
J Supercomput (2008) 43: 183–198
DOI 10.1007/s11227-007-0126-4

Insight into redundancy schemes in DHTs

Guihai Chen · Tongqing Qiu · Fan Wu

Published online: 31 March 2007
© Springer Science+Business Media, LLC 2007

Abstract In order to provide high data availability in peer-to-peer (P2P) DHTs,
proper data redundancy schemes are required. This paper compares two popular
schemes: replication and erasure coding. Unlike previous comparison, we take user
download behavior into account. Furthermore, we propose a hybrid redundancy
scheme, which shares user downloaded files for subsequent accesses and utilizes era-
sure coding to adjust file availability. Comparison experiments of three schemes show
that replication saves more bandwidth than erasure coding, although it requires more
storage space, when average node availability is higher than 47%; moreover, our hy-
brid scheme saves more maintenance bandwidth with acceptable redundancy factor.

Keywords Peer-to-peer · Distributed hash table · Redundancy · Replication ·
Erasure coding

1 Introduction

The last several years have seen the emergence of a class of structured peer-to-peer
systems, like CAN [1], Chord [2], Pastry [3], Tapestry [4], Viceroy [5], Cycloid [6]
and so on. These P2P systems can be viewed as providing scalable, fault-tolerant
distributed hash tables (DHTs). DHTs propose a determined object locating service,
and already are used in many applications [7–10]. However, to provide high data

G. Chen (�) · T. Qiu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
e-mail: gchen@nju.edu.cn

T. Qiu
e-mail: qtq@dislab.nju.edu.cn

F. Wu
Department of Computer Science and Engineering, SUNY at Buffalo, Buffalo, USA
e-mail: fwu2@cse.buffalo.edu



184 G. Chen et al.

availability in the DHT, when the peers that are storing them are not 100% available,
needs some form of data redundancy. Peer-to-peer DHTs have proposed two different
redundancy schemes: replication [7, 10] and erasure coding [8, 9].

Some comparisons [8, 11, 12] argued that erasure coding is the clear winner, due
to huge storage and bandwidth savings for the same availability levels (or conversely,
huge availability gains for the same storage space). The other comparisons [13, 14]
argued that coding is an clear winner only when peer availability is low; the ben-
efits of coding are so limited in some cases that they can easily be outweighed by
some disadvantages such as extra complexity, download latency and lack of ability
of keyword searching. Although preferring the latter one, unlike previous compar-
ison, we take user download behavior into account and focus on both the storage
and bandwidth cost in different environment. Further more, we argue that sharing
user downloaded files for subsequent accesses (replication) and meanwhile utilizing
erasure coding to maintain file availability will achieve better performance: saving
more bandwidth with acceptable redundancy factor. There are two reasons. First, in
current peer-to-peer file sharing communities, popular files are automatically kept at
high availability level, due to thousands of times of user downloads. Second, current
hardware deployment suggests that idle bandwidth is the limiting resource that vol-
unteers contribute, not idle disk space. Further, since disk space grows much faster
than access point bandwidth, bandwidth is likely to become even scarcer relative to
disk space.

This paper makes the following contributions:

• To our best knowledge, this paper is the first to take user download behavior into
account—sharing user downloaded files for subsequent accesses—to evaluate re-
dundancy schemes in data storage and share systems in structured DHTs.

• This paper demonstrates that replication saves more bandwidth than erasure cod-
ing, although it requires more storage space, when average peer availability is
higher than 47%.

• This paper shows that the hybrid redundancy scheme of replication and erasure
coding can achieve better overall performance: saving more bandwidth with re-
dundancy factor less than 9.4 for three nines (99.9%) of per-file availability.

The rest of the paper is organized as follows. Section 2 introduces background of
replication and erasure coding. Section 3 presents related work. Section 4 describes
and formulates three schemes for high availability: replication, erasure coding and
the combination of them. Section 5 evaluates these three schemes by two sets of
experiments. Finally, we conclude the paper and point out future work in Sect. 6.

2 Background

Redundancy schemes have been widely used in the field of distributed systems to
achieve high data availability. The original form of redundancy is perhaps complete
replication [10, 15]. It imposes extremely storage overhead to achieve the simplest
implement of redundancy. Another common method is the parity scheme such as
RAID [16]. It reduces the storage overhead but does not provide the robustness nec-
essary to survive the high rate of failures expected in the wide area. An erasure code



Insight into redundancy schemes in DHTs 185

provides redundancy without the overhead of strict replication [17]. Erasure codes di-
vide an object into m fragments and recode them into n fragments, where n > m. We
call r = n/m the redundancy factor of encoding. A rate r code increases the storage
cost by a factor of r . The key property of erasure codes is that the original object can
be reconstructed from any m fragments. For example, using an r = 4 encoding on
a fragment divides the fragment into m = 16 fragments and encodes the original m

fragments into n = 64 fragments, increasing the storage cost by a factor of four. Era-
sure codes are a superset of replicated and RAID systems. For example, a system that
creates four replicas for each fragment can be described by an (m = 1, n = 4) erasure
code. RAID level 1, 4, and 5 can be described by an (m = 1, n = 2), (m = 4, n = 5),
(m = 4, n = 5) erasure code, respectively.

Different schemes own different characteristics. Accordingly, the choice of proper
scheme depends on the specific environment and application.

3 Related work

Due to the administrative heterogeneity and poor host availability found in the P2P
environment, almost all P2P systems provide some mechanism for ensuring data
availability in the presence of failures.

Many systems which utilize replication scheme have been proposed. CFS [7],
PAST [10] and FARSITE [15] rely on a static replication factor coupled with an
active repair policy. Ranganathan et al. [18] proposed an approach in which each
peer in the system possesses a model of the P2P storage system that can be used
to determine number and location of replicas needed to maintain desired availabil-
ity. Total Recall [11] calculates the appropriate redundancy mechanisms according to
past behavior of nodes in the system.

There are two most relevant works to ours. Oceanstore [9] uses a combination
of simple replication for read benefit and fragment level erasure coding for long term
durability to tolerate transient failures. But it is hard to predict the durability of data in
the dynamic P2P system. Another relevant work is done by Cuenca-Acuna et al. [19].
They addressed the question of increasing the availability of shared files, using an era-
sure coding based replication algorithm with global index, in P2P communities. How-
ever, the global index introduces single point of failure.

4 Redundancy schemes

This section presents three redundancy schemes for high availability: replication, era-
sure coding and a hybrid scheme which shares user downloaded files for subsequent
accesses (replication) and utilizes erasure coding to adjust file availability. All of them
work upon consistent hashing [20], as used by storage systems such as CFS [7].

4.1 General description

First, several key terminologies should be introduced. For simplicity, each file is iden-
tified by a unique identifier d , which is consistent hash of the file name. The peer



186 G. Chen et al.

Fig. 1 An example of multiple indexes for the file d in both replication and erasure coding environment.
Here, we set M = 2. The location of M indexes determined by h(d,n) is Node0 and Node3. In figure a,
there are two replications of file d locating at Node1 and Node5, while in figure b two different fragments
f 1 and f 2 of file d locating at Node1 and Node5, respectively

that keeps location indexes for file copies or fragments is named indexer. Besides,
a dualistic hash function should be declared: h(d,n), where n ≥ 1 is the sequence
number of each indexer. h(•,•) is the allocation function, typically based on the hash
function shared by all peers. The allocation function might be defined as follows:
h(d,n) = H(d || n), where H(•) is the hash function which is used in the DHTs and
|| is a concatenation. Figure 1 gives an example of multiple indexes for file d in both
replication and erasure coding environment.

All schemes consist of three parts with some difference due to their particularity:
register, request and maintenance.

• Register. Each peer periodically registers the unique IDs of the files it holds and/or
fragments in its cache in M distributed and independent indexers. The logical lo-
cation of M indexes is determined by the hash function defined above: h(d,n),
where n ∈ [1,M]. If the peer pointed by h(d,n) is not alive, its successor takes
over its role. The indexer associates each item in the index with a timer. A copy of
file or a fragment will be recognized as unavailable and removed from the index if
its timer runs out.

• Request. When requesting a file d , a peer randomly refers to one or more indexers
responsible for d . If the checked indexers do not provide enough whole file or frag-
ment location information, the peer will turn to other indexers. If all M distributed
indexers fail to provide enough location information, the peer will wait a period of
time and do the procedure as stated above again, until maximum lookup time ex-
pires. This balances the load of directory service and reduces the chance of getting
incomplete location index. Then the peer downloads the file or enough fragments
to reconstruct the original file from peers registered in location index.

• Maintenance. Periodically, each indexer estimates the availability of files and/or
fragments registered on it, and attempts to increase the availability of ones that is
not yet at target availability.



Insight into redundancy schemes in DHTs 187

4.2 Replication scheme

Replication is the simplest redundancy scheme. Here r identical copies of each file
are kept at each instant by peers. The value of r must be set appropriately depending
on the desired object availability a (i.e., a has some “number of nines”), and on
the average peer availability p. Throughout the analysis, it is assumed that the peer
availability is independent and identically distributed. The needed number of copies
can be determined by:

a = 1 − (1 − p)r (1)

which upon solving for r yields

r = log(1 − a)

log(1 − p)
(2)

Each peer periodically registers shared and cached files in M distributed and inde-
pendent indexes. When requesting a file d , a peer lookups a random index responsible
for d . If the referred indexer fails, the peer will turn to another indexer. If all M index-
ers fail, the peer will wait a period of time and do the lookup procedure again, until
maximum lookup time is reached. Then the peer accesses the file from a random peer
registered in location index. The already downloaded file is automatically treated as
a shared file for subsequent accesses. Finally, each indexer periodically adjust the
availability of its indexed files by scheduling necessary number of file transfers from
the whole file holder to randomly chosen peers to reach the desired availability of
file d .

4.3 Erasure coding scheme

Erasure codes (e.g., Reed-Solomon [17] or Tornado [22]) divide an object into m

fragments and recode them into n fragments, where n > m. This means that the ef-
fective redundancy factor is r = n/m. The common property of erasure codes is that
the original object can be reconstructed from any m fragments (where the combined
size of m fragments is approximately equal to the original object size).

We assume that we place one encoded fragment per file per peer and there is no
duplicate fragments. File availability can be calculated by the probability of at least
m out of n fragments are available:

a =
n∑

i=m

(
n

i

)
pi(1 − p)n−i (3)

where p is the average peer availability.
The number of files per host follows a Poisson distribution. Because it is difficult

to directly evaluate the Poisson distribution, we use the normal approximation to the
Poisson distribution. With the normal approximation, if we perform random place-
ment of files on hosts then the number of files per host follows a normal distribution.
Using algebraic simplifications and the normal approximation to the binomial distri-
bution (see [21]), we get the following formula for the erasure coding redundancy



188 G. Chen et al.

Table 1 Standard deviations
that follows a normal
distribution for the given level of
availability

a σa

0.800 0.84

0.900 1.28

0.990 2.48

0.995 2.81

0.998 2.88

0.999 3.10

factor:

r = n

m
=

⎛

⎜⎜⎜⎜⎝

σa

√
p(1 − p)

m
+

√
σa

2p(1 − p)

m
+ 4p

2p

⎞

⎟⎟⎟⎟⎠

2

(4)

where σa is the value of standard deviations in a normal distribution for the required
level of availability. Table 1 shows the standard deviations in a normal distribution
for different values of availability a. These results are standard for any normal distri-
bution. For instance, σa = 3.1 corresponds to three nines of availability.

From Eq. 4 we get that redundancy factor is not relevant to n, in other words,
n is not a factor influencing storage space needed to maintain a target availability
level. While p is a natural property of P2P communities, m ultimately determines the
redundancy level. Redundancy level falls when m increases. Larger m can reduces
redundancy, but it will introduce more complexity and download delay in heteroge-
neous environments.

When erasure coding is used, an indexer that generates new fragments to adjust
availability must have the access to the whole file. It is not scalable to download
enough fragments to reconstruct the file and then generate new fragments, since it is
likely that m fragments need to be downloaded to regenerate merely a new fragment.
Thus the amount of file that needs to be transferred is m times as much as the amount
of redundancy lost. An alternative is to associate the peer whose identifier is closest
to the consistent hash of the file name as the home peer for that file. The home peer
stores a permanent copy of the file and manages its fragment generation. If the home
peer fails, the next closest peer in the identifier space automatically becomes the new
home peer. See Fig. 2. This is reasonable because the peer that takes responsibility
of a file restores a complete copy, generates and pushes new fragments to targets in
need. This corresponds to increasing the redundancy factor by 1.

There are two strategies to regenerate fragments:

1. The most uses of erasure codes generate all n fragments, and over time, detect and
regenerate specific lost fragments. But this approach has two significant disadvan-
tages for highly dynamic environments: (1) It is necessary to accurately account
which peer is storing which fragment to regenerate lost fragments due either to
peers leaving the community permanently or storage replacement; (2) It must be
possible to differentiate accurately between peers temporarily going offline and



Insight into redundancy schemes in DHTs 189

Fig. 2 An example of home peers. In figure a, Node0 is the home peer of d1. Node3 is the home peer of
d2 and d3. Node4 is the home peer of d4. Figure b indicates the case of Node3 leave the network. d2 is
closer to Node2’s identifier, so d2 is moved to Node3. d3 is closer to Node4’s identifier, so d3 is moved
to Node4

leaving the community permanently to avoid introducing duplicate fragments.
These two points reduce the effectiveness of erasure coding.

2. Set n � m, without generating all n fragments. When increasing a file availability,
the corresponding home peer simply generates a random fragment from the set of
n possible fragments. If n is large enough, usefulness of fragments will be high
even if no coordination between peers, due to possibility of overlapping fragments
is small. The complexity of encoding and decoding a random fragment is �(m)

when n − m ≥ m. So large n will not introduce large encoding or decoding com-
plexity. To apply Eqs. 3 and 4 in our strategy, here we redefine n as the number of
replicated fragments in the index.

However, erasure coding scheme does not share the whole user downloaded files.
All shared objects in the system are erasure coded fragments stored in caches. Each
peer periodically registers all fragments it keeps in M distributed and independent
indexes. When requesting a file d , a peer lookups a random indexer responsible for
d’s fragments. If the referred indexer can not provide enough fragment location infor-
mation, the peer will turn to another indexer. If all M indexers fail, the peer will wait
a period of time and do the lookup procedure again, until maximum lookup time is
reached. Then it downloads enough number of fragments and resembles the original
file, and tries to regenerate and leave a fragment in cache. Finally, each indexer peri-
odically adjusts the availability of its indexed fragments. For a file whose availability
is below target level, the indexer consigns the home peer of the file to generate and
push necessary number of fragments to randomly selected peers.

4.4 Hybrid scheme

The replication scheme shares user downloaded files for subsequent accesses to save
maintenance bandwidth. It saves more maintenance bandwidth than the erasure cod-
ing scheme when average peer availability is high, but requires much larger redun-



190 G. Chen et al.

dancy factor. The erasure coding scheme requires much less storage space than the
replication to reach the availability level with the same average peer availability, and
saves more maintenance bandwidth in highly dynamic environment, but still unscal-
able when average peer availability is low. This paper proposes a hybrid scheme
which combines replication and erasure coding to achieve to better overall bandwidth
saving with acceptable redundancy factor.

The hybrid scheme shares user downloaded files for subsequent accesses (replica-
tion) and utilizes erasure coding to maintain file availability. It automatically treats
a downloaded file as shared file for subsequent accesses as the replication scheme.
When adjusting file availability, it consigns a whole file holder to generate and push
necessary number of fragments to other peers, instead of transferring whole copy
of file. On one hand, the hybrid scheme utilizes file copies already downloaded on
network for subsequent downloads to reduce maintenance bandwidth overhead as
the replication scheme. On the other hand, the hybrid scheme uses erasure coding to
achieve less bandwidth overhead than replication for the same increment of availabil-
ity level.

We now exhibit the analogue of Eqs. 1 and 3 for the case of hybrid scheme. We
assume that we do not place files and fragments with the same ID on the same peer,
and there is no duplicate fragments. File availability a, can be calculated by the prob-
ability of at least a whole copy or at least m out of n fragments are available. So a

is estimated as 1 minus the probability that all whole copies of a file are simultane-
ously unavailable and there are not enough (at least m out of n) fragments available
to reconstruct the original file:

a = 1 − (1 − p)h

(
1 −

n∑

i=m

(
n

i

)
pi(1 − p)n−i

)
(5)

where h is number of file copies.
The hybrid scheme’s redundancy factor can be calculated by adding redundancy

factor of replication and erasure coding:

r = h + n

m
= h +

⎛

⎜⎜⎜⎜⎝

σa(h)

√
p(1 − p)

m
+

√
σa

2(h)p(1 − p)

m
+ 4p

2p

⎞

⎟⎟⎟⎟⎠

2

(6)

where σa(h) is a function of h, and its value corresponds to the availability level (see
Table 1) a′ that erasure coding has to obtain. a′ is derived from Eq. 5 as follows:

a′ =
n∑

i=m

(
n

i

)
pi(1 − p)n−i = 1 − 1 − a

(1 − p)h
(7)

Equation 6 indicates that redundancy factor is relevant to m and h, instead of n.
Redundancy level falls when m increases, with fixed h. The fragments regeneration
strategies also apply to the hybrid scheme.



Insight into redundancy schemes in DHTs 191

Fig. 3 Required redundancy
factor for three nines of per-file
availability, as a function of
average peer availability, for the
replication, coding and hybrid
schemes as determined by Eqs.
2, 4 and 6

Figure 3 captures the theoretical redundancy factor for the replication, erasure
coding and hybrid schemes determined by Eqs. 2, 4 and 6 to achieve three nines of
per-file availability. Here we set m = 7, which is the number of fragments to recon-
struct original object as used in CFS [7]. The redundancy factor of the hybrid scheme
is determined by two factors: average peer availability p and number of file copies h.
With any fixed h, there is a corresponding line. Intuitively, erasure coding requires
less storage space to reach the availability level than the other two with the same av-
erage peer availability. The hybrid scheme’s redundancy factor is slightly larger than
erasure coding, and saves more storage space than replication except when average
peer availability is extremely high.

Each peer periodically registers shared files and cached fragments in M distrib-
uted and independent indexes. A peer locates a file with two kinds of indexes: whole
file location index and fragment location index. When requesting a file d , a peer ran-
domly refers to one or more indexers responsible for d . If the checked indexers do
not provide enough whole file or fragment location information, the peer will turn to
other indexers. If all M distributed indexers fail to provide enough location informa-
tion, the peer will wait a period of time and do the above procedure again, until the
maximum lookup time is reached. If the peer can not find a whole file living in sys-
tem, it turns to gather enough fragments to resemble the original file. The downloaded
and resembled files are regarded as shared.

Each indexer periodically adjusts the availability of its indexed files. For file d

whose availability is below target level, the indexer consigns a peer holding file d to
increase its availability by generating and pushing necessary number of fragments to
randomly selected peers. For those files without a complete copy, the adjustment will
be either delayed until a user download event happen, or performed as downloading
enough fragments to reconstruct original file and issue fragments by the indexer itself
when maximum waiting time is reached. Here, it is not necessary to use the mecha-
nism as erasure coding scheme to maintain a complete file in system, because almost
all the files have at least one copy in the system. Such, the hybrid scheme saves the
bandwidth on maintaining a copy of file on home peer.



192 G. Chen et al.

Table 2 Parameter selection

Parameter description Value/type

The number of nodes 1024

The distribution of nodes dynamic behavior Exponential distribution

The distribution of requests Zipf-like distribution

The parameter of the requests distribution (α) 0.74

Target file availability 99.9%

Peer availability 30%–90% (80.7% as default)

The average number of lookups per peer 2–20 (10 as default)

The number of fragments for reconstruction (m) 7

5 Evaluation

We implemented the three schemes for high availability in a discrete-event packet
level simulator, p2psim [23]. The simulated network consists of 1024 peers. Each
peer alternately crashes and re-joins the network; the interval between successive
events for each peer is exponentially distributed with a mean of given time. When
a peer crashes, all files, fragments and indexes on it are discarded. Each time a peer
joins, it uses a different IP address and DHT identifier. Distribution of requests fol-
lows Zipf-like distribution, in which relative probability of requests for the i’th most
popular file is proportional to 1/iα , where α is set as 0.74 (average of six traces
shown in [24]). We did two sets of experiments: different peer availability and dif-
ferent lookup rate. In different peer availability, average peer availability ranges from
30% to 90%. In different lookup rate, average number of lookups during peer’s live
time ranges from 2 to 20. Each simulation runs for a simulation time of 6 hours;
statistics are collected only during the second half of the simulation time. We use
m = 7, which is the number of fragments to reconstruct original object as used in
CFS [7]. The target file availability is set to 99.9% which is the availability that end
users might expect from today’s web services [25]. Finally, each data point in our
plots represents the average over 5 trials. The parameters and their values are shown
in Table 2.

We evaluate three redundancy schemes using two primary metrics:

1. Redundancy factor is the total storage used to achieve target availability divided
by storage needed to store one copy of the whole file.

2. Bandwidth ratio is the total maintenance bandwidth incurred due to (1) main-
taining file availability, and (2) maintaining a copy of each file on home peer for
erasure coding scheme, divided by total bandwidth due to serving file requests.
Bandwidth on maintaining routing table and looking up is neglectable relative
to maintenance bandwidth (1) and (2). A bandwidth ratio of 0.1 implies that the
bandwidth overhead of maintaining availability is 10% as much as the system
must consume for normal operations.

Bandwidth ratio is regarded as more important factor in this paper, since idle band-
width is scarcer relative to idle disk space.



Insight into redundancy schemes in DHTs 193

Fig. 4 Required redundancy
factor for three nines of per-file
availability, as a function of
average peer availability, for the
replication, coding and hybrid
schemes in simulation

5.1 Redundancy factor

In Fig. 4, each line corresponds to a particular scheme for high availability. Fig-
ure 4 demonstrates that the erasure coding scheme’s line goes generally the same
as predicted in Fig. 3, but the replication scheme’s does not, especially when peer
availability goes beyond 60%. While the erasure coding scheme makes the least use
of user downloaded files, leaving only a fragment in cache, the replication scheme
shares the whole user downloaded file. Meanwhile, the higher average peer availabil-
ity is, the less copy loss rate is. The replication scheme’s redundancy factor remains
high with high average peer availability, due to too many copies of popular files living
in system.

Figure 4 also shows that although average peer availability varies from 30% to
90%, the hybrid scheme’s redundancy factor does not change obviously, between 8.5
and 9.4. When peer’s churn rate is intensive, the hybrid scheme takes the advantage
of erasure coding to save required storage space. When peer’s average availability
is high, the hybrid scheme’s redundancy factor does not continue falling, and even
increase instead. Its reason is the same as the replication scheme: too many copies of
popular files living in system. This extra redundancy is harmless. Useless copies can
be discarded by user or replacement function.

5.2 Bandwidth ratio

Figure 5 shows that the replication scheme saves more bandwidth than the erasure
coding scheme when average peer availability is higher than 47%, and the erasure
coding scheme performs better than the replication scheme in the other case. The
replication scheme shares user download files to reduce the time and transfer load on
maintenance. The replication scheme is effective in communities with high average
peer availability, because most files are kept at desired availability level by user down-
loads. But in highly dynamic communities, due to frequent peer joining and leaving,
user downloads do not compensate for the loss of copies. In this case, the erasure
coding scheme shows its advantage in achieving higher availability increment than
replication does with the same bandwidth consumption; or conversely, requiring less
bandwidth for the same increment of availability level.



194 G. Chen et al.

Fig. 5 Bandwidth ratio for
three nines of per-file
availability, as a function of
average peer availability, for
replication, coding and
replication + coding

The highlight of Fig. 5 is that the hybrid scheme of replication and coding achieves
the best overall performance on bandwidth ratio. The hybrid scheme makes use of
user download files as replication scheme, and maintains availability using erasure
coding. When average peer availability is higher than 70%, the replication and the
hybrid scheme consume approximately the same bandwidth on maintenance, because
almost all of file availability is high enough. When average peer availability is lower
than 70%, the hybrid scheme’s advantage is obvious. The hybrid scheme shares user
downloaded files for subsequent accesses to save maintenance bandwidth. Another
reason why the hybrid scheme saves more maintenance bandwidth than the erasure
coding scheme is that the hybrid scheme do not need extra mechanism to maintain
a copy of the file on home peer.

Figure 6 shows the situation which we might expect to see in a corporation or uni-
versity environment with average peer availability is 80.7% [15]. It demonstrates that
the more intensive request rate is, the less bandwidth ratio requires. While bandwidth
ratio is a relative criterion, the absolute bandwidth overhead should also be paid at-
tention to as shown in Fig. 6b. Figure 6b shows that while the replication and the
hybrid scheme’s number of transferred files on maintenance1 falls with increment of
request rate, erasure coding scheme’s absolute maintenance bandwidth overhead de-
creases not obviously. This proves that sharing user downloaded files for subsequent
accesses will considerably reduce the bandwidth on maintenance.

Figure 6 also demonstrate that the hybrid scheme of replication and erasure cod-
ing achieves better performance on bandwidth saving, especially when user request
rate is low. When request rate is larger than 10, the replication and hybrid scheme’s
bandwidth ratio are extremely adjacent and close to x-axis. File or fragment transfer
is rarely performed, because most of file availability is maintained at desired level by
abundant user downloaded files.

1Bandwidth overhead of the erasure coding scheme and the hybrid scheme is measured in terms of frag-
ments. For comparison, their transferred number of fragments should be converted to number of files.



Insight into redundancy schemes in DHTs 195

Fig. 6 Bandwidth ratio and
number of file transferred on
maintenance for three nines of
per-file availability when
average peer availability is
80.7%, as a function of lookup
rate, for replication, coding and
replication + coding. Where
request rate is average number
of requests issued during a
peer’s lifetime

6 Conclusion and future work

This paper takes user download behavior into account to evaluate redundancy
schemes in data storage and share systems. Experiment results show that unlike pre-
vious comparisons argued: the replication scheme saves more bandwidth than the
erasure coding scheme, although it requires more storage space, when average peer
availability is higher than 47%. When average peer availability is higher than 70%,
the replication scheme consumes approximately the same bandwidth on maintenance
as the hybrid scheme. Besides, the replication scheme introduces less complexity into
system than the other two. So the replication scheme is a good choice, in high peer
availability environments, e.g. university environment.

The erasure coding scheme requires less storage space to reach the availability
level than replication with the same average peer availability, and consumes less
maintenance bandwidth in highly dynamic environment. But it suffers from heavier
maintenance bandwidth overhead than the replication, when average peer availability
is higher than 47%, and introduces complexity into the system: not only encoding
and decoding of fragments, but also entire system design complexity.



196 G. Chen et al.

The highlight of this paper is that sharing user downloaded files for subsequent
accesses (replication) and meanwhile utilizing erasure coding to maintain file avail-
ability will achieve better performance: saving more bandwidth with acceptable re-
dundancy factor (less than 9.4). The superiority of the hybrid scheme on saving
maintenance bandwidth is obviously shown when average peer availability is lower
than 70%. The experiment results also show that the hybrid scheme saves more band-
width than the other two, when user request rate is low relative to peer churn rate. The
hybrid scheme not only performs well in environments with high peer availability, but
also demonstrates its advantages in highly dynamic communities. The disadvantage
of the hybrid scheme is that it introduces complexity into the system.

The hybrid scheme achieve the best bandwidth saving, but in highly dynamic peer
communities where average peer availability is lower than 0.5, its bandwidth ratio is
still high, making the storage system suffer from poor scalability. Noting that band-
width is scarcer relative to idle disk space, the future work should focus on saving
bandwidth. Designing new coding algorithms and making further use of file copies
already downloaded on network may be good for bandwidth saving. However, we
leave these as issues for future work.

Acknowledgement This work is supported by the China NSF grants (60573131, 60673154), the China
Jiangsu Provincial NSF grant (BK2005208), the China 973 project (2006CB303004) and TRAPOYT
award of China Ministry of Education.

References

1. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) a scalabe content addressable network.
In: Proc of ACM SIGCOMM, 2001, pp 161–172

2. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-to-peer
lookup service for Internet applications. In: Proc of ACM SIGCOMM, 2001, pp 149–160

3. Rowstron A, Druschel P (2001) Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer system. In: Proc of Middleware, 2001, pp 329–350

4. Zhao B, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiatowicz JD (2004) Tapestry: a resilient
global-scale overlay for service deployment. IEEE Trans Select Areas Commun 22(1):41–53

5. Malkhi D, Naor M, Ratajczak D (2002) Viceroy: a scalable and dynamic emulation of the buttterfly.
In: Proc of Principles of Distributed Computing, 2002, pp 183–192

6. Shen H, Xu CZ, Ghen G (2004) Cycloid a constant-degree and lookup-efficient P2P overlay network.
In: Proc of IPDPS, 2004, pp 26–30

7. Dabek F, Kaashoek MF, Karger D, Morris R, Stoica I (2001) Wide-area cooperative storage with CFS.
In: Proc of ACM SOSP, 2001, pp 202–215

8. Dabek F, Li J, Sit E, Robertson J, Kaashoek F, Morris R (2004) Designing a DHT for low latency and
high throughput. In: Proc of NSDI, 2004, pp 85–98

9. Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels D, Gummadi R, Rhea S, Weather-
spoon H, Weimer W, Wells C, Zhao B (2000) Oceanstore: an architecture for global-scale persistent
storage. In: Proc of ASPLOS, 2000, pp 190–201

10. Rowstron A, Druschel P (2001) Storage management and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In: Proc of SOSP, 2001, pp 188–201

11. Bhagwan R, Tati K, Cheng Y, Savage S, Voelker G (2004) Total recall: system support for automated
avalability management. In: Proc of NSDI, 2004, pp 337–350

12. Weatherspoon H, Kubiatowicz J (2002) Erasure coding vs. replication: a quantitative comparison. In:
Proc of IPTPS, 2002, pp 328–338

13. Blake C, Rodrigues R (2003) High availability, scalable storage, dynamic peer networks: pick two.
In: Proc of HotOS-IX, 2003, pp 1–6

14. Rodrigues R, Liskow B (2005) High availability in DHTs: erasure coding vs. replication. In: Proc of
IPTPS, 2005, pp 226–239



Insight into redundancy schemes in DHTs 197

15. Bolosky WJ, Douceur JR, Ely D, Theimer M (2000) Feasibility of a serverless distributed file system
deployed on an existing set of desktop PCs. In: Proc of SIGMETRICS, 2000, pp 34–43

16. Patterson D, Gibson G, Katz R (1988) The case of raid Redundant arrays of inexpensive disks. In:
Proc of SIGMOD, 1988, pp 109–116

17. Reed S, Solomon G (1960) Polynomial codes over certain finite fields. J SIAM 8:300–304
18. Ranganathan K, Iamnitchi A, Foster I (2002) Improving data availability through dynamic model-

driven replicatiion in large peer-to-peer communities. In: Proc of CCGRID, 2002, p 376
19. Cuenca-Acuna FM, Martin RP, Nguyen TD (2003) Autonomous replication for high availability in

unstructured P2P systems. In: Proc of SRDS, 2003, pp 99–108
20. Karger D, Lehman E, Leighton F, Levine M, Lewin D, Panigrahy R (1997) Consistent hashing and

random trees: Distributed caching protocols for relieving hot spots on world wide web. In: Proc of
STC, 1997, pp 654–663

21. Bhagwan R, Savage S, Voelker G (2002) Replication strategies for highly available peer-to-peer stor-
age systems. UCSD Technical Report CS2002-0726

22. Byers JW, Luby M, Mitzenmacher M, Rege A (1998) a digital fountain approach to reliable distrib-
tuion of bulk data. In: Proc of SIGCOMM, 1998, pp 56–67

23. Gil T, Kaashoek F, Li J, Morris R, Stribling J p2psim: a simulator for peer-to-peer protocols. http:
//www.pdos.lcs.mit.edu/p2psim/

24. Breslau L, Cao P, Fan L, Phillips G, Schenker S (1999) Web-caching and zipf-like distribution: evi-
dence and implications. In: Proc of INFOCOM, 1999, pp 126–134

25. Merzbacher M, Patterson D (2002) Measuring end-user availability on the web: practical experience.
In: Proc of IPDS, 2002, pp 473–477

Guihai Chen obtained BS degree from Nanjing University, M. Engineering from Southeast University,
and PhD from University of Hong Kong. He visited Kyushu Institute of Technology, Japan in 1998 as a
research fellow, and University of Queensland, Australia in 2000 as a visiting professor. During September
2001 to August 2003, he was a visiting professor in Wayne State University. He is now a full professor
and deputy chair of the Department of Computer Science, Nanjing University. Prof. Chen has published
more than 100 papers in peer-reviewed journals and refereed conference proceedings in the areas of wire-
less sensor networks, high-performance computer architecture, peer-to-peer computing and performance
evaluation. He has also served on technical program committees of numerous international conferences.
He is a member of the IEEE Computer Society.

Tongqing Qiu received his BS degree in computer science from Nanjing University, China, in 2004. He
served as a research assistant in the Department of Computer Science at City University of Hong Kong
from April 2006 to February 2007. He is now a master-degree student in the Department of Computer
Science at Nanjing University, China. His research interests are in the areas of peer-to-peer computing and
distributed systems.



198 G. Chen et al.

Fan Wu acquired BS degree in computer science from Department of Computer Science, Nanjing Univer-
sity, China, in 2004. Now he is a PhD candidate of Department of Computer Science and Engineering, the
State University of New York at Buffalo, U.S.A. His research focuses on incentives and privacy in wireless
networks, privacy preserving data mining, and peer-to-peer computing.


	Insight into redundancy schemes in DHTs
	Abstract
	Introduction
	Background
	Related work
	Redundancy schemes
	General description
	Replication scheme
	Erasure coding scheme
	Hybrid scheme

	Evaluation
	Redundancy factor
	Bandwidth ratio

	Conclusion and future work
	Acknowledgement

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


