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Abstract: Existing scheduling schemes for stochastic event capture with rechargeable sensors either
adopt simplified assumptions on event’s properties or provide no performance guarantee. Considering
the stochasticity of event staying time and event capture utility, we investigate the sensor scheduling
problem aiming to maximise the overall quality of monitoring (QoM) in event capture application
of energy harvesting sensor networks. We first provide a paradigm to calculate the QoM of a point
of interests (PoI) and formulate the scheduling problem as an optimisation problem. Although we
find that this problem is NP-complete, we prove that the problem can be cast as maximisation
of a submodular function subject to matroid constraints. Accordingly, we can design centralised
and distributed algorithms, each of which achieves a factor of 1/2 of the optimum. We evaluate
the performance of our solution through simulations, and simulation results show that our scheme
outperforms former works.
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1 Introduction

Wireless sensor networks (WSNs) are mainly powered by
small batteries, and the limited energy supply constrains the
lifetime of WSNs. Fortunately, recent studies have shown
that energy harvesting sensor networks have the potential to
provide perpetual network operations by capturing renewable
energy from the ambient environment. The benefits of using
rechargeable batteries to prolong sensor network life by
harvesting environmental energy such as vibration (Meninger
et al., 2001), solar (Raghunathan et al., 2005), wind (Park and
Chou, 2006), thermal (Stark, 2006), and RF signals (He et al.,
2011; Dai et al., 2013a, 2013b, 2013c, 2014), have been well
recognised.

However, as indicated by many real experiment results,
usually the energy harvesting rate for rechargeable sensors is
relatively slow compared with the discharging rate. Due to
this reason, rechargeable sensors are forced to schedule their
duty cycles for energy efficiency. Since continuous operations
of sensors are no longer guaranteed, the activation policies
need to be carefully designed for sensors to optimise system
performance. In this paper, we consider the optimal activation
policies for stochastic event capture with rechargeable sensors.

Event capture in WSNs has been studied for a long period
of time, and it can be applied to various scenarios such as
populated area protection against physical hazards, and forest

monitoring for environmental changes like temperature and
humidity. As for energy harvesting sensor networks, event
capture is also by no means a new topic. However, as far
as we know, almost all existing literatures either overlooked
the stochasticities of event staying time or event capture
utility, or made simple assumptions about sensor coverage.
For example, Jaggi et al. (2007), Ren et al. (2012) and Jaggi
et al. (2011) focuses on how to exploit on-line information
of event occurrence by applying dynamic activation policies
to optimise the QoM. Here QoM is defined as the ratio
of interesting events captured to all occurred events. The
events in these works are simply assumed to either leave
some evidence after its disappearance such that they can
ultimately be identified, or like ‘blips’ that can be observed
only when the sensor is active in the time slot concerned. This
assumption is not practical since Yau et al. (2010) showed
that event staying time can be expressed as a stochastic
process. Besides, existing literature in energy harvesting
sensor networks typically focused on simple coverage cases to
make the problem amenable. For example, Jaggi et al. (2007),
Ren et al. (2012) and Jaggi et al. (2011) have studied the
coverage problem where single or multiple sensors jointly
cover one single PoI, which is definitely impractical.

In this paper, we study the stochastic event capture problem
in energy harvesting sensor networks under practical concerns,
namely, taking into account both stochasticities of event
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staying time and event capture utility and general sensor
coverage settings (each sensor covers multiple PoIs, and
adjacent sensors might cover nonempty PoIs in common).
Particularly, we associate each PoI with a predefined weight
to quantify its importance (Liu and Cao, 2012). The QoM of
a single PoI is defined as the product of its weight and the
average obtained utility of events, and the overall QoM of the
network is given by the sum of QoMs of all PoIs. After all, our
problem is how to schedule the sensor activations to achieve
the optimal overall QoM. We show that this problem is NP-
complete, and propose effective centralised and distributed
scheduling schemes to address it, both of which achieve a
constant factor of the theoretical optimum. More importantly,
our theoretical can accommodate cases where events have
arbitrary event staying time function and arbitrary concave
event capture utility function.

Our theoretical analysis mainly exploits the submodular
property of the overall QoM function. Informally,
submodularity is an intuitive notion of diminishing returns,
i.e., adding an element to a smaller subset of S helps more
than adding it to a larger subset of S. Submodular functions
play an important role in discrete optimisation. While
submodular property has previously been used for sensor
coverage (Abrams et al., 2004), placement (Krause and
Guestrin, 2007; Krause, 2008; Bian et al., 2006; Krause et al.,
2008), we are the first to disclose and exploit submodularity of
scheduling for stochastic event capture in energy harvesting
sensor networks. Besides, our problem is different from those
partially observable stochastic optimisation problems, which
are suitable for adaptive submodular optimisation (Golovin
and Krause, 2011a, 2011b). This is because we assume that
the stochastic property of events has already been determined
by observation or other means.

Specifically, the contributions of this work are four-folds:

• We consider the scheduling problem in dense energy
harvesting sensor networks for stochastic event capture
in a practical way, i.e., taking into account the
stochasticity of events in terms of event staying time and
event capture utility. To facilitate the following analysis,
we provide a paradigm to calculate the QoM of a PoI in
the presence of single or multiple monitoring sensors.

• We formalise the scheduling problem, i.e., the question
of how to best schedule the sensor activations to achieve
the highest QoM. We show that this scheduling problem
is NP-complete. Subsequently, we express the problem
as a maximisation of a submodular function subject to
matroid constraints.

• We use approximation results for submodular functions
to design a centralised greedy algorithm which achieves
a factor of 1/2 from optimality. We proceed to devise a
distributed algorithm and prove its approximation ratio
is also 1/2. Most importantly, these schemes
accommodate general event utility function and
probability distribution of the event staying time.

• We conduct extensive simulation to verify our findings.
We compare the performance of our algorithm with that
of optimal solution in small-scale networks. For

large-scale networks, it is shown that our algorithm
outperforms the former work, CSP.

The remainder of the paper is organised as follows. In
Section 2, we give preliminaries and a formal definition
of our problem. In Section 3, we prove the complexity
of the problem and formulate it as a maximisation of a
monotone submodular function subject to a partition matoid
constraint. In addition, we also present a greedy algorithm
to the problem. Section 4 presents extensive simulations to
verify our theoretical findings. Before concluding this work in
Section 6, we discuss the related work in Section 5.

2 Related work

We review related work in this section. In energy harvesting
sensor networks, Jaggi et al. (2007) exploited the temporal
correlations in the event occurrences to develop efficient
activation policies. From a more general view, Ren et al.
(2012) focused on general renewal processes, where the
event arrival time can be drawn from an arbitrary probability
distribution. There is also some work studied the cases where
the derived utility, namely the probability of event detection,
is determined only by the number of currently activated
sensors (Kar et al., 2005; Jaggi, 2006; Tang et al., 2011).
In particular, Tang et al. (2011) assumed that the utility
function is monotone submodular, and provided a polynomial
time algorithm which guarantees a constant approximation.
However, his solution only suits homogeneous sensors whose
discharging/recharging pattern are identical. Clearly, these
utility based methods do not apply to stochastic event capture,
as the QoM in this case depends on sensor schedules rather
than their number.

In similar scenarios of duty cycle sensor networks, He
et al. (2009, 2012a) considered the energy efficiency and
the coordination issues between sensors in synchronous and
asynchronous dense networks. In these literatures, He applied
a simple (q, p) duty-cycle schedule, i.e., each sensor randomly
starts their identical schedule independently. Basically, they
analysed the event capture probability mainly from the view
of probability theory. Furthermore, they also proposed a
coordinated sleep protocol (CSP) to achieve an energy balance
for maximum network lifetime when there is significant
spatial overlap in the sensing regions of sensors. Though
CSP performs well according to their simulation results,
it is essentially an intuitive approach, and provides no
performance guarantee with respect to QoM. He also covered
a complementary problem with respect to connectivity
(He et al., 2012b).

For mobile coverage, Yau et al. (2010) considered the
impact of event arrival time and staying time on QoM,
which were regarded as stochastic processes. Especially,
mobile sensors were used to expand the area of coverage,
and the associated periodic coverage problem was studied
to optimise the overall QoM. He et al. (2010) extended the
results of the periodic coverage problem by incorporating the
energy constraints of mobile sensors, as well as the energy
consumption of senor’s motion. Jiang et al. (2011) used reader
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capable of mobility and functioning as energy distributors
and data collectors to charge sensors. Reader mobile strategy
for energy distribution and sensor schedules were jointly
considered for efficient event capture. These results provide
no performance guarantee and cannot be applied to optimal
scheduling in energy harvesting sensor networks in terms of
QoM maximisation.

3 Problem formulation

3.1 Network model

We assume that m sensorsV = {v1,v2, . . . ,vm} distributed over
a 2D region covering n PoIs O= {o1,o2, . . . ,on}. In particular,
suppose that sensor vi covers a subset of PoIs Oi. Adjacent
sensors can cover nonempty PoIs in common. Accordingly,
PoI oi might be covered by a subset of sensorsVi. A base station
serves as a sink, and requires each sensor to report its current
energy level and other useful information to it hop by hop on
a regular basis. The collection tree protocol (CTP) (Gnawali
et al., 2009) is used as the routing protocol for sensors.

Assume that time is divided into time slots and the duration
of a time slot is fixed and given a priori. Every T time slots,
the base station determines the periodic schedules for the next
T interval of all sensors, and disseminates them to sensors.
The periodic schedules followed by sensors are of identical
length L . We name such a period starting from the scheduling
process as scheduling period, and let T be a multiple of L . A
sensor can schedule itself to be active or inactive in any time
slot. Therefore, the schedule of sensor vi can be expressed
by a vector Si = (ai1,ai2, . . . ,aiL ), where component ai j = 1
indicates the sensor is active in time slot j while ai j = 0 means
the opposite. After all, we assume that the reporting processes
of sensors take place with so low frequency (e.g., one time per
hour) that the energy overhead can be ignored.

3.2 Recharging model and energy consumption model

Much existing work reports that the energy harvesting rates
in many cases are of high variability, and the environmental
energy model can be viewed as a stochastic process (Ren
et al., 2012; Jaggi et al., 2011). However, for a wide range
of application scenarios, such as indoor environment, the
energy availability has been proved to be time-dependent and
predictable (Tang et al., 2011; Yang et al., 2010, 2009; Hsu
et al., 2006; Piorno et al., 2009). For instance, by effectively
taking into account both the current and past-days weather
conditions, Piorno et al. (2009) obtains a relative mean error
of only 10%. Hence, with the knowledge of the accurate
harvesting energy prediction of the next scheduling period for
a sensor, along with the current residual energy, one can make
a rational decision on energy budget for the sensor in the next
scheduling period. Note that a valid decision should guarantee
that sensors will never run out of energy.

Besides, the introduction of ultra-capacitors (up to 3000 F)
can effectively offset the variability of the harvesting energy,
and ensures stable power of harvesting (Zhu et al., 2009).
To a great extent, this approach eliminates the dependence

of activities of sensors on the environmental energy model.
As a result, one can simply take all the residual energy in
the capacitor at the end of the latest scheduling period as the
energy budget in the next scheduling period.

Nevertheless, the energy budget determination is out of the
scope of this paper, we simply assume that the energy budget
of the next scheduling period T for sensor vi has already been
determined, and is denoted as ei

T . In addition, assume that
sensor vi consumes δi energy for sensing and capturing an
event in one time slot, but negligible energy being inactive, or
switching between states provided that the duration of a time

slot is set to be long enough. For simplicity, assume li =
ei

T L
δiT

for each sensor vi is integral, which means that the charged
power for sensor vi can be equivalently converted to no more
than li active time slots in periodic schedule Si. Thus schedule
Si is subject to ||Si||1 ≤ li where ||Si||1 is the L1 norm of Si.
We call li the active time slot budget of sensor vi.

A summary of the notations in this paper is given in Table 1.

Table 1 Definitions of notations

Notation Definition
oi PoI i
vi Sensor i
Oi Subset of PoIs covered by sensor vi
Vi Subset of sensors cover PoI oi
L Sensor schedule length
li Active time slot budget of sensor vi
Si Schedule of sensor vi

Ŝi Equivalent monitoring schedule for PoI oi
wi Weight of PoI oi
N(vi) Neighbour set1 of sensor vi

1We adpot a new concept of neighbours in this paper: two sensors are
neighbours to each other if and only if they cover PoIs in common.

3.3 Event model, QoM concept and properties

In this section, we first present a set of assumptions regarding
the event dynamics and the properties of the sensors. Then we
propose a general paradigm to compute the QoM for a PoI
when it is monitored by one or more sensors.

For the event dynamics, we assume that the events at a
PoI occur one after another, and the events at the same PoI or
different PoIs are spatially and temporally independent (Yau
et al., 2010; He et al., 2009; Jiang et al., 2011; Dai et al.,
2013d, 2013e). After its occurrence, an event stays for some
random time before it disappears. We denote by X the event
staying time. Similarly, the time duration before the next event
occurs, which we call the event inter-arrival time, is random
and denoted by Y . Hence the sequence of event arrivals and
departures forms a stochastic process. By renewable theory,
the expected number of event arrivals in a time interval dt
equals µidt, where µi = 1/E(Y ). As for the event staying time
X , we assume that the probability distribution function of X
is f (x).

We use a binary sensing model for the sensors (Kar et al.,
2003). Assume that the jth occurring event at PoI i is denoted
as ei

j, which is within range of a sensor for a total (but not
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necessarily contiguous) amount of time t i
j(t

i
j ≥ 0). We assume

that the sensor will, as a result, gain an amount of information
U i

j(t
i
j) about ei

j, where U i
j(x) is the utility function of ei

j. For
simplicity, we assume thatU i

j(x) =U(x) for all the events at all
the PoIs. We assume that the utility function has the following
property.

Observation 3.1: The utility function U(x) increases
monotonically from zero to one as a function of the total
observation time, i.e., U(x)≥ 0 and U(y)−U(x)≥ 0 for any
y ≥ x ≥ 0.

Another important assumption is that the events are
identifiable (Yau et al., 2010) (please refer to Yau et al. (2010)
for a justification to the assumption). That is, when more than
one sensor detects the same simultaneously, they will know
that it is the same event. Furthermore, if more than one sensor
observes the same event simultaneously, they learn exactly the
same information.

To make our analysis more general, we associate with
each PoI oi a normalised weight wi as in Liu and Cao (2012).
Therefore, the QoM of sa single PoI is defined as the product
of its weight and the average obtained utility of events, and the
overall QoM is expressible as a sum of the individual QoMs.
Formally, the overall QoM can be defined as:

QoM =
n

∑
i=1

QoM(i) =
n

∑
i=1

wi lim
t→∞

∑mi
j=1 Û j(t)

mi
(1)

where mi denotes the number of events occur at PoI oi until
time t, and Û j(t) denotes the aggregate achieved utility for
event j at PoI oi till time t. As will be seen below, it is extremely
complicated to calculate Û j(t) because the same event may be
captured by more than one sensor, each of which may capture
the event several times at different moments.

Prior QoM analysis either considers that a PoI is covered
by only one sensor (Yau et al., 2010), or considers only special
cases of the event utility function and event dynamics (He
et al., 2009; Ren et al., 2012) (for example, only the step utility
function is considered in He et al. (2009)). We generalise the
prior analysis to cover other types of the events as well.

Definition 3.1 (Periodic extension function): Given a
schedule Si of sensor vi, the periodic extension function
Si(x)(Si : [0,+∞] 7→ {0,1}) of Si is defined as:

Si(x) =


1, (x ∈ [kL + j−1,kL + j],k ∈ N ,

Si( j) = 1)
0, otherwise

. (2)

We first present the following lemma, which is similar to
Theorem 7 in Yau et al. (2010).

Lemma 1: The QoM of a PoI, say oi, covered by a single
sensor v j (v j ∈ Vi, |Vi| = 1) with schedule S j, whose periodic
extension function is S j(x), is given by:

QoM(i|S j)

=
wi

L

∫ L

0

∫ +∞

t
U
(∫ y

t
S j(x)dx

)
f (y− t)dydt. (3)

Proof: The above formula follows from the fact that the
overall utility available for any particular event, which starts
at time t (t ∈ [0,L ]) and ends at time y (y ∈ [t,+∞)), depends
on the total length of the intersecting region

∫ y
t S j(x)dx. �

Notice that due to the stochastic property of event staying time
and event capture utility, the above deterministic form of QoM
actually embodies the expected performance of QoM in the
long run. Besides, our problem is different from those partially
observable stochastic optimisation problems (Ren et al., 2012)
which can be resolved by theoretical techniques such as
partially observable Markov decision processes and adaptive
submodular optimisation (Golovin and Krause, 2011a,b),
since we assume that the probabilistic distributions of event
staying time and event capture utility have already been
determined by observation or other means.

Suppose Si = (ai1, . . . ,aiL ) and S j = (a j1, . . . ,a jL ) are
two different vectors, we define ‘OR’ operation of vectors as
Si ∨S j = (ai1 ∨a j1, . . . ,aiL ∨a jL ).

Lemma 2: The QoM of PoI oi covered by multiple sensors
Vi = {v1′ ,v2′ , . . . ,vm′}, each of which has schedule S j ( j =
1′,2′, . . . ,m′), is given by:

QoM(i) = QoM(i|S1′ ,S2′ , . . . ,Sm′)

= QoM

i|
∨

v j∈Vi

S j

 . (4)

Hence, the QoM achieved by the multiple sensors can be
equivalently viewed as that by one single sensor with schedule∨

v j∈Vi
S j.

Proof: This follows directly from the identifiable
assumption. We omit the details to save space. �

For simplicity of exposition, we call Ŝi =
∨

v j∈Vi
S j the

equivalent monitoring schedule for PoI oi. We stress that
our analysis can compute the QoM of a PoI in the presence
of both single and multiple monitoring sensors. It can
also accommodate general activation schedules, event utility
functions, and probability distributions of the event staying
times f (x).

3.4 Problem statement

With the above assumptions, our problem can be described as
follows.

Consider an energy harvesting sensor network consisting
of m sensors and n PoIs with known weights. Given the active
time slot budget for each sensor in the next scheduling period
li, i = 1, . . . ,m, how to determine the periodic schedule for
each sensor to maximise the overall QoM.

Mathematically, we can formally state our problem as
follows:

(P1) : Max
N

∑
i=1

QoM(i)

s.t.||Si||1 ≤ li ∀i = 1,2, . . . ,m,
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Notice that QoM(i) can be calculated according to
equations (3) and (4). During this procedure, the equivalent
monitoring schedule Ŝi for each PoI oi needs to be calculated.
Ŝi is ultimately determined by those schedules of sensors
covering oi. We can see that such a relationship is quite
complicated, which make our problem highly challenging.

3.5 A numerical example

In this section, we present a simple example for illustration. As
shown in Figure 1(a), suppose there are three sensors covering
six PoIs in the region. The sensor schedule length L = 4,
and the active time slot budgets for v1, v2 and v3 are 1, 2
and 1, respectively. Besides, the weights are uniform among
PoIs, namely, each PoI has weight 1/6. In addition, we assume
events have step utility function (Yau et al., 2010) (i.e., the
utility reaches one instantaneously once an event is detected),
and the event staying time follows the exponential distribution
with mean λ = 1.

Figure 1 An example of scheduling, where three sensors monitor
six PoIs: (a) topology and (b) two schedules of sensors
(see online version for colours)

We compare two schedules of sensors as depicted in
Figure 1(b). It can be seen that the schedules of three sensors
in Schedule I are set to S1 = (1,0,0,0), S2 = (1,0,1,0) and
S3 = (1,0,0,0), respectively. We can then easily derive the
equivalent monitoring schedule Ŝi for each PoI, e.g., Ŝ1 = S1 =
(1,0,0,0) and Ŝ2 = S1 ∨S2 = (1,0,1,0).

Using equation (3), we can derive the exact QoM of
a PoI for events with step utility function and exponential
distribution of event staying time. Here we give the result
directly to save space. Note that we obtained the same result by
straightforward analysis in previous work (Dai et al., 2013a).

We first define the regularisation expression of
the equivalent monitoring schedule Ŝ as R(Ŝ) =
(p0,q1, p1,q2, p2, . . .qk, pk), where qi denotes the length of
successive inactive time slots, and pi the length of successive
active time slots. For instance, R(Ŝ1) = (p0,q1, p1) = (0,1,3)
and R(Ŝ2) = (p0,q1, p1,q2, p2) = (0,1,1,1,1). Then the QoM
of a PoI can be written as

QoM(i)

= wi

(
∑k

i=1 qi

L
+

∑k−1
i=1 (1− e−λ pi)+1− e−λ (p0+pk)

λL

)
.

Following this equation, the QoM of both PoI o1 and o6 is
0.0813, and the QoM of o2−o5 is 0.1360. The overall QoM of
the network is thus QoM = 2∗0.0813+4∗0.1360 = 0.7066.

Schedule I is not efficient since coverage waste arises as
the first time slot of PoI o2 is covered by both sensor v1 and
sensor v2, while that of PoI o3 is covered by sensor v1, v2, and
v3 simultaneously. Schedule II is an alternative to improve the
performance of Schedule I. By rescheduling the active time
slots of sensor v1 and v3, the QoM of o2 and o3 can be improved
to 0.1513 and 0.1667 and the QoM of other PoIs remains
unchanged, which results in an overall QoM 0.7526. In fact,
Scheduling II yields the optimal overall QoM, since each QoM
of PoI is maximised given the active time slot budgets of its
monitoring sensors.

In the following section, we will first show that the problem
stated above is NP-complete. After that, we formulate the
problem into a maximisation of a monotone submodular
function subject to a matroid constraint. Moreover, we present
centralised and distributed algorithms both achieving provable
results within a constant factor from optimality.

4 Theoretical analysis

In this section, we first show that the scheduling problem is NP-
complete. Then we come up with centralised and distributed
approximation algorithms with performance guarantee.

4.1 Complexity analysis

In the following theorem, we prove that the scheduling
problem is NP-complete.

Theorem 1: The scheduling problem is NP-complete.

Proof: First of all, we represent the coverage relationship
between sensors and PoIs in a bipartite graph, as is shown
in Figure 2. Denote by bipartite graph G = (V,O,E) the
coverage graph in Figure 2 where V and O denote the set of
sensors and PoIs respectively, and E denotes the set of edges
between sensors and PoIs. If there is an edge between sensor
vi (depicted in a circle with text i centred) and PoI o j (depicted
in a rounded rectangle with text j centred), it means that vi
covers o j. In practice, the coverage graph is determined by the
locations of sensors and PoIs and coverage area of the sensors
(not necessarily a disk).

Figure 2 PoI coverage illustration (see online version for colours)

To show that problem P1 is NP-complete, we consider its
decision version. Given the sensor schedule length L , and a
real number Q ≥ 0, we need to answer whether there exists
any scheduling policy of the sensors, such that ||Si||1 ≤ li for
any sensor vi, and the objective function in the problem P1
satisfies: ∑N

i=1 QoM(i)≤ Q.
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Denote by Ω the set of weights wi for all PoIs, and L the
set of li. Then the above problem instance can be denoted as
SDP(O,V,E,L,L ,Ω,Q). As in Golrezaei et al. (2012), we
reduce an NP-complete problem called 2-Disjoint Set Cover
Problem to the decision version of the scheduling problem (we
call it scheduling decision problem hereafter).

Consider a bipartite graph G = (A,B,E) with edges E
between two disjoint vertex sets A and B. For each element
bi ∈ B, it has neighbourhoods in A which is denoted by N(bi).
Assume that A =

∪
bi∈B N(bi). Then it is proved to be NP-

complete in Cardei and Du (2005) to determine whether there
exist two disjoint sets B1,B2 ⊂B such that |B1|+ |B2|= |B| and
A =

∪
bi∈B1

N(bi) =
∪

bi∈B2
N(bi). For simplicity, we denote

the above problem instance as 2DSC(A,B,E).
First of all, it is easy to see that SDP(O,V,E,L,L ,Ω,Q)

is in the class NP. Next we show that given a unit time oracle
for scheduling decision problem, we can solve 2-Disjoint Set
Cover Problem in polynomial time.

Consider an oracle which can solve any problem instance
SDP(O,V,E,L,L ,Ω,Q) in unit time. Then solving a
problem instance 2DSC(A,B,E) is equivalent to solving
SDP(A,B,E,{1,1, . . . ,1},2, {1/|A|,1/|A|, . . . ,1/|A|},1).
Consider A to be the set of PoIs, B to be the set of sensors,
and E to be the edges representing the coverage relationship
between sensors and PoIs. The sensor schedule length L is
set to be 2 and the active time slot budget of all sensors is
equal to 1. The PoI weights are assumed to be 1/|A| for all
PoIs. We check if the overall QoM can be greater or equal
to 1. If it is the case, the overall QoM has to be equal to 1
because QoM for each PoI is at most 1. This can only happen
if the equivalent monitoring schedule Ŝi for any PoI oi is equal
to (1,1). It means there exist 2 disjoint set covers B1 and B2,
while the entire sensors in B1 are active in its first time slot
and that in B2 are active in its second time slot. Illustration is
provided in Figure 3.

Figure 3 Reduction from 2-disjoint set cover problem (see online
version for colours)

Conversely, if there exist two disjoint set covers, we can set
the sensors in the first set cover to be active in the first time
slot, and that in the second set cover to be active in the second
time slot. By doing so, the SDP instance will be satisfied since
every PoI oi is continuously covered as Ŝi = (1,1), and the
overall QoM is equal to 1.

Hence, we conclude that 2-Disjoint Set Cover Problem ≤L
Scheduling Decision Problem, where ≤L means a polynomial
time reduction.

In summary, our scheduling problem is NP-complete. �

4.2 Problem reformulation

In this section, we begin with some necessary definitions. Then
we cast the problem P1 as maximising a monotone submodular
function subject to a partition matroid constraint.

Definition 4.1 (Schrijver, 2003): Let S be a finite ground
set. A real-valued set function f : 2S 7→ R is normalised,
nondecreasing (or monotonic) and submodular if and only if
it satisfies the following conditions, respectively:

• f ( /0) = 0

• f (A)≤ f (B) for any A ⊆ B ⊆ S, or equivalently:
f (A∪{e})− f (A)≥ 0 for any A ⊆ S and e ∈ S\A

• f (A)+ f (B)≥ f (A∪B)+ f (A∩B) for any A,B ⊆ S, or
equivalently: f (A∪{e})− f (A)≥ f (B∪{e})− f (B)
for any A ⊆ B ⊆ S and e ∈ S\B.

For simplicity, we use fA(e) = f (A+ e)− f (A) to denote the
marginal value of element e with respect to A. Note that here
we use A+ e instead of A∪ {e} to simplify notation. Then
f is monotone if fA(e) ≥ 0 and submodular if fA(e) ≥ fB(e)
whenever A ⊆ B. This can be interpreted as the property of
diminishing returns.

Definition 4.2 (Schrijver, 2003): A matroid M is a tuple
M = (S,I ), where S is a finite ground set and I ⊆ 2S is a
collection of independent sets, such that:

• /0 ∈ I

• if X ⊆ Y ∈ I , then X ∈ I

• if X ,Y ∈ I , and |X |< |Y |, then ∃y ∈ Y\X such that
X ∪{y} ∈ I .

In this work, we will pay our attention on the following specific
class of matroids.

Definition 4.3 (Schrijver, 2003): Given S =
∪k

i=1 S′i is the
disjoint union of k sets, l1, l2, . . . , lk are positive integers, a
partition matroid M = (S,I ) is a matroid where I = {X ⊂
S : |X ∩S′i| ≤ li for i = 1,2, . . . ,k}.

We will demonstrate that the problem P1 fits perfectly well
in the realm of maximising a monotone submodular function
subject to a partition matroid. We start with a definition of
ground set S. Denote by ai j the activating time slot ai j of sensor
vi, then S is given by:

S = {a11,a12, . . . ,a1L , . . . ,am1,am2, . . . ,amL }. (5)

Whenever there is no confusion, we use Si to denote the
set version of vi’s sensor schedule, which is a subset of S,
namely Si = {ai1′ ,ai2′ , . . . ,aiL ′} if and only if ai j′ = 1( j′ =
1′,2′, . . . ,L ′). Further, S can be partitioned into m disjoint
sets, S′1,S

′
2, . . . ,S

′
m, which is given by S′i = {ai1,ai2, . . . ,aiL }.

We say S′i is the candidate schedule of sensor vi, as any
feasible schedule Si is the subset of S′i. It is obvious that
any scheduling policy X , consisting of all sensor schedule Si,
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namely X = {S1,S2, . . . ,Sm}, is subject to |X ∩S′i|= |Si| ≤ li.
Then we can write the independent sets as:

I = {X ⊆ S : |X ∩S′i| ≤ li for i = 1,2, . . . ,m} (6)

On the other hand, it can be easily proved that M = {S,I }
is a matroid by verifying the three properties proposed in
Definition 4.2. Hence we have the following lemma.

Lemma 4: The constraint in the scheduling problem P1 can
be written as a partition matroid on the ground set S.

As a consequence, we can rewrite the optimisation problem
in P1 as following:

(P2) : Max f (X) = ∑N
i=1 QoM(i)

s.t. X ∈ I
Si = X ∩S′i ∀i = 1,2, . . . ,m,

The new optimisation function f (X) bears a desirable property
as is stated in the following lemma.

Lemma 5: If the utility function U(x) is concave, then the
objective function f (X) in the optimisation problem P2 is a
monotone submodular function.

Proof: According to Definition 4.1, we have to check if the
three conditions hold for f (X). First of all, it is obvious
that f ( /0) = 0 holds. Secondly, we consider the monotonicity
property of f (X). Given set A ⊆ S and e1 ∈ S\A. Assume that
e1 = ai j, then f (A+e1) can be regarded as the resulting overall
QoM obtained by activating the time slot ai j of sensor vi based
on the original scheduling policy. Consequently, the equivalent
monitoring schedule of PoI ok, which is covered by vi (ok ∈
Oi), may be changed. For simplicity of exposition, we denote
the original and changed equivalent monitoring schedule of
ok as Ŝ<A>

k and Ŝ<A+e1>
k , respectively. In particular, the time

slot ak j is activated for Ŝ<A+e1>
k . We say ai j ∈ Ŝ<A>

k if the jth
time slot of Ŝ<A>

k is active, namely ak j = 1, to simplify the
notation. To save space, we only consider the case ai j ̸∈ Ŝ<A>

k .
Note that:

Ŝ
<A+e1>

k (x)− Ŝ
<A>
k (x)

=

{
1, (x ∈ [kL + j−1,kL + j],k ∈ N )

0, otherwise
. (7)

Thus we have
∫ y

t Ŝ
<A+e1>

k (x)dx−
∫ y

t Ŝ
<A>
k (x)dx ≥ 0 for any

y ≥ t ≥ 0. According to equation (3):

Q(k|Ŝ<A+e1>
k )−Q(k|Ŝ<A>

k )

=
1
L

∫ L

0

∫ ∞

t
[U
(∫ y

t
Ŝ
<A+e1>

k (x)dx
)

−U
(∫ y

t
Ŝ
<A>
k (x)dx

)
] · f (y− t)dydt ≥ 0.

Note that the last inequality holds due to the monotonicity of
U(x), which follows from Observation 3.1. Hence:

fA(e1) = ∑ok∈Oi
wk[Q(k|Ŝ<A+e1>

k )−Q(k|Ŝ<A>
k )]

≥ 0.

The monotonicity property of f (X) holds.
Thirdly, we verify the diminishing returns property of

f (X). Given set A⊆B⊆ S and e1 ∈ S\B. Similarly, we assume
that e1 = ai j, and the original equivalent monitoring schedules
for ok in A and B are Ŝ<A>

k and Ŝ<B>
k , while the changed ones

are Ŝ<A+e1>
k and Ŝ<B+e1>

k , respectively. Due to space limit, we
only consider the case when ai j ̸∈ Ŝ<A>

k and ai j ̸∈ Ŝ<B>
k .

We first show that U(x+ δ )−U(x) ≥ U(y+ δ )−U(y)
for y ≥ x ≥ 0 and δ ≥ 0. Note that x ≤ x+ δ ≤ y+ δ and
x ≤ y ≤ y+δ . Due to the concavity of U(x), we have:

(x+δ )≥ y− x
y+δ − x

U(x)+
(

1− y− x
y+δ − x

)
U(y+δ ), (8)

U(y)≥ δ
y+δ − x

U(x)+
(

1− δ
y+δ − x

)
U(y+δ ). (9)

Adding up the left sides and the right sides of equations (8)
and (9), the result follows.

Since A ⊆ B, we have Ŝ
<B>
k (x)− Ŝ

<A>
k (x) ≥ 0 for x ∈

[0,+∞]. Another important observation is that Ŝ
<A+e1>

k (x)−
Ŝ
<A>
k (x) = Ŝ

<B+e1>

k (x)− Ŝ
<B>
k (x) as ai j ̸∈ Ŝ<A>

k and ai j ̸∈
Ŝ<B>

k for x ∈ [0,+∞]. Therefore, it is easy to see:

[Q(k|Ŝ<A+e1>
k )−Q(k|Ŝ<A>

k )]− [Q(k|Ŝ<B+e1>
k )−Q(k|Ŝ<B>

k )]

=
1
L

∫ L

0

∫ ∞

t
{
[
U
(∫ y

t
Ŝ
<A+e1>
k (x)dx

)
−U

(∫ y

t
Ŝ
<A>
k (x)dx

)]
−
[
U
(∫ y

t
Ŝ
<B+e1>
k (x)dx

)
−U

(∫ y

t
Ŝ
<B>
k (x)dx

)]
} f (y− t)dydt

≥ 0.

Hence:

fA(e1)− fB(e1) = ∑
ok∈Oi

wk{[Q(k|Ŝ<A+e1>
k )−Q(k|Ŝ<A>

k )]

−[Q(k|Ŝ<B+e1>
k )−Q(k|Ŝ<B>

k )]}
≥ 0.

Then we conclude that f (X) is indeed submodular. To sum up
all the analysis, we complete the proof. �

It is easy to see that the step utility function, exponential utility
function and linear utility function are concave, while the S-
shaped utility function and delayed step utility function are
not (Yau et al., 2010). We assume that the utility function
U(x) is concave hereafter to make the problem amenable.
Nevertheless, since in most of the cases utility functions are
really concave (Yau et al., 2010; He et al., 2009; Tang and
Yang, 2012; Ren et al., 2012; Tang et al., 2011), such treatment
will not reduce our contribution significantly.
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4.3 Centralised algorithm

Having proved that the objective function of our problem
is monotone submodular, now we can resort to a simple
greedy algorithm to find an optimised QoM. The details of the
algorithm can be found in Algorithm 1.

It can be seen that at each step, the algorithm adds one element
with the highest marginal value to set. However, if the marginal
value is zero, it means that all the PoIs covered by the sensors
with nonempty residual active time slots budgets are already
covered at all time slots. As a result, the algorithm should stop.
Moreover, at every iteration, we remove the selected element
ai j from set D. If the active time slot budget for sensor vi is
used up, we need to remove the candidate schedule S′i from D.

We have the following theorem with respect to
Algorithm 1.

Theorem 6: The greedy scheduling algorithm can achieve
1/2-approximation.

Proof: By Lemma 4, the constraint in the optimisation
problem P2 is indeed a partition matroid. Further, by Lemma 5,
the objective function in P2 is a monotone submodular
function. We thus claim that the reformulated problem P2
can be expressed as maximisation of a monotone submodular
function subject to a partition matroid constraint. According
to the classical results obtained by Nemhauser et al. (1978),
a simple greedy heuristic to maximisation of a monotone
submodular function subject to a partition matroid constraint
can achieve 1/2-approximation. Hence, the result follows. �

Now we analyse the time complexity of Algorithm 1. It can be
seen that the time complexity lies mainly in the execution of
the while loop in the greedy algorithm. The greedy algorithm

for searching of solution has at most O(mL ) iterations. Each
iteration checks at most O(mL ) time slots, each of which
relates to O(n) QoM calculations of PoIs. Therefore, the
overall time complexity is O((mL )2nT ).

It is worthwhile to mention that (Calinescu et al., 2009)
provided a randomised algorithm which is optimal in terms
of approximation, and achieves (1 − 1/e)-approximation.
However, this algorithm is too computationally demanding to
implement, especially when the number of sensors or sensor
schedule length becomes large.

As we mentioned above, the overall QoM is computed in
such a way that it indeed reflects the expected performance of
event monitoring in the long run. So does the performance of
our greedy algorithm.

4.4 Distributed algorithm

Since the proposed centralised algorithm is not scalable well,
it is desirable for us to design a distributed algorithm for
this scheduling problem. In this section, we begin with the
description to our distributed algorithm, and then analyse its
performance.

4.4.1 Algorithm description

For simplicity of presentation, our algorithm is divided into
rounds. We stress that the concept of rounds can be removed to
cater to real cases by asynchronously executing the algorithm.
During each round, the schedules of a subset of sensors
can be determined. After a finite number of rounds, we can
obtain all the schedules of sensors, which guarantee overall
performance within a constant factor of the global optimal as
to be elaborated.

First of all, we define a new concept of neighbours. Two
sensors are neighbours to each other if and only if they cover
PoIs in common. We assume that the communication range
of each sensor is at least twice of the sensing range (Wang
et al., 2003), which is widely adopted in previous literature.
Therefore, the neighbouring sensors can directly communicate
with each other, and the neighbour set, say N(vi), of
each sensor can be determined beforehand. In addition, the
control message exchanged between sensors are defined as
msg(ID, type,sch,∆QoMmax

i ), where the fields ID and sch
denote the sensor ID and its schedule respectively, type is
either COL or UPD, which stands for the colouring notice or
the update report, and ∆QoMmax

i is the ‘maximum’ additional
QoM for sensor vi.

We list the pseudo code in Algorithm 2. Next we introduce
the details of this algorithm. In the very beginning, each sensor
is uncoloured and has a null schedule. At each round, each
uncoloured sensor computes ∆QoMmax

i and the corresponding
schedule, and broadcasts them to its neighbours. Note that
∆QoMmax

i for sensor vi is obtained by greedily activating
the time slot that can provide the maximum additional QoM
until its active time slot budget li is exhausted. In this sense,
∆QoMmax

i is not really maximum in terms of additional QoM.
Nevertheless, it requires little computation cost and does not
impair the performance much as demonstrated in Section 5.

After collecting all the replies from its uncoloured
neighbours, each sensor will try to determine whether or not
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it has the largest ∆QoMmax
i among its uncoloured neighbours.

If it is the case, it will colour itself and send the notification of
colour decision along with the corresponding schedule to the
local neighbourhood. Note that if there are two sensors have
the same ‘maximum’ additional QoM and thereby lead to a tie,
it can be broken based on the ID of sensors. Subsequently, each
sensor receiving the colour notice will update the schedule
of the related neighbour and recalculate ∆QoMmax

i , clear the
stored information for all its uncoloured neighbours and send
∆QoMmax

i to its neighbours.

On receiving the update report, each sensor will update the
recorded ‘maximum’ additional QoM of the corresponding
neighbour. This information will then be used to help the
sensor identify whether it has the largest ∆QoMmax

i among its
neighbours.

Essentially, our algorithm is equivalent to finding a
maximal independent set at each round (Basagni, 2001) (in
graph theory, an independent set is a set of vertices in a graph,
no two of which are adjacent; a maximal independent set is an
independent set that is not a subset of any other independent
set). At the end of each round, the coloured sensors are
removed from the considerations of its neighbours, and the
algorithm is then conducted by the remaining uncoloured

sensors. It is easy to see that this algorithm is bounded to
terminate, since at each round there must be at least one sensor
colouring itself. Eventually, the algorithm stops when all the
sensors are coloured.

Let Nmax and nmax be the maximum number of neighbours
and covered PoIs for a sensor, respectively. Suppose that our
distributed algorithm will terminate in K rounds. On one hand,
apparently the message complexity for each sensor is O(K).
On the other hand, the computation complexity of each round
consists of two parts. One comes from the computation of
∆QoMmax

i , which checks L time slots, each of which relates to
at most nmax QoM calculations of PoIs. The other stems from
the comparisons of ∆QoMmax

i , which is conducted at most
Nmax times. Thus, the overall computation complexity is given
by O(KNmax+KL nmax). Typically, K is a small number, and
therefore, the overhead of our distributed algorithm is low.

As to be elaborated, our distributed algorithm has
comparable performance to the greedy algorithm in terms
of QoM. In addition to low computational cost, it brings
about significant advantages than a centralised algorithm. For
example, it does not incur the communication overhead for
collecting node information by the sink.

4.4.2 Algorithm analysis

Unlike the centralised algorithm which is performed
sequentially and thereby easy to be analysed theoretically,
the distributed algorithm is not executed in a well-organised
sequence for sensors, and even not executed round by round
as we assumed before. That is, in practice the algorithm can
be conducted in a totally asynchronous way among sensors,
and thereby the concept of rounds is removed. This causes
difficulty in the theoretical analysis. Nevertheless, we claim
that the performance of the distributed algorithm can be
provably guaranteed, as the following theorem states.

Theorem 7: The distributed algorithm achieves an
approximation factor of 1/2 for the scheduling problem.

Proof: First of all, we show that we can reorder all the
colouring sensors obtained by the distributed algorithm in
an order, such that these sensors can be equivalently viewed
as sequentially determining its schedule based on global
knowledge of QoM.

To begin with, we remove the concept of rounds here to
make our solution practical, as in reality the algorithm can
be executed asynchronously. After this, the only information
learned by each sensor is the local algorithm execution order
among neighbourhood. Assume that the algorithm execution
order for sensor vi is Ri, then we can plot it in a directed chain
where a directed edge viv j from vertex vi to vertex v j means
the execution time of vi is left behind v j. For example, suppose
that the execution order for sensor v1, v3 and v5 are R1 : v1 <
v2 < v3 < v4, R3 : v1 < v5 < v3 < v6 and ,R5 : v7 < v5 < v8,
respectively (we use sensor label rather than execution time to
simplify the expression), we can depict their directed chains
as shown in Figure 4(a).

Next, we can combine these chains by merging same
vertex. For instance, Figure 4(b) demonstrates the resulting
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directed graph obtained by combining execution chains of v1
and v3 wherein vertex v1 and v3 are merged, and the result of
further combining with chain of v5 is shown in Figure 4(c). By
sequentially combining all chains of sensors until no further
connection is possible, we can build a directed graph G(V,E)
indicating the relative execution time order between sensors.
More importantly, it is easy to verify that G(V,E) is also a
directed acyclic graph (in computer science, a directed acyclic
graph is a directed graph with no directed cycles), as otherwise
the algorithm execution time of a sensor vi will come ahead
of that of itself. As a result, we can employ some topological
sorting algorithm to order all sensors. A topological sort of
a directed graph is a linear ordering of its vertices such that
for every directed edge viv j from vertex vi to vertex v j, vi
comes before v j in the ordering. There exist a number of
effective algorithms for computing the topological order of
a directed acyclic graph, for example, the well-known linear
time algorithm proposed by Cormen et al. (2001). Suppose
some good topological sorting algorithm is used and the exact
solution is obtained by which all sensors are sorted in an
order. Besides, it can be easily verified that the additional
‘maximum’ QoM, i.e., ∆QoMmax

i , computed by each sensor is
exactly equal to the additional QoM of the overall QoM at that
moment. It thus can be assumed that all sensors have access to
an incremental oracle for global QoM (Goundan and Schulz,
2007).

Figure 4 An example of directed acyclic graph construction. The
three directed chains belong to sensor v1, v3 and v5
respectively

Now we prove the approximation ratio for our distributed
algorithm partly based on the results obtained by Goundan
and Schulz (2007). Let S1,S2, . . . ,Sm represent the schedule
for each sensor obtained by the distributed algorithm, and
S∗1,S

∗
2, . . . ,S

∗
m the optimal schedule to the scheduling problem.

Hence, the solution to the problem as well as the optimal one
can be written as X =

∪m
i=1 Si and X∗ =

∪m
i=1 S∗i , respectively.

Following the submodularity of the objective function f ,
we have that:

f (X∗)≤ f (X)+ ∑
j∈X∗\X

fX ( j). (10)

Suppose X∗\X =
∪m

i=1 Yi where Yi ⊆ S′i, or equivalently, Yi =
S∗i \Si. Let ei be the element in Si that was selected with
the lowest marginal value during the local procedure of the
algorithm in sensor vi. Assume that the current solution just

before the addition of ei is Xei
i (this is obtained based on the

new ordering), then we have:

fX
ei
i
(ei) = mine∈Si fXe

i
(e). (11)

Further, since ∑ j∈X∗\X fX ( j) = ∑m
i=1 ∑ j∈Yi fX ( j), it follows

that:

f (X∗)≤ f (X)+ ∑
j∈X∗\X

fX ( j)

≤ f (X)+
m

∑
i=1

∑
j∈Yi

fX ( j)

≤ f (X)+
m

∑
i=1

∑
j∈Yi

fX
ei
i
( j). (12)

The last inequality in equation (12) follows from the
submodularity of f as Xei

i ⊆ X for i = 1,2, . . . ,m. Due to the
fact that Yi = S∗i \Si ⊆ S∗i \Xei

i , we have:

f (X∗)≤ f (X)+
m

∑
i=1

∑
j∈Yi

fX
ei
i
( j)

≤ f (X)+
m

∑
i=1

|Yi| fX
ei
i
(ei)

≤ f (X)+
m

∑
i=1

|Si| fX
ei
i
(ei)

≤ f (X)+ f (X)

≤ 2 f (X). (13)

Note that fX
ei
i
( j) ≤ fX

ei
i
(ei),∀ j ∈ Yi since ei can provide the

maximum marginal value of QoM. This completes the proof.
�

5 Performance evaluation

We present simulation results to verify our findings.

5.1 Simulation setup

Unless otherwise stated, we use the following simulation
settings:

• the event staying time X ∈ exponential(λ ), λ = 1

• each sensor has a sensing range r = 1m

• the weight wi = 1/n for each PoI oi.

As most literature does, we set the communication range is at
least twice of the sensing range: sensing range is set to be 1
and communication range to be 2.

5.2 Baseline setup

In Section 5.3, we compare our algorithms to the optimal
solution. The optimal solution is obtained by enumerating
all possible scheduling policies under the same active time
slot budgets constraints. This exhaustive search method
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is extremely computationally-demanding (up to (P(L , l))m

given that the active time slot budget for all sensor sensors
is uniform and is equal to l). We are thus only able to make
comparisons in small-scale networks.

In Section 5.4, we compare our algorithm to CSP proposed
in He et al. (2009), an energy-efficient protocol for stochastic
events capture, which accommodates both synchronous and
asynchronous networks, in large-scale sensor networks.

Generally, there are two versions of CSP: S-CSP for
synchronous networks, where all the sensors employ the same
(q, p) schedule and start their on periods at the same time;
and A-CSP for asynchronous networks, where each sensor
employs the same (q, p)-periodic schedule, but starts their
on periods independently at a uniformly random point in
time within the period p. Since A-CSP is only suitable for
asynchronous networks, we extend it to synchronous networks
in the discrete time model by letting each sensor start their on
periods independently at a random time slot in the schedule
of length L , which we call A-CSP-S. Note that, in essence,
A-CSP-S is a randomised algorithm.

We use the example stated in Section 3.5 to illustrate these
two algorithms. For S-CSP, the schedules of three sensors
should be S1 = (1,0,0,0), S2 = (1,1,0,0) and S3 = (1,0,0,0).
All of these schedules starts at the first time slot, and all their
active time slots cluster together in consecutive time slots (see
S2). In contrast, if the sensors employ A-CSP-S algorithm,
their schedules may be S1 = (1,0,0,0), S2 = (0,1,1,0) and
S3 = (0,0,1,0). Comparing with S-CSP, A-CSP-S allows
sensors to start their active time slots at a random time slot.

In addition, to make the comparison between CSP and our
scheme feasible, we assume that there is no sensor whose
sensing region is completely covered by those of its active
neighbours, which means each sensor should not sleep.

5.3 Performance compared to the optimum

We compare our proposed approximation algorithm with the
optimal solution for small-scale networks in this section.

We randomly distribute sensors in a 3×3 m region in this
scenario. As for PoIs, the deployment region is discretised
into square cells of dimensions 0.5× 0.5 m, and each vertex
of each cell is a PoI. We vary the number of sensors between
4 and 8, and only record the data where the total number
of covered PoIs is 36, in order to make the comparisons
reasonable among different cases with a different number of
sensors. We compute the overall QoMs of the schedules output

by the greedy algorithm (GA) and distributed algorithm (DA)
for three scenarios:

• sensor schedule length L = 8, and the active time slot
budget li = 1 for every sensor vi

• L = 5, and li = 1

• L = 5, and li is randomly selected from {1,2}.

The simulation results are shown in Figure 5. Specifically,
Figure 5(a) demonstrates the overall QoMs obtained by the
optimal solution, GA and DA corresponding to the first
scenario. It can be seen that for networks with small size, the
performances of GA and DA are exactly the same, and quite
close to that of the optimal solution. For example, the largest
performance gap between the optimal solution and that of GA
is only 1.8%, attained when the number of sensors is 8. The
overall QoMs for these three solutions rise when the number
of sensors increases.

The overall QoMs under the second and third scenarios,
which are depicted in Figure 5(b) and (c) respectively, show
the same trend when the number of sensors increases. The
performance differences between the optimal solution and
the that of GA are no more than 1.4% for both cases. As
the energy budget (different from the active time slot budget
li, see Section 3.2) for the third scenario is better than the
second scenario, which in turn exceeds that of the first one,
we conclude that the overall QoM grows with a larger energy
budget. Again, the outcomes of GA and DA are exactly the
same, and come pretty close to that of the optimal solution.

5.4 Performance compared to CSP

Throughout the simulation, sensors are distributed randomly
in a 20× 20 m region. The sensor schedule length L is set
to 4, and the active time slot budget li = 1 for any sensor vi.
Further, the distance between adjacent PoIs is increased with
the average number of sensors increasing from 50 to 500, such
that the number of covered PoIs maintains 500 all the time.
As for A-CSP-S, we simulate the algorithm for 100 times and
record the mean value of the outputs.

In particular, we first compare our algorithms to S-CSP
and A-CSP-S for the case where events have step event staying
time function and step utility function, and plot their achieved
overall QoM in Figure 6(a). It can be seen that S-CSP has
the constant yet worst performance, since all sensors have

Figure 5 Optimum vs. greedy algorithm vs. distributed algorithm (see online version for colours)
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Figure 6 S-CSP vs. A-CSP-S vs. greedy algorithm vs. distributed algorithm: (a) achieved QoM for events with step utility function and step
staying time; (b) achieved QoM for events with exponential utility function and exponential staying time (see online version
for colours)

the same schedule and, therefore, the increase of number of
sensors does not contribute to the overall QoM. A-CSP-S
performs much better than S-CSP, but is still inferior to GA
and DA (almost coincide with each other in Figure 6(a)). To be
more specific, on average, both the overall QoMs achieved by
GA and DA are roughly 119% and 18% higher than that of S-
CSP and A-CSP-S, respectively. On the other hand, though the
difference between GA and DA is not obvious, our simulation
data indicates that DA has a slight advantage on the GA, with
0.69 performance gain on average.

For the cases where events have exponential event staying
time function and step utility function, or exponential event
staying time function and exponential utility function, the
situations are very similar to the former one. As Figure 6(b)
and (c) suggest, both GA and DA achieve substantially
higher QoMs compared with S-CPS and A-CSP-S, with
improvements 9% and 50%, respectively. Most importantly,
the results of these three cases imply that DA has completely
comparable performance with GA in terms of overall QoM.

Next, we study the trend of QoMs with varying number of
PoIs. Figure 7 shows GA and DA have the same performance
while S-CSP has the worst, when we set the number of sensors
be 50. Furthermore, the QoMs of each algorithm remain
nearly constant when the number of PoIs increases. The reason
behind this phenomenon is as follows. Suppose the whole
region is divided into multiple subregions, each of which is
covered by a different set of sensors. Apparently, PoIs in the
same subregion have the same QoM. Since PoIs are randomly
distributed in the interested region, the number of PoIs in
each subregion should increase roughly at the same rate. Such
increasing rate exactly smoothes the decrease of PoI weights,
and consequently, the accumulated QoM contributed by each
subregion remains unchanged. So does the overall QoM.

5.5 Varying length of time slot

Note that the default value of duration of time slot is 1 s in
above sections. Now we vary the duration of time slot, and plot
the overall QoMs of both GA and DA in Figure 8. Note that we
set the sensor schedule length L = 4, and the active time slot
budget li = 1 for every sensor vi. Similarly, the performance
of DA is exactly the same with that of GA. Moreover, the
overall QoMs rises with decreasing duration of time slot for
both schemes, and achieves up to 69% performance gain for

1/10 s compared with 1 s. This is because events with the same
staying time become more likely to be detected (as the time
interval between non-consecutive active time slots shrinks)
and captured in its early phase with high utility. It is noteworthy
that this result is consistent with the theoretical analysis of Yau
et al. (2010) and Jiang et al. (2011).

Figure 7 Impact of PoI number (see online version for colours)

Figure 8 Impact of time granularity (see online version
for colours)

5.6 Scalability evaluation of distributed algorithm

We study the scalability of DA by comparing with that of
GA. Figure 9 depicts the execution time needed for GA and
DA respectively. It shows that the latter is highly competitive
against the former with up to three order improvement. Note
that we show the average execution time per node for DA and
the overall execution time for GA due to their distributed and
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centralised natures. Moreover, it can be seen that the required
execution time of DA remains low as the number of sensors
increases, with the run time being 0.0043 s for 500 sensors.
On the contrary, the run time of GA rises rapidly with an
increasing number of sensors, and balloons to 64.6 s in the
presence of 500 sensors. In other words, DA scales effectively
with network size, which greatly outperforms GA. Though
the simulation is performed on our Lenovo notebook which
is much more powerful than typical sensors, the results still
demonstrate the huge advantage of DA over GA.

Figure 9 Execution time (see online version for colours)

We proceed to investigate the average number of rounds
and the communication overhead of DA. In Figure 10, we
can observe that the average number of rounds and that
of messages per node increases at a moderate rate with an
increasing number of sensors. In particular, the number of
messages grows slowly from 2.55 to 6.72, when the number
of sensors jumps from 50 to 500. Therefore, we claim that DA
scale well in terms of communication overhead. Besides, the
growth rate of the number of rounds is relatively higher, yet
still acceptable, than that of the number of message.

Figure 10 Cost analysis (see online version for colours)

6 Conclusion

In this paper, we consider the scheduling problem in order
to maximise the QoM of stochastic event capture in WRSNs.
Specifically, we propose centralised and distributed algorithms
both with constant approximation ratios. Simulation results
show that our algorithm has performance close to the optimal,
and outperforms the former work.

There are some directions to refine our solution in future
work. For instance, if the event occurrence process exhibits
significant correlation in time, the question is how such
dynamic on-line information can be exploited to further
improve system performance.
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