented Lagrangian methods to solve local sub-problems based
on local data and alternately compute some shared variables to solve the global problem. The
idea of this algorithm can be traced back to the mid-1970s and has been used in distributed SVM
training [30] in 2010. Although ADMM may take a large number of iterations to converge to high
accuracy, it can usually reach modest accuracy within tens of iterations in practice.

DANE. Distributed Approximate NEwton (DANE) [96] is an approximate Newton-like method.
In every iteration, each worker separately takes an approximate Newton step with implicitly using
its local Hessian and makes two rounds of communication. In contrast to ADMM, DANE can
benefit from the fact that sub-problems are often similar in applications of machine learning. DANE
performs well on smooth and strongly convex problems. It is proved that DANE can achieve linear
convergence if the learning rate is close to 1 and the approximation for Hessian is good.
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Table 3. Distributed optimization algorithms for server-based distributed training.

Name Math Tool Objective Convergence Speed Experimental Scale

ADMM
Dual Decomposition,
Method of Multipliers

Closed, Proper,
Convex

Reach optimal as iteration number 𝑘 → ∞.
Tested on 30GB data
with 80 workers.

DANE
Approximate

Newton Method
Strongly Convex,

Smooth
Linear convergence

for quadratic objectives.
Tested on CoverType [25], MNIST,

and ASTRO-PH [45] with 64 workers.

CoCoA
Use dual variables to
do efficient merge.

Convex,
Smooth

Convergence rate is 𝑚−1+Θ
𝑚

.
(𝑚: number of workers, Θ: convergence
rate of the local optimization method)

CoverType with 4 workers.
RCV1 with 8 workers.

ImageNet with 32 workers.

CoCoA+
Use dual variables to do
efficient additive merge.

Convex
Linear convergence for smooth
convex objectives. Independent

of the number of workers.

CoverType with 16 workers.
RCV1 with 16 workers.

Epsilon with 100 workers.

DiSCO
Inexact Damped
Newton Method

Strongly Convex,
Smooth,

Self-Concordant

Linear convergence.
Communication rounds 𝑡 ≈ 𝑂 ((𝑚𝑑) 1

4 log( 1
𝜖
)).

(𝑚: number of workers, 𝑑 : number of features)

Tested on CoverType, RCV1,
and News20 [87] with 64 workers.

Hydra
Randomized Coordinate

Descent Method
Strongly Convex,

Smooth

Roughly linear convergence.
Reach 𝜖-accurate with possibility at least
(1 − 𝜌) after 𝑂 ( 𝑑

𝑚
log( 1

𝜖𝜌
)) iterations.

(𝑚: number of workers, 𝑑 : number of features)

Speedup tested on 3TB data with
512 workers. Convergence tested on

ASTRO-PH with 32 workers.

CoCoA. Communication-efficient distributed dual Coordinate Ascent (CoCoA) was first proposed
in 2014 [43]. By making use of convex duality, after dividing the task into approximate local sub-
problems, we can choose whether to solve the primal sub-problem or the dual problem. The main
advantage of CoCoA is its flexibility. It allows machines to choose an local optimization method
and train the model to arbitrary accuracy. What’s more, the trade-off between local computation
and communication can also be tuned easily by setting a specific parameter. Experiments show
that CoCoA can achieve up to a 50× speedup when dealing with problems like SVM, logistic
regression, and lasso. Note that CoCoA [43] was improved to a more general case CoCoA’ [106]
in 2017 (CoCoA [43] and CoCoA+ [66] are predecessors of CoCoA’ [106].). The convergence for
non-smooth or non-strongly convex objectives has been analyzed for CoCoA’.

CoCoA+. CoCoA+ [66] also makes use of the primal-dual problem to get optimization. Compared
with CoCoA, CoCoA+ additionally studies and proves the convergence on non-smooth loss functions.
Linear convergence is proved for convex smooth objectives, while sub-linear convergence is proved
for convex non-smooth objectives. Furthermore, to get rid of the slowdown caused by averaging
updates, CoCoA+ choose to add all updates. Experiments show that CoCoA+ only slows down a
little as the number of workers increases, and it is faster than CoCoA for a large number of workers.

DiSCO. Distributed Self-Concordant Optimization (DiSCO) [124] is a Newton-type method.
Compared with DANE, DISCO uses a distributed preconditioned conjugate gradient method to
compute inexact Newton steps in each iteration and gets a superior communication efficiency. One
significant advantage of DiSCO is that compared with other algorithms, it has fewer parameters
to be paid attention and adjusted. According to the experiments, when the number of workers
increases to 16 and 64, DiSCO significantly outperforms ADMM and DANE on the convergence
speed. DiSCO-S [67] is an improved version of DiSCO. It uses an approximated Hessian as its
preconditioning matrix and uses Woodbury Formula to deal with the linear system more efficiently.

Hydra. HYbriD cooRdinAte (Hydra) [88] is a randomized coordinate descent method. This
kind of methods are becoming popular in many learning tasks such as boosting and large-scale
regression. In Hydra’s design, the original data are partitioned and assigned to one node from
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Table 4. Applicability of distributed optimization algorithms to client-based training.

Name Local Complexity
Comm. Overhead

(per worker per round)
Scalability Other Pro(s)/Con(s)

ADMM
A serially solvable
convex problem.

AllReduce(model)
Not theoretically analyzed.
Perform well in experiments.

Tested with numerical experiments.
Implemented in C using MPI [108].!

DANE Do mirror descent. 3 · Sizeof(model)
Convergence rate is independent
of the number of workers.!

Perform well only for
quadratic objectives.%

CoCoA
Depend on local dual
optimization method.

2 · Numof(features)!
Slow down as the number
of workers grows.%

Allow steering the trade-off between
communication and local computation.!

CoCoA+
Depend on local dual
optimization method.

2 · Numof(features)!
Convergence rate is independent
of the number of workers.!

Allow steering the trade-off between
communication and local computation.!

DiSCO
Compute gradients

and Hessians.
Numof(features)2 !

Slow down as the number
of workers grows.%

Require self-concordant objectives.%

Hydra Do coordinate decent. Not clearly analyzed.%
Speed up as the number

of workers grows.
!

Partition dataset by features,
require redistribution of data.%

the cluster of machines. Each node independently updates a random subset of its data based on a
designed closed-form formula in each iteration. The updates are all parallelized.

3.6 Applicability of Distributed Optimization Algorithms to Client-Based Training
Compared with server-based distributed training, client-based distributed training is harder to
implement due to the large number of workers and the relatively limited resources. Thus, some dis-
tributed optimization algorithms designed for server-based training may no longer be applicable to
client-based training. In what follows, we discuss the applicability of existing distributed optimiza-
tion algorithms to client-based training. As shown in Table 4, we investigate applicability mainly
from three aspects: (1) Local Complexity; (2) Communication Overhead; and (3) Scalability.
They are key concerns in the context of client-based training. We also list some other pros and
cons of these distributed optimization algorithms.

Local Complexity. Limited by the relatively poor computation resources (CPU and memory)
available on mobile devices, client-based training is very sensitive to the local complexity of
algorithms. However, in server-based training, local complexity has not been paid much attention
as the worker nodes are all regarded as powerful machines. We can hardly find accurate local
complexity information in the above-mentioned distributed optimization work. Here, in Table 4,
we just list the local computation methods which may reflect the local complexity to some degree.

In ADMM, DANE, DiSCO, and Hydra, the local optimization step is fixed. However, CoCoA and
CoCoA+ allow multiple choices on the local solver (Please refer to [106] for detailed suggestions.),
which means we can choose an appropriate local solver according to workers’ available resources.
This design is useful in client-based training since it improves the algorithm’s compatibility for het-
erogeneous mobile devices. Thus, regarding the local complexity, CoCoA and CoCoA+ outperform
the others.

Communication Overhead. Communication overhead is another important issue in client-
based training. Considering the complex network condition of mobile devices, high communication
overhead not only brings expensive data transfer cost, but also increases the risk of transfer failure.
Communication overhead can be further divided into the number of communication rounds and
the amount of data transferred in each round. The number of communication rounds is reflected by
the convergence speed listed in Table 3. Except for ADMM which requires large number of rounds
to converge, the other algorithms can all achieve linear convergence.
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The amount of transferred data per worker per round is listed in the Communication Overhead
column in Table 4. In ADMM, the communication step is accomplished by using AllReduce to
update the model parameters. In DANE, the amount of data transferred per round is triple as much
as the size of the model. Since the size of the model is not accurately provided, we cannot get the
accurate communication overhead of ADMM and DANE. In CoCoA and CoCoA+, the amount of
data transferred by each worker in each round is twice as much as the number of the features. They
are quite communication-efficient when dealing with tasks with small feature space. In DiSCO, the
amount of data transferred in each round is square as much as the number of features, which may
also be acceptable. Although several communication schemes have been provided in Hydra, the
amount of transferred data has not been clearly analyzed. Regarding communication overhead,
CoCoA, CoCoA+, and DiSCO outperform the other algorithms.

Scalability. Good scalability means we can assign the task to more workers and make use
of more parallel resources. We compare the scalability of distributed optimization algorithms
by checking if their convergence speed is affected by the number of workers. Results are listed
in Table 4.

In ADMM, although the scaled version of the algorithm is given, the scalability is only discussed
for the scale of the datasets. Whether the scale of workers has an impact on ADMM is not theoreti-
cally analyzed. We could only say that the performance of ADMM is not greatly changed as the
number of workers grows according to the comparison experiments between DANE and ADMM
done in [96]. In DiSCO and CoCoA, according to Table 3, the increase in the number of workers
causes the slowdown of the convergence speed. This indicates that the scalability of DiSCO and
CoCoA is not so good. In DANE and CoCoA+, the convergence rate is independent of the number
of workers. In Hydra, according to Table 3, since it can reach 𝜖-accurate with possibility at least
(1 − 𝜌) after 𝑂 ( 𝑑

𝑚
log( 1

𝜖𝜌
)) iterations, the number of iterations actually decreases as the number

of workers𝑚 increases. This means Hydra speeds up as the scale of workers grows. Regarding
scalability, DANE, CoCoA+, and Hydra outperform the other algorithms.

Other Pros/Cons. Besides the above three key aspects which are mostly concerned by client-
based training, these distributed algorithms also have some other pros/cons that should be incorpo-
rated for evaluating their applicability to client-based training. Details are presented in Table 4.

DANE and DiSCO require strict assumptions on the objective function. Hydra partitions training
data by features, which means it may require a data redistribution step. Thus, DANE, DiSCO, and
Hydra have additional cons. ADMM has been implemented using MPI in [108] and thus is easier to
be applied. CoCoA and CoCoA+ allow steering the trade-off between communication and local
computation, which gives us the freedom to change the training strategy according to available
resources. For this part, we could say that ADMM, CoCoA, and CoCoA+ outperform the others.
Another problem is that all these distributed optimization algorithms require a synchronous

update aggregation process in each communication round. Since the heterogeneity of mobile
devices can easily cause the straggler problem, the synchronization may significantly degrade the
system efficiency. This disadvantage should be carefully considered when applying distributed
optimization algorithms to client-based training. Considering that some optimizers introduced in
Section 2.5 have already supported the asynchronous scheme, we can refer to them and design new
asynchronous distributed optimization algorithms for client-based training.

4 CLIENT-BASED INFERENCE
In contrast to server-based machine learning where all operations over the model (including training
and inference) are conducted on servers, client-based machine learning intends to pull down some
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computation tasks to clients so that the quality of service can be improved in terms of response
latency, personalization, security privacy, and so on. Based on the execution phase, we divide
client-based machine learning into client-based inference and client-based training. Client-based
inference focuses on the local execution of trained machine learning models. In this section, we
discuss the necessity and the feasibility of client-based inference.

4.1 Motivations
Motivations for client-based inference can be concluded as follows: (1) Client-based inference can
reduce service latency and preserve user privacy; (2) Client-based inference helps lower the cost of
cloud platforms for service producers; (3) It is feasible to deploy client-based inference thanks to
the rapid development of mobile chipsets; and (4) It is convenient to deploy client-based inference
using the off-the-shelf mobile machine learning frameworks.

4.2 Challenges
One major challenge is that (1) inference tasks using complex or large-scale models can
hardly be solved on mobile devices. Even though the power of mobile chipsets has grown fast,
it is still far away from that of high-performance servers. The CPU power and the memory capacity
of mobile devices may have trouble supporting complex models, especially deep learning models.
Another challenge is that (2) the trade-off between inference accuracy and resource con-

sumption needs to be carefully decided. This is a fine-grained resource control problem. As
client-based inference aims at improving the quality of service, we should never let client-based
inference take too much resources or drain the battery. Considering that multiple models may be
run simultaneously to provide different services, the trade-off between inference accuracy and
resource consumption must be carefully decided to prevent resource contention.

4.3 Current Advances
In the past few years, deep learning has become the main trend of machine learning. Mobile phones,
as the most popular device in people’s daily life, becomes the most promising platform for deep
learning. Ravi [85] has proposed a method to generate compact on-device neural networks, which
brings convenience to the deployment of client-based deep learning inference. Deep learning based
apps such as [57, 73, 122] have been built. General mobile deep learning frameworks [7, 10, 28,
35, 44, 110] have been developed. Here, we introduce several mobile deep learning applications to
show the current development of client-based inference.

Mobile Computer Vision (CV). According to [117], photo beautify and face recognition together
cover over a half of all mobile deep learning applications. For CV applications, server-based inference
can bring high privacy risk as the raw sensitive images and videos have to be transferred through
network. To solve this problem, DeepEye [68] and DeepMon [41] were proposed to support the
on-device execution of deep vision models. Another problem is that the huge latency incurred by
server-based inference may be unacceptable for applications such as mobile augmented reality.
As a solution, DeepDecision [84] designs an on-device small deep learning model tiny-YOLO and
automatically decides the inference to be done locally or remotely. By using optional client-based
inference, the real-time capability of the system is guaranteed.

Mobile Natural Language Processing (NLP). Another hot topic is to solve NLP tasks such
as sentiment analysis, translation, and question answering on mobile devices. To better preserve
users’ privacy as well as reduce the service latency, DeQA [18] adapts existing question answering
systems to suit on-device running. Client-based inference is also applied to voice assistant and
voice input applications to ensure that they can still function normally even the device is offline.
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Siri, an voice assistant developed by Apple, uses on-device deep learning [19, 104] to improve the
text-to-speech synthesis process. Google makes use of client-based inference to realize personalized
speech recognition [69]. Georgiev et al. [32] use mobile GPU to accelerate mobile audio sensing.

Other Applications. Client-based inference also plays an important role in other applications
that require real-time responses or involve sensitive data processing. Liu et al. [102] designed
UbiEar to do smartphone-based acoustic event sensing and notification. This work greatly improves
the quality of life for Deaf or Hard-of-Hearing (DHH) people. Fang et al. [29] designed NestDNN
to dynamically select the structure of on-device deep learning CV models based on the trade-off
between accuracy and current available resources. In addition to these published works, client-
based inference are also applied to various kinds of applications (e.g., recommendation, movement
tracking, and identity recognition) without being noticed [117]. It is certain that people’s daily lives
have already been deeply permeated and improved by client-based inference techniques.

5 CLIENT-BASED TRAINING
Client-based training is mainly motivated by the strong need of making the best use of user data
generated on mobile devices and protecting users’ privacy at the same time. Since we can hardly
find any work and research paper about client-based local training, for the rest of this survey paper,
client-based distributed training is referred to as client-based training for convenience. In contrast
to traditional machine learning that require centralized datasets, client-based training uses mobile
devices to solve machine learning problems according to local user data. The server aggregates all
intermediate results and gets the trained model. Generally speaking, client-based training aims to
transfer some computation tasks from centralized servers to decentralized mobile devices. It can
not only offload servers’ burden but also make use of the growing processing power on mobile
devices. Furthermore, considering that data is processed locally in client-based training, the user
data that is either too much to be uploaded or too sensitive to be uploaded can now participate in
machine learning tasks. This gives possibility to improve the model’s accuracy and accelerate the
training process. More importantly, besides the benefits mentioned above, client-based training can
even better preserve users’ privacy. In this section, we first introduce and explain the motivations
of client-based training in Section 5.1. We formally define the task in Section 5.2. Then we discuss
the general constraints in Section 5.3. The main challenges faced by client-based training will be
claimed in Section 5.4. Finally, we use federated learning and split learning as examples to show
the current development of client-based training in Section 5.5 and Section 5.6.

5.1 Motivations
We conclude motivations for client-based training as follows: (1) Client-based training keeps all
advantages of client-based inference as client-based inference can be viewed as part of it; (2)
In client-based training, the on-device model has a much shorter update cycle compared with
server-based training and thus may perform better; (3) Client-based training is able to preserve
user privacy and make full use of on-device sensitive user data at the same time; and (4) Some work
in this direction has shown the feasibility and effectiveness of client-based training.

One problem faced by server-based training is that the cost (communication cost and computation
cost) is high. In server-based training, user data is generated on users’ devices and then collected.
However, in many cases, the data is so fine-grained and much that it incurs huge communication
overhead when being transferred to the server. In addition, processing huge amounts of data and
running large-scale machine learning on the server is not only time-consuming but also costly. Even
if the model is finally trained to good performance on the server, the long training cycle will result in
the delay of the model, which can cause decrease in its performance as users’ behavior patterns may
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Fig. 5. Illustrations of inference and distributed training in client-based machine learning.

have already changed. Another problem in server-based training is the privacy risk. Specifically,
the server in both centralized and distributed machine learning frameworks requires direct access
to training data and thus need to store raw user data, which inevitably suffers outsider and insider
attacks [79–81]. For example, a malicious hacker may invade the datacenter, compromise part of
the server, and leak private databases. Further, if the server is untrusted, it may share user data
with unauthorized entities or even trade for profits. To address these problems and disadvantages
of server-based training, attempts on client-based training has been made.

The difference between client-based inference and client-based training is shown in Fig. 5. From
the figure we can see that the client-based inference process just returns a prediction result which
may be used to produce a service for the user locally. It has nothing to do for the server. However,
if some part of the training process can be additionally done on-device, the generated trained
model can not only become personalized but also provide valuable information for the global
model stored on the server if the update of the local model is uploaded. This is exactly the idea of
client-based training. As an example of client-based training, federated learning has already shown
its effectiveness, which will be introduced later in Section 5.5. Besides federated learning, some
other works that are closely related to client-based training have also been proposed. He et al. [38]
designed a framework for decentralized on-device linear learning. Koloskova et al. [51, 52] further
studied decentralized deep learning with compressed communication. They together show us the
feasibility of on-device client-based training.

5.2 Task Definition
We first introduce some notations and definitions in client-based training: (1) A real matrixW ∈
R𝑑1×𝑑2 is the model learned from decentralized data; (2) A list {𝐶1,𝐶2, . . . ,𝐶𝑚} contains all𝑚 clients
that are run on different mobile devices. They are also known as the workers in client-based
training; (3) A list {𝐷1, 𝐷2, . . . , 𝐷𝑚} contains all local datasets used by the clients; and (4) A server
𝑆 that communicates with clients and arranges their tasks. 𝑆 can either be a single computer or a
server cluster whose structure is transparent to the clients.

5.2.1 Workflow. As shown in Fig. 6, a general workflow of client-based training consists of five
phases: (1) Initialization: The workers {𝐶1,𝐶2, . . . ,𝐶𝑚} run on mobile devices download hyperpa-
rameters from the server 𝑆 and get themselves initialized; (2) Distribution: The server 𝑆 arranges
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Fig. 6. Workflow of client-based training.

the tasks and sends them to the workers {𝐶1,𝐶2, . . . ,𝐶𝑚}. The model to be trained should also be
distributed to the workers in this step; (3) Local Training: The workers {𝐶1,𝐶2, . . . ,𝐶𝑚} train the
local models based on the local datasets {𝐷1, 𝐷2, . . . , 𝐷𝑚}. Updates will be generated after a certain
number of local training iterations; (4) Uploading: The workers {𝐶1,𝐶2, . . . ,𝐶𝑚} upload the updates
to the server 𝑆 ; and (5) Aggregation: The server 𝑆 aggregates all updates to generate a final update
and applies it to the global modelW. A single round of learning ends here. Go back to step 2 to start
a new round of learning. A similar workflow has been adopted in federated learning protocol [12].

5.2.2 SystemModules. To accomplish client-based training, the system is made up of three modules:
local training module, communication module, and aggregation module. We show how they
cooperate with each other and what kinds of techniques can be used to improve them.
The local training module is implemented on the worker. It works in step 3. Besides the data

preprocessing part, the core component of the local training module is the local machine learning
optimizer. Considering that the resources available for client-based training are very limited, the
local optimizer must be chosen and designed carefully. It should be run on mobile devices without
significant bad effect on users’ daily usage experience. For the local training module, the input is
the initialized model and the output is the update. The update can be generated based on either the
new model which has been trained on the local dataset or the difference between the two models.

The Communication module takes part in step 1, step 2 and step 4. It is implemented on both the
server and the worker, which means the server and the worker have to cooperate with each other
for communication. The communication module is responsible for two jobs: task arrangement
and data transfer. For the server, it should concern about the task arrangement part whose main
purpose is to divide the original complicated problem into easier sub-problems. This can be done
through distributed optimization algorithms. The input is the original problem and the output is a
set of sub-problems. From the worker’s perspective, data transfer is the main challenge as mobile
network resources are limited and expensive. Compression methods can be used to reduce the
communication cost. Here, the input is the original data and the output is the compressed data.
The aggregation module is implemented on the server. It works in step 5. Since the number of

updates received from workers can be very large, it is inefficient and even impossible to apply all
updates to the global model one by one. Thus, the main job of the data aggregation module is to
extract and make the best use of the information contained in the updates. It takes all received
updates as inputs. Its output can be either a final update which can be directly applied to the global
model or a new model which replaces the old one.
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5.3 Constraints
The only difference between server-based training and client-based training is where the training
process is done. However, this change introduces additional constraints for the whole system due
to the limitations on mobile devices: (1) Compared with PCs and servers, the hardware resources
available on mobile devices are poor and limited; (2) The network condition for mobile devices is
unstable, and the communication cost is very high; and (3) Unlike servers which are owned and
managed by data centers, mobile devices are not totally under control, thus the reliability and the
security of the whole decentralized training process are not guaranteed.
The first limitation is similar to the first challenge of client-based inference as both of them

require plenty of computation. The second limitation is introduced considering that client-based
training additionally needs the communication process to accomplish distributed training. The
third limitation indicates that client-based training is more vulnerable to attacks. In what follows,
we show how these three limitations lead to six concrete constraints of client-based training.

Simple On-Device Task. The machine learning sub-problems solved on mobile devices should
be easy. This constraint is desired according to the first limitation. Although the development of
mobile devices has kept accelerating in recent years, their computation power is still far less than
that of personal computers, not to mention the server clusters. The key reason for this phenomenon
is that mobile devices need to be portable. In this situation, chipsets are specially designed for
mobile devices to balance between the need for lower energy consumption and the need for greater
power. Thus, unlike the CPUs used on personal computers which can easily reach 100W in power
with stable power supply, the peak power of CPUs used on mobile devices is usually under 10W.
Considering that mobile devices have to spare some resources and energy to support its basic
functions, the part which can be used for supporting mobile machine learning becomes even
less. Moreover, the mobile devices usually have no additional cooler and just use passive cooling
methods. This also limits the maximum power of them. Considering the facts given above, the
necessity of the simple on-device task constraint has been clear. First, mobile devices cannot handle
complex machine learning tasks because the power is limited. Second, since only passive cooling
methods are used, a hard machine learning task is very likely to cause the mobile device becomes
hot. This must not happen as it has huge negative effect on user experience. Therefore, the machine
learning sub-problems solved on mobile devices should be easy enough so that the users are even
unaware of its running at all.

Short Training Time. The time spent on one round of local on-device training should be
short. We have mentioned that the hardware resources available on mobile devices are poor and
limited compared with personal computers. Thus, the systems run on mobile devices are specially
designed. Background apps may be paused by the system to save resources for the foreground app.
Considering that most users just use an app for a little while at one time, it is better to finish the
training task during the time that the app is running in the foreground. Otherwise, if the training
has not been finished when the app is paused or quit, the generated update may not be sent to the
server in time and become useless at the next start due to the long delay.

No Uploading. Local private user data should not be uploaded to the server in principle. For
now, although the 4G network has already been deployed widely and the 5G network is coming,
the cost of data on mobile devices is still expensive. What’s more, local data on mobile devices may
contain sensitive user information, which means it is not suitable for being uploaded to the server.
Thus, to best preserve user privacy, the local raw user data should not be uploaded in principle.
However, considering that uploading a small subset of local data is feasible and may be helpful for
the aggregation process on the server, it can be permitted under special situations with guaranteed
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privacy. Note that No Uploading is one important cause of the significant difference between server-
based distributed training and client-based training. Without uploading data, the local datasets used
for training are specific to their owners and can never become Independent and Identically Dis-
tributed (IID) which is a necessary condition for many machine learning algorithms. Moreover, No
Uploading also causes the sizes of local datasets to be unbalanced, and results in the information
contained in different workers’ updates being unbalanced. Hence, how to determine which updates
are more valuable (contains more information) becomes another problem to be solved.

Low Communication Overhead. The data transferred in one round of learning should not
be too much. This constraint also aims at protecting the experience of users’ daily usage. If too
much data has to be transferred, it may be a heavy burden for the mobile devices even if they are
connected to WLANs and can cause other apps that are using the network to be blocked.

Low Communication Frequency. The communication frequency should be low and it is better
to let the workers decide when to communicate. As the network condition for mobile devices is
unstable, a scheme with frequent communication is unsuitable. What’s more, a low communication
frequency with a long training time is beneficial for reducing the communication cost. The reason
why we suggest letting the workers decide when to make the communication is that the high
heterogeneity of workers makes the server have no idea when the sub-problems will be solved. By
letting workers make the decision, we may also reduce the communication cost as workers can
choose to do the communication at the time when they are connected to WLAN.

High Awareness of Data Reliability. The server should be highly aware of the data reliability
of the received updates. Since the decentralized training scheme cannot guarantee the reliability
of the received data, client-based training suffers from fake updates or low-quality updates. To
prevent machine learning poisoning attacks, a possible solution is to let the server evaluate the data
reliability by making use of update diversity or additional information such as worker reputation.
With high awareness of data reliability, the server can distinguish and reject low-quality updates
and make the training process become more secure and stable.

5.4 Challenges
From the above six constraints, we can summarize the major challenges of client-based training:
(1) Transforming original machine learning tasks to easier sub-problems which can be solved on
mobile devices effectively and efficiently; (2) Dealing with the unbalanced non-IID dataset and
cover its negative effects; (3) Compressing the transferred data between the server and the clients;
(4) Lowering communication frequency and overhead; and (5) Ensuring the efficiency and security
of data reliability evaluation.
For challenge (1), although we can refer to distributed optimization algorithms, none of them

guarantees that it performs well with millions or even billions of workers. The huge number of
workers and the limited resources available on workers may cause the optimization problem to
become so difficult that we must design a brand new solution for it.
For challenge (2), some existing methods (e.g., [125]) use data-sharing strategies to mitigate

the negative effect of the unbalanced non-IID dataset. The problem of data-sharing strategies is
that raw data transfer can be costly and risky for mobile devices. Another possible solution is to
design new machine learning algorithms which are insensitive to the data distribution. For example,
semi-cyclic SGD [3] can adapt to data with block-cyclic pattern.

Regarding challenge (3) and (4), they have already been widely studied in other areas (e.g., data
compression and computer network). However, considering that general methods normally may
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not well adapt to every scenario, specific algorithms that are closely combined with client-based
training must be more effective and thus are needed urgently.

For challenge (5), to prevent model poisoning attacks [9, 31, 98], some existing studies [31] use
update diversity to distinguish low-reliability updates. Some others [48, 49] choose to calculate the
reputation of workers and use the reputation score to represent the data reliability. Techniques
such as blockchain have been used to achieve secure reputation management. Although these
methods can effectively protect the global model training process from the attacks, they incur large
computational cost as the number of workers increases. Thus, the main task here is to design an
algorithm which can guarantee both security and efficiency.
To better learn about these challenges and their possible solutions, we use federated learning

and split learning as two examples and introduce their current advances.

5.5 Current Advances in Federated Learning
In recent years, attempts at the implementation of client-based training have occurred. Federated
Learning, as an example, was proposed by researchers from Google in 2015. Generally speaking,
federated learning means to do machine learning tasks federatedly among a large number of mobile
devices with on-device private data protected. Its core idea is to train the model locally on user
devices and aggregate updates on the server without uploading raw user data, which shares a
similar scheme of distributed machine learning. From 2016 to 2018, Google published several related
articles to complement federated learning’s framework. In 2019, applications of federated learning
appear. A detailed survey [47] about federated learning is given in December, 2019. Federated
learning can be viewed as an attempt at client-based training with privacy preservation as the
primary goal. Existing federated learning work mainly focuses on studying how to improve the
final model’s performance and how to design an efficient communication scheme. In this section,
problems and current advances in federated learning are introduced and discussed.

5.5.1 Model Performance.

Literature Review. The idea of federated learning can be traced back to Distributed Selec-
tive Stochastic Gradient Descent (DSSGD) [100]. It was published in October 2015 and is about
distributed deep learning without sharing datasets.
Following the idea of distributed learning and privacy preservation, in November 2015, re-

searchers from Google submitted their first attempt on federated learning [54]. Federated learning
can be viewed as an improved version of DSSGDwhich is optimized for mobile devices. In this work,
three basic properties of federated learning’s scenario were given: (1) Non Independent and Iden-
tically Distributed (non-IID) Data; (2) Unbalanced Data; and (3) Massively Distributed Data. (Note
that the fourth property (4) Limited Communication was introduced in [70] and will be discussed
in Section 5.5.2.) Also, this work proposed an efficient federated optimization algorithm called
Distributed Stochastic Variance Reduced Gradient (DSVRG) based on SVRG [46] and DANE [96].
Later in 2016, Konečnỳ et al. [55] complemented and improved the above work. DSVRG was

renamed as Federated SVRG (FSVRG). Equations and mathematical proofs for it were also provided.
After the above works had formulated the basic training scheme of federated learning, researchers

continued to study the effectiveness of federated learning and tried to improve its performance.
Zhao et al. [125] analyzed the negative effect of non-IID datasets on model performance and
provided a simple data sharing strategy to deal with it. Yu et al. [121] studied on why model
averaging works for deep learning tasks. Eichner et al. [27] discovered that cyclic patterns in the
data samples is hard to be avoided in federated learning and does harm to the performance of
SGD. They proposed Semi-Cyclic SGD to correct this problem when optimizing convex objectives.
Mohri et al. [74] proposed a new framework of agnostic federated learning to avoid the federated
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model being biased towards different clients. Chen et al. proposed FedMeta [21] which combines
federated learning with meta-learning. To better evaluate various kinds of federated learning
algorithms, LEAF [17], a modular benchmarking framework for learning in federated settings, was
proposed. It contains open-source federated datasets and is continuously updated.

Discussion. While federated leaning training algorithms have developed from DSSGD to FSVRG,
the most important non-IID data problem has not been solved well yet. What’s more, the cyclic
pattern of data is also harmful and should be taken into consideration. In conclusion, to further
improve the model performance of federated learning, we need to deal with the cyclic unbalanced
non-IID data problem under the non-convex objective condition.

5.5.2 Communication Efficiency.

Literature Review. The first aspect of improving communication efficiency is reducing commu-
nication rounds. In [70], Federated Averaging (FedAvg) was proposed to deal with the fourth basic
characteristics of federated learning Limited Communication. By enabling multiple local training
iterations and using model averaging methods, the number of communication rounds is reduced.
Similarly, based on parallel restarted SGD [121], Yu et al. [120] proposed parallel restarted SGD
with momentum to enlarge local training steps and thus reduce the total number of rounds.

Meanwhile, reducing the size of communication data also helps improve communication effi-
ciency. According to [56], as on most occasions the bandwidth of the uplink is much poorer than
that of the downlink, reducing the uplink communication cost is a more urgent task. Two kinds of
approaches (Structured Updates and Sketched Updates) which can lower the size of the updates are
implemented and tested in federated learning in [56]. Besides the general compression methods,
Caldas et al. [16] proposed Federated Dropout. With Federated Dropout, each worker trains a
smaller sub-model instead of the whole global model. Then the size of updates is also reduced.

Discussion. Although the above-mentioned methods do improve the communication efficiency,
they are still using the two-tier server-worker communication structure. This scheme not only
brings huge communication burden to the central server, but also suffers from the instability of
mobile workers’ network. Perhaps we can consider using a multi-tier communication structure to
further improve both communication efficiency and communication stability.

5.5.3 Security & Privacy.

Literature Review. After the development of FedAvg [70], to better ensure the security of
the aggregation process in federated learning, Google proposed a practical secure aggregation
method [13] for privacy-preserving machine learning. In the secure aggregation process, the secure
multiparty computation technique is used to compute sums of model parameter updates. What’s
more, model poisoning attacks [9, 31, 98] toward federated learning have also been studied. The
main purpose of model poisoning is to make the trained model output wrong answers or even
attacker-chosen answers. To prevent model poisoning attacks, update diversity [31] and worker
reputation [48, 49] can be used to recognize unreliable updates.
For better privacy preservation, McMahan et al. [71] applied differential privacy methods to

FedAvg and only resulted in a negligible cost in inference accuracy. Agarwal et al. [3] proposed
cpSGD to achieve both differential privacy and communication efficiency in federated learning
settings. Niu et al. [20] proposed a secure federated submodel learning schemewith tunable property
which enables the workers to tune privacy and utility. Considering that the maximum contribution
is an important parameter for differential privacy algorithms (the noise to be added to data is closely
related to it), Amin et al. [5] studied how to bound user contributions in federated learning. Yang et
al. [23] proposed a novel lossless privacy-preserving tree-boosting system called SecureBoost.
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Discussion. Regarding better privacy, although federated learning can naturally protect sensitive
raw user data, we still need to make sure that the attacker cannot infer information from the
transferred updates. For the security part, since federated learning distributes the training process
to unreliable mobile devices, attacks which aim at misleading the final model can be more easily
implemented. For example, we should pay more attention to the potential data poisoning attacks.

5.5.4 Applications. Federated learning has already been used in some applications and shown
satisfying performance. Google first applied federated learning to Gboard to improve its query
suggestions [119]. They tested federated learning on 100 clients. Results shew that federated learning
do improve the performance of the deployed LSTM model. After that, they also applied federated
learning to the mobile keyboard next-word prediction task [37]. According to the evaluation
done on server-hosted logs data, the federated-trained CIFG model performs nearly as well as the
centralized-trained CIFG model. And for evaluation done on client-owned data caches, federated
learning even outperforms centralized learning. Google has also applied federated learning to learn
Out-Of-Vocabulary (OOV) words [22]. This work conducted both simulated federated learning on
a non-IID dataset and real-word federated learning on data hosted on user mobile devices. Results
shew that the federated learning method can learn OOV words effectively. Google introduced their
system design for federated learning at scale in [12], which mainly focus on how to design an
elastic parameter server to support large number of clients in real-word settings.

Besides Google, many other researchers were also exploring federated learning. Smith et al. [105]
combined federated learning with multi-task learning. Intel [99] used federated learning to do
multi-institutional deep learning for brain tumor segmentation without sharing patient data. Yang et
al. [64] proposed Federated Transfer Learning (FTL). This work shew that federated learning is
also suitable for being applied to machine learning tasks in the scenario of cooperation among
banks where sensitive information mustn’t be shared. Felix et al. [93] proposed Sparse Ternary
Compression (STC). STC is more robust to non-IID datasets and works as a substitute for FedAvg.

5.5.5 Surveys. Google has published a very detailed survey paper [47] to summarize all works
and researches related to federated learning. Advances of federated learning and open problems in
this area have also been discussed. Yang et al. provided a survey [118] about federated learning’s
concept and applications. In this survey paper, Federated Learning is extended and classified into
Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL). Li et al. [62] write a
survey to discuss challenges, methods, and future directions of federated learning.

5.6 Current Advances on Split Learning
Just like federated learning can be viewed as a special case of data parallel distributed learning
where datasets are distributed on mobile workers, split learning can be considered as a special
case of model parallel distributed learning where the model is distributed on the server and mobile
workers. Here, we continue to introduce current advances in split learning.

5.6.1 Model Performance.

Literature Review. The idea of split learning first appeared in [36] and was proposed by a
research team from MIT. It is motivated by the need of using multiple agents to collaboratively
train a deep neural network without transferring raw sensitive user data, which is very similar
to the motivation of federated learning. To achieve this goal, Split Neural Network (SplitNN) was
designed. In SplitNN, only bottom parts of the model are trained on an worker who owns the raw
data. The gradients together with the labels for the training data are transmitted to the server who
accomplishes the rest training process for the top parts of the model. Considering that the labels
may also reveal sensitive user information, U-shaped SplitNN is designed. In U-shaped SplitNN,
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the server only processes the middle layers of the model. The bottoms layers and the top layers are
stored on workers to process the raw data and the corresponding labels. Experiments have been
done to demonstrate the effectiveness of SplitNN.

Later, the concept of split learning was formally proposed in [113]. SplitNN, as a method of split
learning, has been improved in this work. Several possible privacy-preserving structures of SplitNN
have been provided and discussed. We will introduce this part later in Section 5.6.3. By comparing
SplitNN with large-scale SGD and FedAvg on CIFAR 10 and CIFAR 100, it is shown that SplitNN
can achieve higher validation accuracy with much less computation.

Discussion. In SplitNN, although a training algorithm using multiple workers have been de-
signed, the whole training process is still run sequentially. According to the algorithm, a worker
must fetch the latest model before it starts training. After a training iteration, this worker’s updated
model will be marked as the latest model. This scheme implies that only one worker can train
the latest model at the same time. Although Singh et al. [103] proposed an approach called “split
learning without any client weight synchronization”, how it works and how it performs are not
described. On the other hand, since there is no model aggregation process, multiple workers training
the latest model in parallel will result in conflicts. This lack of parallel training scheme makes
SplitNN fail to get benefit from parallel training acceleration. Moreover, while local raw data is not
transferred in split learning, the impact of local non-IID dataset has not been analyzed yet.

5.6.2 Communication Efficiency.

Literature Review. A detailed comparison of communication efficiency of split learning and
federated learning was given in [103]. The theoretical analysis shows that split learning becomes
more communication-efficient as the number of clients increases and can well adapt to big models.
One shortcoming of this work is that the theoretical analysis has not been validated by experiments.

Discussion. The communication efficiency of split learning has not been well studied yet. As
workers need to transfer data with the server in each training iteration, the network condition (e.g.,
bandwidth and latency) can greatly influence the system efficiency. What’s more, the applicability
of communication compression methods needs to be further examined.

5.6.3 Security & Privacy.

Literature Review. Attacks on split learning have been studied in [2]. This work shows that it
is possible to reconstruct the raw data from the worker’s outputs if only a few convolution layers
is trained on the workers. In addition, neither introducing additional hidden layers nor applying
differential privacy to the split layer can effectively mitigate this shortcoming. Both of the two
attempts cause an unacceptable decrease in the model accuracy.
Several privacy-preserving structures of SplitNN have been introduced in [113]. As multiple

institutions might own different modalities of the same user’s data, vertical split learning is designed
to deal with this kind of data which is partitioned by features. Extended vanilla split learning and
Tor-like multi-hop split learning arrange additional workers to process the middle layers of the
model. This structure helps to cover the identities of the bottom workers who use their sensitive
raw data to train the bottom layers, and thus the privacy of the bottom workers are better preserved
by the anonymity. Besides the basic structure design, Vepakomma et al. [112] used two losses in
one model to reduce data leakage for SplitNN. Sharma et al. [97] proposed ExpertMatcher to do
model matching for split learning with only the encoded hidden representation of local raw data
shared. By hiding the raw data representation, user privacy is better preserved.
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Discussion. One important problem not studied yet is how to trade off between on-device model
complexity and user privacy. By putting some complex layers of the model on workers, the privacy
may be better preserved as it becomes harder to infer raw data. Meanwhile, split learning also
suffers model poisoning attacks. Now that some parts of the model even do not exist on the server,
model poisoning attacks become much easier and should be more carefully handled.

5.6.4 Applications. Split learning has been tested in the medical field in [78]. U-shaped SplitNN
has been implemented to enable the collaborative machine learning between several hospitals.
Experiments are done on two medical datasets: retinal fundus photos and chest X-rays. Results
show that split learning outperforms non-collaborative methods greatly.

5.6.5 Surveys. Vepakomma et al. [114] have surveyed methods for deep learning without revealing
raw data, including large batch SGD, federated learning, and split learning. Key ideas, limitation,
and future trends of them have been simply discussed. In addition, this survey paper has introduced
several cryptographic techniques which can be used to further preserve privacy in machine learning
area, including homomorphic encryption, oblivious transfer, and garbled circuits.

6 FUTURE DIRECTIONS
In this section, we introduce some potential research directions of client-based training. Most of
them are motivated by the problems and challenges discussed in Section 5 that have not been
studied well (e.g., Non-IID Training Sets). Others are ideas which can improve the robustness or
the adaptivity of the system (e.g., General Mobile Training Framework).

Non-IID Training Sets. This problem was first introduced in federated learning. It also exists
in the scenario of other client-based training methods such as split learning as we can no longer
upload the original data and do a shuffle. Zhao et al. [125] has shown the negative effect of non-IID
datasets on model convergence and proposed a data sharing strategy to deal with it. However, it
may be difficult for mobile devices to share a small part of the local dataset with others because the
process is hard to be managed and the communication cost can be high. We also have to ensure
that the privacy is still preserved during the whole data transmission process. Another possible
solution is to develop new machine learning algorithms which are not sensitive to the distribution
of training set. However, this direction does not have much existing work that can be referenced
and may become a new hard machine learning problem.

Aggregation Methods. For existing data aggregation methods designed for server-based dis-
tributed training (e.g., FedAvg [70], Ensemble-Compression [109], and Codistillation [6]), none of
them guarantees a fast convergence. Since the number of workers is usually under one hundred
in server-based distributed training, no one has the experience to aggregate tens of thousands
of updates in a round in client-based training. Moreover, the above-introduced methods all have
disadvantages. The averaging-based methods may cause a significant decrease in the convergence
speed as they reduce the scale of updates on weights. They may also not be suitable for non-convex
problems. The distillation-based methods may not be able to merge tens of thousands of models
because they need much additional computation to handle this complex task. Thus, how to design
an effective, efficient, and robust aggregation method is an urgent problem to be solved.

Security & Privacy. Although client-based training can prevent the leakage of raw user data,
Shokri et al. [101] have already shown the feasibility of the attack against machine learning models.
This work demonstrated how to inference user membership only based on the trained model.
Differential privacy, as a solution to this problem, requires additional computation on mobile
clients and can cause decrease in model accuracy. Secure aggregation [13] does no harm to the
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Table 5. Available datasets for client-based training in LEAF.

Name #samples #users
#samples per user

Task
mean stdev

FEMNIST 805,263 3,550 226.83 88.94 Image Classification
Shakespeare 4,226,158 1,129 3,743.28 6,212.26 Sentiment Analysis

Twitter 1,600,498 660,120 2.42 4.71 Next-Character Prediction
CelebA 200,288 9,343 21.44 7.63 Image Classification
Reddit 56,587,343 1,660,820 34.07 62.9 Next-word Prediction

Synthetic Dataset 107,553 1,000 107.55 213.22 Classification

model performance but can hardly be deployed in large-scale client-based training due to its high
complexity. On the other hand, malicious clients may adjust their update data in order to affect or
control the behavior of the final model and gain benefits for themselves [9]. These facts imply that
better privacy and security in the scenario of client-based training is still an open problem.

Communication with 5G. The 5th generation mobile network (5G) brings high-bandwidth and
low-latency network to mobile devices. The training slow-down caused by network latency and the
client drop-off caused by network instability can be greatly relieved by 5G. Since communication
efficiency is a key concern for the implementation of client-based training, the high bandwidth,
low latency, and good stability of 5G may help client-based training become more robust [65].

While current client-based training methods are commonly using server-client communication
scheme (e.g., parameter server), 5G provides us with the opportunity to extend the communication
scheme to device-to-device (D2D) and vehicle-to-vehicle (V2V). Some work (e.g., [91]) has already
tried to combine federated learningwith V2V networks to achieve low-latency neighbor cooperation.
We can also use 5G D2D network [94] to add middle layers between the server and the clients to
realize multi-tier network structure which is more robust and scalable.

What’s more, as 5G has brought stronger connectivity to mobile devices, secure data utilization
strategy becomes an urgent problem. Thus, besides being improved by 5G techniques, client-
based training has also been used to deal with 5G problems such as Network Data Analytics
Function (NWDAF) [42, 75]. These facts show that combining client-based learning with 5G is
beneficial to both sides and thus will be an important future direction.

Standardization & Benchmark. Up till now, there still does not exist a white paper to com-
prehensively define and claim the standard of client-based training. Since deploying client-based
training requires a trade-off between a lot of properties (e.g., model accuracy, communication
overhead, complexity, privacy, and the scale of supported clients), the comparison between different
client-based training algorithms will be difficult without pre-defined standards and evaluation
metrics. Moreover, as client-based training can be applied to various kinds of tasks, it is also
important to collect and release corresponding benchmark datasets which satisfy the client-based
training settings. We recall that the No Uploading constraint in client-based training forces the local
datasets to be unbalanced non-IID datasets which are partitioned by users. LEAF [17] can be taken
as a reference. Table 5 has listed the currently available datasets in LEAF. All these datasets allow
partition by user, which means they can be used to test client-based training algorithms under
the non-IID condition. For now, LEAF datasets have covered only a few tasks. More benchmark
datasets are needed to support the development of client-based training in different areas.
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Table 6. Mobile machine learning frameworks.

Name
(Server-Based)

Centralized
(Server-Based)

Distributed
Mobile

Inference
Mobile

Training

TensorFlow Lite [35] TensorFlow! TensorFlow! ! %

Core ML [7] Create ML! % ! %

PyTorch Mobile [28] PyTorch! PyTorch! ! %

NCNN [110] % % ! %

Paddle Lite [10] Paddle! Paddle! ! %

MNN [44] MNN! % ! !

Deployment Scenarios. Since both federated learning and split learning are general client-based
training frameworks which concern about the overall learning process and scheme, they have to
be combined with concrete machine learning methods and models when being applied to real-life
applications. However, as they are newly emerging techniques and haven’t been tested on many
tasks, the suitable deployment scenarios for any of them are still not clear. For now, client-based
training has caught people’s eyes because it can guarantee user data privacy sacrificing a little
model performance and training speed. That is the reason why federated learning and split learning
have been applied to applications whose user data is sensitive (e.g., Gboard) and the health area.
Considering that client-based training is experiencing rapid development with its performance,
efficiency, and robustness all being improved, it is urgent to figure out what else can client-based
training do and how to better deploy it on mobile devices in various kinds of real-life scenarios.

General Mobile Training Framework. We list some commonly used mobile machine learning
frameworks in Table 6. Although the computation power of mobile devices is already sufficient for
training small models, many existing open-source mobile machine learning frameworks such as
TensorFlow Lite [35] and PyTorch Mobile [28] still only support inference operations, which means
they are actually mobile inference frameworks. Without a general mobile training framework,
implementing client-based training on mobile applications can be inefficient and time-consuming
because developers have to realize all training operations by themselves for each task. To deal with
this problem, MNN [44] from Alibaba has provided an on-device training module. MNN supports
constructing a model from zero and training it totally on mobile devices. We hope that other mobile
machine learning frameworks can also add support for mobile on-device training.

7 CONCLUSION
In this survey, we have provided a thorough overview of the development of machine learning in
recent years, from traditional server-based machine learning to emerging client-based learning.
We have discussed their purposes and demonstrated the sufficiency and necessity of client-based
machine learning. Specifically, for client-based inference, we have discussed its challenges and
demonstrated its current advances, especially in the fields of computer vision and natural language
processing. In addition, for client-based training, we have illustrated motivations and bottlenecks,
given a clear task definition, and further offered a general guideline for practicers. As typical
examples of client-based training, we have introduced the concepts of federated learning and
split learning and also reviewed their current advances. We finally have pointed out some future
research directions of client-based machine learning in both academia and industry. In summary,
applying client-based machine learning to real-world industrial applications is still faced with many
challenges and opportunities, which calls for more attention to be paid on its future development.
We hope that this survey can be a good starting point.
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