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Abstract—The cascading of sensitive information such as private contents and rumors is a severe issue in online social networks.
One approach for limiting the cascading of sensitive information is constraining the diffusion among social network users. However, the
diffusion constraining measures limit the diffusion of non-sensitive information diffusion as well, resulting in the bad user experiences. To
tackle this issue, in this paper, we study the problem of how to minimize the sensitive information diffusion while preserve the diffusion
of non-sensitive information, and formulate it as a constrained minimization problem where we characterize the intention of preserving
non-sensitive information diffusion as the constraint. We study the problem of interest over the fully-known network with known diffusion
abilities of all users and the semi-known network where diffusion abilities of partial users remain unknown in advance. By modeling the
sensitive information diffusion size as the reward of a bandit, we utilize the bandit framework to jointly design the solutions with polynomial
complexity in the both scenarios. Moreover, the unknown diffusion abilities over the semi-known network induce it difficult to quantify
the information diffusion size in algorithm design. For this issue, we propose to learn the unknown diffusion abilities from the diffusion
process in real time and then adaptively conduct the diffusion constraining measures based on the learned diffusion abilities, relying on
the bandit framework. Extensive experiments on real and synthetic datasets demonstrate that our solutions can effectively constrain the
sensitive information diffusion, and enjoy a 40% less diffusion loss of non-sensitive information comparing with four baseline algorithms.

Index Terms—Information diffusion, Online social Networks, Constraining sensitive Information diffusion, Multi-arm bandit
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1 INTRODUCTION

The prevalence of online social networks such as Face-
book, Twitter and Wechat facilitates the information diffu-
sion among users, and thus enables the efficient promotion
of positive informations, e.g., products, news, innovations
[1]- [8]. Although such efficient diffusion can easily lead
to large-scale diffusion called information cascading, the
unconstrained cascading behavior could meanwhile cause
the sensitive information to be incautiously diffused over
the network [9]- [20]. Here the sensitive information refers
to any kind of information that needs to be prohibited from
cascading such as rumors, personal contents, and trade se-
crets. The cascading of such sensitive information may cause
the risk of leaking users’ privacies or arising panics among
publics [9]- [20]. With this concern, several social network
medias (e.g., Facebook, Twitter) have claimed authorities to
block accounts of users and delete some posts or tweets
when they violate relevant rules about privacies or secu-
rities [9] [21] [22]. Thus network managers are able to take
measures to prohibit the cascading of sensitive information.

The existing attempts that share the closest correlation
with prohibiting sensitive information diffusion belong to
the rumor influence minimization [9]- [20], whose current
strategies can mainly be classified into two aspects. The first
is diffusing the truths over network to counteract rumors
[12]- [14]. However, diffusing truths is only suitable for con-
straining the rumors, while is not suitable for constraining
the diffusion of the other kinds of sensitive informations,
including personal informations, trade secrets, and etc. The
second is temporarily blocking a number of users with high

diffusion abilities [9] [10] [15] [16] or blocking a number of
social links among users [17]- [20] in hope of minimizing
the diffusion of a rumor. Although such strategy is effective
for preventing rumors about some significant events like
earthquakes, terrorist attacks and political elections, it is
unrealistic for network managers to adopt this strategy on
constraining the diffusion of sensitive informations with
various contents that widely exist in our daily lives. If
network managers take such measure, it is required to
block a much larger size of users or links. Then two critical
problems arise. Firstly, blocking too many users or social
links will degrade user experiences and may arouse com-
plaints for the right violation. Secondly, blocking users or
social links for restraining rumors also brings the loss of
the diffusion of positive informations, say information loss,
which is not beneficial to the viral marketers that utilize
information cascading to promote products [1]- [6], [23] [24].

Regarding the limitations of existing solutions, in this
paper, we take the first look into limiting the cascading
of sensitive informations while preserving the diffusion of
non-sensitive ones to lower the information loss. Consid-
ering the randomness of the users accepting informations
diffused from their social neighbors, we adopt the widely
used random diffusion model that each user diffuses infor-
mation to his social neighbor successfully with a diffusion
probability via the social link between them. Then our
technical objective is adjusting the diffusion probabilities
via social links to minimize the diffusion size of sensitive
informations, under the constraint of keeping the value
of the sum of diffusion probabilities via all social links.
Corresponding to the reality, we consider a case where
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some advertisements in viral marketing and some rumors
simultaneously diffuse over an online social network. In this
case, decreasing diffusion probabilities models the measures
such as deleting partial posts or fanpages reposted by users
[25] [26], while the measures for increasing diffusion proba-
bilities include sticking and adding pushes or deliveries of
the posts reposted by given users [16] [27]. Then, if network
managers decrease the diffusion probability from a user
holding rumors, the advertisements diffused from the user
will inevitably be constrained as well. Thus, for lowering
the diffusion loss of the advertisements and preserving the
global diffusion ability of the whole network on diffusing
non-sensitive informations, a natural approach is increasing
the diffusion probabilities from one or more other users
which hold the advertisements.

We study the problem of interest on both fully-known
and semi-known networks which are the two main scenar-
ios considered in current studies on information diffusion
[1]- [16]. Over the fully-known network, we assume network
managers know the diffusion abilities of all users. The exam-
ples for the fully-known network lie on the social networks
for enterprises (e.g., Skype) or special interest groups (SIGs)
(e.g., Douban1). As the full topology of a local social net-
work, which consists of the staff of a same enterprise or the
members in a same SIG, is available to network managers, it
is feasible to quantify the diffusion abilities of all users. On
the contrast, the semi-known network here refers to the case
that diffusion abilities of partial users remain unknown in
advance. For example, the data of Facebook was reported to
be utilized to influence the 2016 election in the US, which
then led to a severe trust crisis for Facebook. Thus, due
to the privacy concern and potential side effect, even for
network managers, it is difficult to obtain the full topology
of some global large scale social networks like Facebook,
Wechat. Unless the full network topology is known, we
cannot evaluate the diffusion abilities of all users.

Over the fully-known network, although we can deter-
mine the diffusion probability variations via social links
through solving a constrained minimization problem, the
huge size of social links in current large scale networks
leads to the high complexity of the problem. Moreover,
the unknown diffusion abilities of partial users over the
semi-known network induce it infeasible to directly solve
the constrained minimization problem for minimizing the
diffusion size of sensitive informations.

To tackle the above challenges, we utilize the constrained
combinatorial multi-arm bandit framework to jointly design
our solutions over the fully-known and semi-known net-
works, where we take the diffusion size of sensitive infor-
mations as the reward of a bandit and model the probability
variations as the arms in bandit. With this mapping, we
determine the probability variations through a constrained
arms picking process with the aim of minimizing the ob-
tained rewards. Through incorporating the constraint of
diffusion probability variations into the construction of the
arms of bandit, we relax the problem of interest into an
unconstrained minimization problem when determining the
diffusion probability variations based on the arms. This
enables us to determine the probability variations via social

1. https://www.douban.com/

links with high efficiency. Furthermore, for coping with the
unknown diffusion abilities over the semi-known network,
we propose to iteratively learn the unknown diffusion
abilities through learning the reward distributions of the
arms based on the rewards obtained from previously picked
arms, and then determine the diffusion probability varia-
tions based on the learned reward distributions of arms.

Our main contributions are summarized as follows:
(1) We take the first look into minimizing the diffusion

size of sensitive informations while preserving the diffusion
of non-sensitive ones. We formulate the problem of interest
into a constrained minimization problem where we charac-
terize the intention of preserving non-sensitive information
diffusions as the constraint.

(2) We propose an efficient bandit based framework to
jointly explore the solutions over the fully-known and semi-
known networks within polynomial running time. More-
over, we design the distributed implementation scheme of
our solutions for the further improvement of time efficiency.

(3) We further extend our bandit based solution into a
“learning- determining” manner for addressing the chal-
lenge of unknown diffusion abilities in semi-known net-
works. We theoretically prove that the regret bound of our
solution is sub-linear to the diffusion time, indicating that
the probability variations returned by our solution approxi-
mates to the optimal one with the increase of diffusion time.

(4) We perform extensive experiments on both real and
synthetic social network datasets. The results demonstrate
that the proposed algorithms can effectively constrain the
diffusion of sensitive informations, and more importantly,
enjoy a superiority over four baselines in terms of 40% less
information diffusion loss.

The rest of this paper is organized as follows. We formu-
late the problem in Section 2. Then we present the solution
in fully-known network in Section 3 and the solution in
semi-known network in Section 4. We report the experimen-
tal results in Section 5. At last, we review the related works
in Section 6 and conclude the paper in Section 7.

2 PRELIMINARIES

2.1 Network Model

We model the online social network as a directed graph
G = (V,E), where each node in V (|V | = n) represents a
user in the network and each directed edge in E(|E| = m)
represents a social link between a pair of users. We say
the node v is a neighbor of node u if there is an edge
in E with the source node being u and the destination
node being v. Each node is classified as either a sensitive
node or a non-sensitive one. In correspondence to social
networks, sensitive nodes refer to the individuals who hold
sensitive informations (e.g., rumors or private informations
of users). Moreover, each edge i ∈ E has a weight wi
representing the probability that the source it connects can
successfully diffuse information to the destination node via
it. That is, we assume that the diffusion results via each
edge are independent, and the diffusion result via an edge
i follows the Bernoulli distribution B(wi). We assume that
the weight on each edge follows a uniform distribution of
U(0, wmax)(wmax ∈ (0, 1)).

https://www.douban.com/
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As mentioned earlier, we study the adaptive diffusion
of sensitive informations over both fully-known and semi-
known networks. In the sequel, we respectively present the
definitions of the two scenarios. Specifically, in our setting,
the semi-known network consists of the informed nodes and
the uninformed nodes, and the nodes in the fully-known
network are all informed.
Definition 1. (Informed and uninformed nodes.) We define a
node as an informed node if the network manager knows all the
neighbor nodes of the node in network, and define the node as an
uninformed node otherwise.

Definition 2. (Fully-known network.) In the fully-known
network, we assume the network manager knows the neighbor
nodes of all the nodes in network. In other words, all the nodes in
the fully-known network are informed.

On the other hand, in the semi-known network, we as-
sume the network managers just have the partial knowledge
of the topology of a given social network.

Definition 3. (Semi-known network.) The semi-known net-
work is a social network where uninformed nodes coexist along
with informed nodes.

2.2 Diffusion Model
Over both the fully-known and semi-known networks,

the sensitive informations can only be diffused from the
sensitive nodes. We assume there are T time rounds. A
non-sensitive node will turn to sensitive once it receives
sensitive informations, and from then on until the end of
the T rounds, as long as the sensitive informations it holds
are not out of date, it will have chance to diffuse sensitive
informations to its neighbors. The t-th round refers to the
time from time stamp t to t+ 1. We use V t to denote the set
of the sensitive nodes at time stamp t. We denote the edges
whose source nodes are in sensitive as the target edges.

Definition 4. (Target edge.) If the source node of an edge is in
sensitive, we denote the edge as the target edge. We use Et to
denote the set all target edges at the beginning of the t-th round.

We study the problem of adaptively adjusting diffusion
probabilities via edges at the beginning of each round,
for taking measures in real time to minimize the sensitive
information diffusion. For this end, we define the duration
of each round as the time for two-hop diffusion. That is, the
informations diffuse two hops during a round. In particular,
during each round, the source node of an edge i, say Si, first
diffuses informations Ii to the destination node Di success-
fully with probability wi, and Di then diffuses the received
informations to its neighbors. Moreover, in the first hop in
each round, we define each sensitive source node having a
single chance to diffuse sensitive informations to each of its
neighbors. If a node receives sensitive informations during
the first hop, it further has one chance to diffuse the received
sensitive informations to its own neighbors in the second
hop. Notably, we define that each sensitive node has the
chance to diffuse sensitive informations to their neighbors in
each round as long as the sensitive informations it holds are
not out of date. Our insight for such definition comes from
the real behavior that users of social medias are probably to
repeatedly review the Moments or Tweets, which are posted
by their friends several days or even several months ago.

At the same time, the diffusion of non-sensitive informa-
tions also occurs in the network, and is in a same manner
with the diffusion of sensitive informations. A node will
simultaneously hold and diffuse non-sensitive and sensitive
informations, if the node receives the both kinds of informa-
tions during diffusion.

With the above network and diffusion models, Lemma 1
scales the size of sensitive nodes after T rounds, if there is
no measure on constraining sensitive information diffusion.

Lemma 1. Given the sensitive node set V 1 and the target edge
set E1 at the beginning of the 1-st round, the expected size of
sensitive nodes until the end of the T rounds is upper bounded by
MT = |V 1|+ |E1|wmax2T + n−|V 1|

4 wmax(2T + 1)T .

The proof for the Lemma 1 is in Appendix A (in sup-
plemental material). In Lemma 1, we assume the social
network follows the power-law degree distribution, which
is a popular property of social network structure [28] [29],
and wmax � 1.

2.3 Problem Formulation

Lemma 1 suggests that there is a potential large scale
cascading of sensitive informations over social networks if
the network managers do not take any measure, and further
motivates the study in this paper.

The problem of interest is adaptively adjusting the dif-
fusing probabilities via target edges in Et (1 ≤ t ≤ T ) at
the beginning of each round, for minimizing the diffusion
size of sensitive informations. In the t-th round, we denote
the destination nodes of the target edges in Et as target
nodes. The |Et|-dimensional vector

−→
βt0 denotes the original

diffusion probabilities via the target edges, with
−→
βt0(i) repre-

senting the original diffusion probability via edge i. With
the diffusion model given above, in the t-th round, the
expected diffusion size of sensitive informations from the
destination node of a target edge i can be quantified as−→
βt0(i) ·

∑
j∈E(S,i) wj . Here, E(i) is the set of edges whose

sources are the destination node of edge i, and |E(i)| equals
di which represents the out-degree of the destination node
of edge i. Then, we let the |Et|-dimensional vector

−→
D t

denote the diffusion abilities of the |Et| target nodes, where−→
D t(i) =

∑
j∈E(S,i) wj quantifies the diffusion ability of the

destination node of edge i in a round.
Furthermore, we adopt

−→
∆βt to represent the vector of

the probability variations on the target edges in the t-th
round, with

−→
∆βt(i) representing the diffusion probability

variation on edge i. Here,
−→
∆βt(i) < 0 means constraining

the diffusion via edge i, while
−→
∆βt(i) > 0 means promoting

the diffusion via edge i. Then, with the aim of minimizing
the diffusion size of sensitive informations, our technical
objective is exploring an optimal variation vector

−→
∆βt∗ in

each round to minimize the value of
∑T
i=1

−→
Dt · (

−→
βt0 +

−→
∆βt∗).

In addition, as we illustrated before, we intend to minimize
the diffusion size of sensitive information while preserving
the diffusion of non-sensitive information in order to reduce
the information loss. Such intention is technically conducted
by maintaining the sum of the diffusion probabilities via
target edges, i.e.,

∑
i∈Et(

−→
βt0(i) +

−−→
∆βt(i)) =

∑
i∈Et

−→
βt0(i) and
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i∈Et

−−→
∆βt(i) = 0. By this, we formally give the adaptive

diffusion problem as follows.
Problem statement. During the T diffusion rounds, we

try to minimize the value of

T∑
t=1

−→
D t · (

−→
β0
t +
−→
∆βt) (1)

by determining the value of
−→
∆βt (1 ≤ t ≤ T ) in each round.

The constraint for the variation vector
−→
∆βt (1 ≤ t ≤ T ) is∑

i∈Et

−→
∆βt(i) = 0 (1 ≤ t ≤ T ).

Next, we present the solution to the adaptive diffusion
problem over fully-known network in Section 3, and will
extend our study to the semi-known network in Section 4.

3 ADAPTIVE DIFFUSION IN FULLY-KNOWN NET-
WORKS

In the fully-known network, the problem of interest in
Eqn. (1) is a classical Linear Programming (LP) problem.
However, the classical solutions (e.g., Simplex Algorithm
[30], Ellipsoid Algorithm [31] and Karmarkar Algorithm
[32]) for the LP problem cannot be efficiently applied to
problem (1) in adaptive diffusion, due to the high dimension
of the variable vector

−→
∆βt. With the dimension of

−→
∆βt

being |Et|, the complexities for the Simplex, Ellipsoid and
Karmarkar algorithms are respectively scaled as O(2|E

t|),
O(|Et|6), O(|Et|3.5) [30] [31] [32].

Solution overview. For the issue of the high complexity
of classical solutions, we seek the solution for the adaptive
diffusion based on the bandit framework. In particular, we
model the probability variation vector

−→
∆βt in each round as

the arm of a bandit, and model the diffusion size of sensitive
information as the reward obtained from the bandit after
picking such arm. By this, we explore the efficient solution
for the adaptive diffusion through exploring efficient arm
picking algorithm under the objective of minimizing ob-
tained rewards. In addition, we adopt the bandit framework
here also under the consideration that the bandit model will
enable us to deal with the partial unknown diffusion abil-
ities in the semi-known network (in Section 4). That is, we
utilize the bandit framework to jointly design the solutions
in both the fully-known and semi-known networks.

In the following, in Section 3.1, we will first give a brief
introduction to the bandit framework. Then we will present
the mappings between the components in bandit and the
key elements in the adaptive diffusion problem, along with
our ideas of the efficient solution for adaptive diffusion.
With this mapping, in Section 3.2, we will give our algorithm
for efficiently determining the probability variation vector−→
∆βt in each round based on the bandit framework.

3.1 Mapping Adaptive Diffusion in Fully-known Net-
work into Bandit
3.1.1 Introduction of the Bandit Framework

We seek the solutions for the adaptive diffusion problem
by mapping it into a Constrained Combinatorial Multi-
Arm Bandit (CCMAB) framework, which is a variation of
the Multi-Arm Bandit (MAB) for coping with the combina-
torial optimization problem in online manner. In the general

formation of the MAB, there are multiple independent arms
that provide stochastic rewards with certain distributions.
The objective of the MAB-based optimizing problems is,
through sequentially picking an arm in each round based
on the reward distributions of arms, maximizing the sum of
the rewards obtained from all picked arms. Furthermore, the
major feature of the CCMAB framework that we adopt in
this paper lies on the dependencies between arms, different
from the independences in general MAB model. In each
round, for maximizing the obtained rewards, the CCMAB
picks a super-arm which consists of a set of base-arms under
given constraints. Such feature enables the CCMAB to be
adopted in the online combinatorial optimization problems.

Corresponding to the adaptive diffusion problem stud-
ied in this paper, we take the sensitive information diffusion
size whose expectation is quantified by

∑T
t=1

−→
D t · (

−→
β0
t +−→

∆βt) as the reward of bandit, and take the variation vector−→
∆βt as the super-arm that we need to determine in each
round. Then our objective becomes to determining the
picked super-arm in each round to minimize the overall
rewards obtained during the T rounds. Notably, since our
objective is minimizing the sensitive information diffusion,
different from the common objective in bandit that maxi-
mizing rewards [33] [34], we aim at minimizing the rewards.

3.1.2 Mapping Adaptive Diffusion into CCMAB
To be more precise, we present below the mappings

between the components in the adaptive diffusion over
fully-known network and the key elements (i.e., base-arm,
super-arm, and rewards) in CCMAB as below.

Base-arm: In the CCMAB model, the base-arms are
the constitutes of the super-arm that we need to deter-
mine in each round. As each super-arm here is the vector−→
∆βt which specifies the variation of diffusion probability
over each target edge (Definition 4) and satisfies the con-
straint

∑
i∈Et

−→
∆βt(i) = 0, we set the base-arms as the

|Et|-dimensional vectors with pair-wise non-zero elements.
Specifically, each base-arm is set to only have two non-
zero elements, with the negative probability variation on
one target edge and the positive probability variation of
the same amount on the other target edge. For example,
the vectors

−→
β1 and

−→
β2 in Fig. 1 are two base-arms with

the dimension being 4. Thus, each base-arm satisfies the
constraint

∑
i∈Et

−→
∆βt(i) = 0, and as a result, the super-arm

which is the sum of a set of base-arms must also satisfy the
constraint. The definition of the base-arm is as follows.

1
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3

4

1

2

3

4

1

2

3

4

-0.06

0.06

0.02

-0.02

-0.06

0.06

0.02

-0.02

∆𝛽 = -0.06, 0.02, 0.06,−0.02 𝛽1 = -0.06, 0, 0.06, 0 𝛽2 = 0, 0.02, 0,−0.02

Fig. 1. A toy example of combining base-arms ~β1 and ~β2 into a super-
arm ~∆β. Here, ~∆β = ~β1 + ~β2.

Definition 5. (Base-arm.) We use vector
−→
βr to denote a base-

arm, and each base-arm has the following three characteristics:
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•
−→
βr only has two non-zero elements;

•
∑|Et|
j=1

−→
βr(j) = 0;

•
−→
βr(j) ∈ {n∆p|n ∈ Z,−wj ≤ n∆p ≤ 1− wj} ,
1 ≤ j ≤ |Et|, Z is the set of integers.

Here,
−→
βr(j) represents the probability variation on edge j deter-

mined by the base-arm
−→
βr , wj is the original diffusion probability

via edge j, and ∆p(∆p > 0,
wj

∆p
= O(1)) quantifies the

granularity when adjusting diffusion probabilities.

For each base-arm
−→
βr, we define a vector

−→
Ir , where

−→
Ir (j) =

{
0, if

−→
βr(j) = 0

1, if
−→
βr(j) 6= 0

, that will be used later. By

the third characteristic above, we constrain the optional
probability variations on each target edge into the finite set
{n∆p|n ∈ Z,−wj ≤ n∆p ≤ 1− wj} for having a reason-
able size of base-arms. Thus, the size of the base-arms in the
t-th round is Θ

(
|Et|2

)
, since there are

(|Et|
2

)
pair-wise combi-

nations of the target edges in Et and each combination has a
O(1) size of optional probability variations. In addition, the
target edge set Et, as well as the size and dimension of base-
arms, change over time during diffusion. This is because
that once a non-sensitive node becomes sensitive, we will
add the edges connecting with such source node into the set
Et, while once the sensitive informations a sensitive node
holds are outdated, we will remove the edges connecting
with such source node from the set Et.

Super-arm: The super-arm in the t-th round refers to the

diffusion probability variation vector
−→
∆βt, which is the sum

of a set of base-arm vectors and specifies the variation of
diffusion probability over each target edge. A toy example
of the combination of two base-arms is presented in Fig.
1. Moreover, since the super-arm which consists of a set of
base-arms given in Definition 5 must satisfy the constraint∑
i∈Et

−→
∆βt(i) = 0, we relax the problem of interest in

Eqn. (1) into an unconstrained optimization problem when
determining the value of the super-arm from base-arms.

Reward: For selecting a set of base-arms to consistitute
the picked super-arm under the objective of minimizing the
reward of bandit, we elaborate below how to evaluate the
rewards of super-arm and base-arm in adaptive diffusion.

The reward of super-arm during each round refers to the
diffusion size of sensitive informations from the destination
nodes of target edges. Specifically, we quantify the mean
reward of the super-arm in the t-th round by the objective
function

−→
Dt · (

−→
βt0 +

−−→
∆βt). Then, considering that the dif-

fusion size of sensitive informations can be quantified as
the sum of a number of diffusion results on edges, which
are independent and follow the Bernoulli distributions, we
assume the diffusion size follows the Gaussian distribution
N (
−→
Dt · (

−→
βt0 +

−−→
∆βt), σ). Here, σ specifies the variance of

the reward distribution. In reality, network managers can
observe the actual diffusion size of sensitive informations, as
well as the reward of the super-arm, from the numbers of the
visits, shares, likes or replies of the sensitive informations.

Reward of base-arm. Upon giving the reward of the
super-arm above, we move to the rewards of base-arms.

We first introduce the definition of diffusion feedback. For
an edge a, we count the diffusion size of informations Ia
from the destination node Da as the diffusion feedback

of edge a in a round. In this paper, we assume that the
diffusion feedbacks of different edges can be independently
observed by network managers. The insight for such as-
sumption is that the source users of the shares are avail-
able in some social medias (e.g., Facebook and Weibo).
Specially, if multiple target edges share a same destination
node, we can also count the diffusion feedbacks of different
target edges respectively under the assumption of indepen-
dent feedback observation. Furthermore, taking a base-arm
whose two non-zero elements are on the target edges a and
b as an example, we take the sum of the diffusion feedbacks
of edges a and b as the diffusion feedback of the base-
arm. Such diffusion feedbacks can be observed from the
numbers of the visits, shares, likes or replies of the sensitive
informations diffused from Da and Db.

In addition, for a base-arm
−→
βr , we extract the constant−→

Dt · (
−→
βt0 �

−→
Ir ) from

−→
Dt ·
−→
βt0. Then, the reward of a base-arm−→

βr is quantified by the diffusion feedback of
−→
βr minus the

constant
−→
Dt · (

−→
βt0�

−→
Ir ), with the mean reward being

−→
Dt ·
−→
βr .

Relation between the rewards of super-arm and base-
arms. In this paper, we let the reward of each base-arm
incorporated into the super-arm can be independently ob-
served by network managers. To this end, we give below
the rule for judging whether the combinations of a set of
base-arms are valid.

Definition 6. (Valid rule.)
Rule: Combination of

−→
β1,
−→
β2, . . . ,

−→
βr is valid if ∀x, y(x 6=

y), 1 ≤ x, y ≤ r,
−→
βx(i) ·

−→
βy(i) = 0 (∀i, 1 ≤ i ≤ |Et|).

The valid rule above controls that, in each round, the
non-zero probability variation on each target edge can
only appear in one base-arm, and enables the rewards of
base-arms to be independently evaluated and observed.
Such independent reward evaluation facilitates efficiently
determining which base-arms to constitute the super-arm,
since we do not need to consider the overlap among the
rewards of base-arms. Also, as we will present in Section 4,
the independent reward observation will enable us to cope
with the partial unknown diffusion abilities in semi-known
networks. Under the valid rule, a super-arm can only be
combined by a set of valid base-arms. Then, the reward
of the super-arm in each round is equal to the sum of the
rewards of all picked base-arms adding a constant

−→
Dt ·
−→
βt0.

Summary of the mappings. Upon mapping the adaptive
diffusion problem (Eqn. (1)) into the CCMAB model, we
transfer determining the variation vector

−→
∆βt for minimiz-

ing the diffusion size of sensitive information in the T

rounds to determining each super-arm
−→
∆βt, which consists

of a set of base-arms, for minimizing the rewards obtained
in the T rounds. With this transformation, we give our
algorithm for determining the probability variation vector
as follows.

3.2 Algorithm in Fully-known Network

3.2.1 Algorithm Design
Based on the above mappings, the aim of our algo-

rithm for Adaptive Diffusion in Fully-known Network,
named ADFN, is selecting a combination of base-arms
with the minimum sum of mean rewards. We present the
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pseudo code of ADFN in Algorithm 1, where we use the
combination to denote the set of the selected base-arms. In
ADFN, we iteratively select the base-arm v with the mini-
mum mean reward. Then, if the base-arm v is not conflicted
with all the base-arms in the current combination and has
negative mean reward, we add it into the combination.
Furthermore, the super-arm in each round is determined
by the sum of the probability variation vectors represented
by the base-arms in the combination.

Now, we present the complexity of the algorithm ADFN.
In each round, ADFN needs to traverse all the base-arms for
obtaining a valid combination with the minimum reward,
and costs a complexity of O(|Et|2). Thus, ADFN costs a
polynomial time complexity in terms of the network size,
when determining the super-arm in each round. Moreover,
since the size of base-arms and the complexity of ADFN
is the twice order of network size, we then propose the
distributed implementation scheme of ADFN for the further
improvement of time efficiency.

3.2.2 Design for Distributed Implementation

The complexity of ADFN is mainly on the traverse of the
base-arms. By this, we propose to distributedly implement
ADFN by storing the base-arms in a distributed manner,
and then conduct ADFN over the distributedly stored base-
arms. The idea of the distributed implementation is pre-
sented as follows.

For distributedly implementing ADFN, we chop the
base-arms into blocks and traverse the blocks in a parallel
manner by multitasking. Technically, we store the base-arms
into N storage units. For each given base-arm, we store the
IDs of all the other base-arms that can be validly combined
with it along with its ID. We call the main procedures in
ADFN as master, and the distributed storage units as slaves.
Each slave keeps a local lookup table recording the mean
reward of each local base-arm. With such distributed storage
units, ADFN is then distributedly implemented as below.

In each round, every slave first selects a valid local
combination with the minimum reward from all the lo-
cal base-arms, and returns the local combination to the
master. The master then emerges all the base-arms in the
N local combinations from slaves into the ActionPool.
Upon generating theActionPool, the master determines the
value of

−→
∆βt as Algorithm 1. We algorithmically present the

procedures for the master and the slaves in Appendix C in
the supplemental material.

4 ADAPTIVE DIFFUSION IN SEMI-KNOWN NET-
WORKS

Now, we proceed to explore the solutions for the adap-
tive diffusion over the semi-known network where the
diffusion abilities of partial users remain unknown in ad-
vance. Over the semi-known network, besides the complex-
ity issue, another major difficulty for solving the adaptive
diffusion problem comes from the lack of exact diffusion
abilities of partial target nodes. That is, if without an exact
diffusion ability vector

−→
D t, we are unable to directly solve

the optimization problem given in Eqn. (1).

Algorithm 1: ADFN in the t-th diffusion round
Input: All the base-arms in the t-th round
Output: Variation Probability vector

−→
∆βt

ActionPool← All the base-arms, combination← ∅;
while ActionPool 6= ∅ do

v =MIN(ActionPool);
/* MIN(S) returns the item with the

smallest reward in set S. */;
if
−→
D t ·

−→
β v > 0 then

End While ;
end
ActionPool← ActionPool\{v};
if VALID(combination, v) then

combination← combination ∪ {v};
end

end
for
−→
βi ∈ combination do−→
∆βt =

−→
∆βt +

−→
βi ;

end
return

−→
∆βt

4.1 Solution Overview

In Section 3, we have mapped the probability variation
vector

−→
∆βt into the super-arm in CCMAB, and have asso-

ciated the diffusion abilities with the rewards of base-arms.
With this mapping, for coping with with the unknown dif-
fusion abilities, we propose to iteratively learn the unknown
diffusion abilities via learning the reward distributions of
base-arms from the rewards obtained in previous rounds,
and then determine the super-arm

−→
∆βt based on the learned

reward distributions. Similar to our solution in the fully-
known network, we conduct such “learning- determining”
process also relying on the CCMAB. Before we elaborat-
ing our solution, let us introduce an additional element
in CCMAB (i.e., regret) that we need under the initially
unknown reward distributions, besides the base-arm, super-
arm and reward that we have introduced in Section 3.

Regret: The regret, which is a metric for evaluating
the performances of bandit-based solutions on coping with
unknown reward distributions, quantifies the gap between
the reward obtained from the adopted super-arm and the
reward of the optimal super-arm given exact reward distri-
butions. Corresponding to the adaptive diffusion problem,
the regret in the t-th round quantifies the difference between
the diffusion size of sensitive information under the super-
arm

−→
∆βt and that under the optimal probability variation

vector
−→
∆βt∗. Thus, in the t-th round, the expected regret in

adaptive diffusion problem refers to the value of
−→
Dt · (

−→
βt0 +

−→
∆βt)−

−→
Dt · (

−→
βt0 +

−→
∆βt∗) =

−→
Dt−→∆βt −

−→
Dt−→∆βt∗.

Since a lower regret demonstrates better performance of the
adopted super-arm in each round, the aim of minimizing
the sensitive information diffusion over the T rounds is
equivalent to minimizing the cumulative regret over the T
rounds whose expectation is

∑T
t=1

−→
Dt−→∆βt −

−→
Dt−→∆βt∗.

Summary of the mappings. Together with the mappings
of the base-arm, super-arm and reward given in Section
3, the objective of the bandit based solution in the semi-
known network is also selecting a set of base-arms with
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the minimum sum of rewards to form the super-arm. As the
diffusion ability vector

−→
Dt remains unknown in advance, the

mean rewards of base-arms (i.e.,
−→
Dt ·
−→
βi ) are also unknown.

For this issue, we propose to iteratively learn the mean
rewards of base-arms from the diffusion feedback in each
round and determine the super-arm based on the currently
learned mean rewards of base-arms. With this idea, we
proceed to give the algorithm for the adaptive diffusion over
the semi-known network.

4.2 Algorithm over Semi-known Network

4.2.1 General Idea of the Proposed Algorithm
We design the algorithm for minimizing the overall

reward under the unknown mean rewards of base-arms as
the “determining-learning” process. Initially, for the base-
arms whose two non-zero elements are both on the target
edges with informed destination nodes, we set the mean
reward as

−→
Dt ·
−→
βi . Besides, for the base-arms associated with

the uninformed destination nodes and without the exact
mean rewards, we attach each of such base-arms an initial
estimated mean reward which, obviously, is an unreliable
estimated value. Then in each round, the algorithm mainly
consists of two phases: (1) Determining the probability vari-
ation vector at the beginning of the round by determining
the picked super-arm which consists of a set of base-arms;
(2) At the end of the round, refining the estimated mean
reward of each picked base-arm based on the rewards
obtained from the picked base-arms in the current round.
We provide the main ideas of the two phases as below.

In the determining phase, there are two complementary
selections, i.e., Exploitation and Exploration, when determin-
ing the super-arm.

• Exploitation: The objective of Exploitation is to get
the minimum reward in the current round. That is,
it picks the super-arm which consists of a set of
valid base-arms with the minimum sum of current
estimated mean rewards.

• Exploration: The objective of Exploration is picking
a super-arm which consists of as many base-arms as
possible. Since the learning phase only refines the
mean rewards of the base-arms combined into the
picked super-arm, the Exploration enables us to learn
the mean rewards of as many base-arms as possible.

The ideas of the two selections indicate that the Exploita-
tion aims at obtaining the minimum reward in the current
round. On the contrast, the Exploration aims at learning
the mean rewards of as many base-arms as possible. Since
the reliable estimation of the mean rewards of more base-
arms are helpful to determine the better super-arm in fu-
ture rounds, Exploration essentially benefits obtaining less
reward in future rounds. Then, with the aim of minimizing
the reward in a long run (over T rounds), how to balance
the trade-off between the two selections? To cope with such
dilemma, we design the procedures in the determining
phase based on the ε − greedy process, which is one of
the two most widely adopted solutions for balancing the
trade off between Exploitation and Exploration [33] [34]
[35]. The other one is the UCB (Upper Confidence Bound)

approach [36]. The idea of ε − greedy is picking the super-
arm as Exploration with probability ε, and as Exploitation
with probability (1−ε), where ε decreases with time. As we
will experimentally demonstrate in Section 5, our proposed
ε−greedy based algorithm performs better than UCB-based
algorithm on the adaptive information diffusion problem.

In the learning phase, the main task is updating the
estimated mean reward of each picked base-arm based on
the reward obtained from each base-arm.

In summary, we give in Algorithm 2 the framework
for determining the probability variation vector over semi-
known network. In the determining phase, we determine
the super-arm as Exploration with probability εt = ε0√

t
,

which decreases over time. Upon observing the diffusion
size of sensitive informations during the current round, in
the learning phase, we update the estimated mean reward
of each base-arm combined into the picked super-arm.

Algorithm 2: Algorithm over semi-known network
for t = 1 to T do

// Determining phase
εt ← ε0√

t
;

if εt then
Super-arm←Exploration;

else
Super-arm←Exploitation;

end
Picking the super-arm;
Observing the diffusion size of sensitive informations

in current round;
// Learning phase
Updating the estimated mean reward of each

base-arm in super-arm;
end

With the above general framework in Algorithm 2, we
respectively present the details in the two phases as follows.

4.2.2 Bandit Based Algorithm for Adaptive Diffusion
1. Initialization. At the beginning of each round, for the

base-arms which emerge in the previous rounds, we set their
mean rewards as the last estimated values. For the base-
arms which are built upon the uninformed nodes that newly
become sensitive in last round, we uniformly attach such
base-arms an initial estimated mean reward.

2. Procedures in the determining phase. The main task
of the determining phase in each round is determining a
super-arm which consists of a set of base-arms selected as
Exploration or Exploitation.

Algorithm for Exploration. As noted earlier, the objective in
the Exploration is selecting a valid combination of as many
base-arms as possible. We give the pseudo code of the algo-
rithm in Exploration in Algorithm 3. We use combination
to denote the set of the selected base-arms. In Algorithm
3, we first randomly choose a base-arm and then iterate all
the other base-arms. During the iterations, if the base-arm
can be validly combined with all the other base-arms in the
current combination, we add it into the combination.

Algorithm for Exploitation. Different from the Exploration,
the Exploitation aims at selecting a combination of base-
arms with the minimum sum of estimated mean rewards.
For this, we propose a greedy strategy in Algorithm 4 to
select the combination of base-arms in Exploitation. Specifi-
cally, we iteratively select the base-arm v with the minimum
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Algorithm 3: Exploration
Input: All the base-arms
Output: A set of selected base-arms
ActionPool← All the base-arms;
u←RANDOM(ActionPool, 1);

/* RANDOM(S, n) returns n random items in
set S. */;
combination← {u};
for v in ActionPool\u do

/* VALID(a1, a2) returns a boolean value
of whether the combination of vectors a1
and a2 is valid or not. */;
if VALID(combination, v) then

combination← combination ∪ {v};
end

end
return combination

estimated mean reward µv,t. Then, if the base-arm v is not
conflicted with all the base-arms in the current combination
and has negative estimated mean reward, we add it into the
combination.

Algorithm 4: Exploitation
Input: All the base-arms
Output: A set of selected base-arms
ActionPool← All the base-arms;
combination← ∅;
while ActionPool 6= ∅ do

v =MIN(ActionPool);
/* MIN(S) returns the item with the

minimum reward in set S. */;
if µv,t > 0 then

End While;
end
ActionPool← ActionPool\{v};
if VALID(combination, v) then

combination← combination ∪ {v};
end

end
return combination;

Then the super-arm in each round is determined by the
sum of the probability variation vectors represented by the
base-arms in the combination.

3. Procedures in the learning phase. After picking the
super-arm, the reward of each base-arm is then observed
after the diffusion during current round. The task in the
learning phase is updating the estimated mean reward of
each base-arm in the combination. We use reward(i) to
denote the reward obtained from base-arm

−→
βi . Specifically,

given a base-arm
−→
βi whose two non-zero elements are on the

target edges a and b, we take the diffusion size of sensitive
information from the destination nodes of the edges a and b
as the diffusion feedback of the base-arm. In reality, such
diffusion size can be counted from the increase of the
numbers of the visits, share, likes or replies of the sensitive
informations diffused from the destination nodes of edges a
and b. In some popular social medias like Twitter and Weibo,
such numbers are available from the home pages of the
destination nodes, without knowing who are the neighbors
of the destination nodes.

As illustrated in Section 3.1, the reward(i) is quantified
by the diffusion feedback minus the constant

−→
Dt · (

−→
βt0�

−→
Ii ).

Moreover, we use Ti,t to denote the times that
−→
βi has been

combined into the super-arm until the t-th round. Then the
estimated mean reward of

−→
βi is updated as

µi,t ← [(Ti,t − 1) ∗ µi,t−1 + reward(i)]/Ti,t,

which is the average of the rewards obtained from
−→
βi in

the Ti,t rounds. Notably, for the base-arms whose two non-
zero elements are both on the target edges with informed
destination nodes, we have the exact mean rewards of them.
Then we keep the mean rewards of such base-arms as their
exact values during the T rounds, and only update the
estimated mean rewards of the base-arms with unknown
reward distributions.

3. Summary. We summarize the procedures in the deter-
mining and learning phases in Algorithm 5, named ADSN
(Adaptive Diffusion in Semi-known Network), which we
propose to determine the probability variation vector for
minimizing the sensitive information diffusion over the
semi-known network. ADSN globally follows the ε−greedy
approach and consists of procedures of the determining
phase, including Exploration and Exploitation, and the
learning phase. In each round, with probability ε0√

t
, ADSN

determines the value of super-arm as Exploration, and with
probability (1− ε0√

t
) as Exploitation. After the diffusion dur-

ing the current round, ADSN then updates the estimated
mean reward of each base-arm in the combination.

Algorithm 5: ADSN
Input: All the base-arms, and ε0, T , Ti,t−1 = 0 for all

base-arms
Output: A sequence of super-arms
for t = 1 to T do

εt ← ε0√
t
,
−→
∆βt = ~0 ;

if εt then
combination←Exploration;

else
combination←Exploitation;

end
for
−→
βi ∈ combination do−→
∆βt =

−→
∆βt +

−→
βi ;

end
Picking the super-arm

−→
∆βt;

Observing diffusion feedback;
for
−→
βi in combination do
if
−→
βi without exact mean reward then
Ti,t ← Ti,t−1 + 1;
µi,t ← [(Ti,t − 1) ∗ µi,t−1 + reward(i)]/Ti,t;

end
end

end

4.3 Performance Analysis of ADSN on Regret

As illustrated in Section 4.1, the regret is a metric which
evaluates the performance of the solutions to the bandit-
based problem. The regret refers to the reward gap between
the picked super-arms and the optimal super-arms during
the T rounds. Corresponding to the adaptive diffusion prob-
lem, the regret in the t-th round quantifies the difference
between the diffusion size of sensitive informations under
the variation vector

−→
∆βt returned by ADSN and that under

the optimal probability variation vector
−→
∆βt∗. We present in

Theorem 1 the upper bound of the expected regret of ADSN
over the T diffusion rounds.
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Theorem 1. The expected regret of ADSN over T diffusion
rounds, i.e., E[RBLAG], is upper bounded by

E[RADSN] ≤ O
(
M ′
√
T
)
,

where M ′ denotes the size of base-arms during the T -th round.

Proof. (Sketch.) Since ADSN is designed as the ε − greedy
approach which conducts Exploration with probability εt
and conducts Exploitation with probability (1 − εt), the
expected reward in the t-th round is equal to

E[
−→
Dt · −→∆βt] = εtE[

−→
Dt · −→∆βtep] + (1− εt)E[

−→
Dt · −→∆βtet],

where ∆βtep is the super-arm determined by Exploration
and ∆βtet is the super-arm determined by Exploitation.
Moreover, since the regret in the t-th round is defined as−→
Dt ·
−→
∆βt−

−→
Dt ·
−→
∆βt∗, we give the expected regret in the t-th

round as

E[
−→
Dt ·
−→
∆βt −

−→
Dt−→∆βt∗]

=εtE[
−→
Dt ·
−→
∆βt

ep −
−→
Dt−→∆βt∗] + (1− εt)E[

−→
Dt ·
−→
∆βt

et −
−→
Dt−→∆βt∗].

We prove in Appendix B (in supplemental material) that,
for the regret in Exploitation over T rounds, we have

T∑
t=1

(1− εt)E[
−→
Dt ·
−→
∆βtet −

−→
Dt−→∆βt∗] ≤ O

(
M ′
√
T
)
. (2)

Then for the regret in Exploration over T rounds, we have

T∑
t=1

εtE[
−→
Dt ·
−→
∆βtep −

−→
Dt−→∆βt∗] ≤ O

(
M ′
√
T
)
. (3)

Together with Eqns. (2) and (3), we obtain the conclusion in
Theorem 1 that E[RBLAG] ≤ O

(
M ′
√
T
)

.

Theorem 1 presents that the maximum gap between the
diffusion size of sensitive informations under the proba-
bility variations returned by our solution and that under
the optimal probability variations is O

(
M ′
√
T
)

. Moreover,
since the solution in the fully-known network has a better
performance under the known reward distributions com-
paring the solution in semi-known network, theO

(
M ′
√
T
)

also upper bounds the regret of the solution returned by
Algorithm 1 in the fully-known network. In addition, Theo-
rem 1 presents that the regret bound of ADSN sub-linearly
grows with the number of rounds, indicating that the super-
arm returned by ADSN approximates to the optimal super-
arm when T is sufficiently large. In Appendix B (in sup-
plemental material), we further provably show that ADSN
exhibits less expected regret comparing with the UCB-based
approaches to justify our selection of ε− greedy.

Remark. We give the lower bound of the regret of
ADSN based on the Lai and Robbins’ Theorem [37]. The
Lai and Robbins’ theorem presents that, for a ε − greedy
based solution with initially unknown reward distribu-
tions, the lower regret bound of such solution is O(log T ·∑
a|∆a>0

∆a

KL(ra||r∗) ) where ∆a denotes the gap between the
rewards of an arm a and the optimal arm and KL(ra||r∗) is
the KL-divergence between the reward distribution ra of an
arm a and the reward distribution r∗ of the optimal arm [37]

[38]. Thus, given the initially unknown reward distributions,
the lower bound the regret of ADSN is O(log T ).

4.4 Complexity and Distributed Implementation of
ADSN
4.4.1 Complexity

Now, we present the complexity of ADSN in each round.
In the Exploration, ADSN needs to traverse all the base-
arms, and costs a complexity of O(|Et|2), where |Et| is
the size of the target edges. In the Exploitation, ADSN
also needs to traverse the base-arms for obtaining a valid
combination with the minimum reward, and costs a com-
plexity of O(|Et|2). In the learning phase, ADSN iterates the
picked base-arms to update their estimated mean rewards
based on the diffusion feedback and costs a complexity
of O(|Et|2). Together with the complexities in the above
procedures, the overall complexity of ADSN is O(|Et|2).

Moreover, for further improvement of time efficiency,
we also propose the distributed implementation scheme of
ADSN as follows.

4.4.2 Design for Distributed Implementation
The core of the distributed implementation of ADSN

is also the distributed storage of base-arms. We store the
base-arms into N storage units, and through which, we can
parallelly conduct the traverse process in both Exploration
and Exploitation. We take the main procedure of ADSN as
the master, and the N storage units as slaves. We expli-
cate below the distributed implementation of Exploration,
Exploitation and the learning phase in ADSN.

Exploration: The master first randomly selects a base-
arm from a randomly chosen slave. Then the master sends
the ‘Exploration’ order and the selected base-arm to each
slave. Once receiving the selected base-arm, each slave
initiates an empty local combination and traverses the base-
arms stored in its memory. If a slave finds a base-arm that
can be validly combined with the selected base-arm and is
valid with the existing local combination, the slave adds
the base-arm into local combination. By the end, each slave
sends the local combination back to the master. The master
then, starting from the selected super-arm, traverses all the
local combinations to check the validity of the base-arms
belonging to them in sequence, and if valid, the master adds
the base-arm into the final combination.

Exploitation: Every slave has a local lookup table that
contains the current estimated mean rewards of all the local
base-arms. Upon receiving the ‘Exploitation’ order from the
master, every slave finds a local combination with the mini-
mum sum of rewards and then sends the local combination
back to the master. The master then emerges all the base-
arms returned by the slaves into an ActionPool. Over the
ActionPool, the master generates the valid combination via
the greedy manner as shown in Algorithm 4.

Learning phase: This part is mainly accomplished by
the salves. After the information diffusion during a round,
each slave updates the estimated mean rewards of the local
base-arms which are picked in the current round, and then
updates the local lookup table.

We also algorithmically present the above procedures in
Appendix C in the supplemental material.
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5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the
proposed solutions for the adaptive diffusion problem from
the following four aspects, i.e., information diffusion loss,
regret, cascading scale of sensitive informations, and the
time efficiency of distributed implementation. (1) The in-
formation diffusion loss quantifies the loss of non-sensitive
information diffusion when constraining sensitive informa-
tion diffusion. The lower information diffusion loss means
better user experience in reality. (2) We compare the reward
obtained from ADSN with that of CUCB to justify the ef-
fectiveness of ADSN on minimizing the overall reward. (3)
We present the cascading scale of sensitive information over
time to show that our solution can effectively constrain the
diffusion of sensitive information. (4) We report the running
time of ADFN and ADSN as the original procedures and
the distributed implementation schemes.

5.1 Datasets and Settings

Datasets. Our experiments are over the datasets of three
real social networks and three synthetic networks2, whose
basic descriptions and statistics are summarized as follows:

• Twitter: This dataset consists of partial users and
social links in Twitter, and includes 81, 306 nodes
and 1,768,149 edges.

• Livejournal: Livejournal is an online community
with almost 10 million members. This datasets con-
tains 4,847,571 nodes and 68,993,773 edges.

• Pokec: Pokec is the most popular online social net-
work in Slovakia. This dataset contains a network
with 1,632,803 nodes and 30,622,564 edges.

• B.A. graph (short for Barabasi Albert graph) [39]: A
synthetic graph that forms as newly added nodes
preferentially attaching to existing nodes with higher
degrees. The B.A. graph well captures the power-
law degree distribution in real social networks. Each
graph has two parameters: n (total number of nodes),
p (number of edges that each new node connects
with existing nodes). We generate three networks
as the B.A. model with the parameters respectively
being (n = 1, 000, p = 3), (n = 5, 000, p = 4) and
(n = 10, 000, p = 5).

Settings. We set the original diffusion probability via
each social link as 5 × 10−3. In the experiments over semi-
known networks, we set the diffusion abilities of half of the
users as unknown. We initially set the diffusion abilities of
uninformed nodes as the average of the diffusion abilities of
all the informed nodes, and set the initial mean rewards of
base-arms built upon uninformed node based on such initial
diffusion abilities. All the algorithms over a computer with
Ubuntu 16.04 LTS, 40 cores 2.30 GHz and 128 GB memory.

5.2 Information Diffusion Loss

As illustrated earlier, we aim at constraining the diffu-
sion of sensitive informations while lowering the diffusion

2. The three real datasets are downloaded from http://snap.stanford.
edu/data/index.html

loss of non-sensitive informations, for the aim of preserv-
ing the global diffusion ability of the whole network on
diffusing non-sensitive informations. In experiments, for
quantifying the diffusion loss of non-sensitive informations,
we run the diffusion process with and without sensitive
information constraining measures respectively. In the cases
without such measures, we tag the size of users receiving
sensitive informations in each round as Ns

wo and tag the
size of users receiving non-sensitive informations as Nn

wo.
While in the cases with such measures, we tag the diffusion
sizes of sensitive information and non-sensitive information
respectively as Ns

w and Nn
w . With the above denotations,

we quantify the information diffusion loss in each round as
info-loss =

Nn
wo−N

n
w

Ns
wo−Ns

w
. Then, the lower value of info-loss

means less information diffusion loss, when constraining
the diffusion of sensitive informations.

We compare the info-loss of ADFN on fully-known
network and ADSN on semi-known network with the fol-
lowing four baselines:

(1) DRIMUX [9]: As an online rumor blocking algorithm,
DRIMUX periodically blocks a given fraction α of the most
influential users to constrain rumor diffusion. For user ex-
perience, DRIMUX sets a threshold of the blocking time of
each user. Referring to the settings in [9], when conducting
DRIMUX, we set the fraction of blocked users in each round
as α = 10−4, 5 × 10−4, 10−3. Also, we set the threshold of
blocking time of each user as 100 rounds.

(2) TIBS [15]: For minimizing the diffusion of rumors,
TIBS proposes to block a given number K of the most in-
fluential users during the diffusion. Then, when conducting
TIBS, we set K = 10, 25, 50 according to [15].

(3) RIPOSTE [16]: Typically, RIPOSTE forwards an item
with a probability larger than a given amount if a user
likes the item, and with a probability smaller than the given
amount otherwise. In our scenario, we implement RIPOSTE
by randomly decreasing or increasing the diffusion proba-
bilities via some edges by a constant value.

(4) Monotone [27]: This strategy constrains the rumor
diffusion through decreasing the diffusion probabilities with
time. We fit this strategy into our scenario also by decreasing
the diffusion probabilities via edges with time.

Before we conduct the diffusion constraining algorithms,
over each network, we start the diffusion of sensitive in-
formation from the node with the highest out-degree and
start the diffusion of non-sensitive information from a ran-
domly chosen node both for 50 rounds. Then, the users
which receive sensitive information during the 50 rounds
are taken as the initial sensitive nodes in V 1. With such
initialization, Fig. 2 plots the results of info-loss over fully-
known networks during the following 1000 rounds and Fig.
3 plots the results of info-loss over semi-known networks.
Corresponding to the reality, if users in social medias visit
the Facebook, Moments, Tweets, Weibo, and etc once per
hour, then the diffusion via each hop corresponds to one
hour and each round corresponds to two hours. Thus, we set
the timescale of 1000 rounds under the consideration that
the timeliness of a given information lasts for three months.

From Figs. 2 and 3, we can see that both ADFN and
ADSN yield the best performance on lowering information
diffusion loss, and have the 40% less info-loss compar-
ing with the four baseline algorithms. The info-loss of

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
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Fig. 2. Information loss incurred by different algorithms over fully-known networks.

RIPOSTE is always around 0.5 because it takes the same
measure in each round that randomly increase or decrease
diffusion probabilities via social links. Since the sensitive
users are more than the users holding non-sensitive infor-
mation in initialization, the info-loss of RIPOSTE is less
than 1. The info-loss of Monotone grows from 0.4 to 1
during the 1000 rounds since the diffusion probabilities
decrease with time. For DRIMUX and TIBS, the values of
info-loss are around 1 during the 1000 rounds. The reason
behind is that DRIMUX and TIBS block the most influential
users in the network and have the comparable effect on both
the sensitive and non-sensitive information diffusion.

For ADFN and ADSN, we can see from Figs. 2 and 3
that ADFN and ADSN do not exhibit their effectiveness in
the first few rounds and have the comparable performance
with DRIMUX and TIBS. This is because that there are
just a fraction of users holding sensitive informations at the
beginning, and ADFN and ADSN prefer to largely decrease
the diffusion probabilities starting from high-degree nodes.
Notably, ADSN has bad performance in more rounds com-
paring with ADFN. The reason behind is that ADSN needs
to explore the base-arms with unknown mean rewards in
the early stage. Furthermore, Fig. 3 reveals that, with the in-
crease of network size, ADSN undergoes more rounds with
unsatisfiable info-loss. This is because that the increase
of network size leads to the larger size of base-arms, and
consequently, results in the consumption of more rounds on
learning the exact mean rewards.

5.3 Reward of Bandit

Now, we proceed to evaluate the performance of
ADSN on minimizing reward, comparing with the CUCB
(Combinatorial Upper Confidence Bound) which is the ex-
tension of the UCB-based bandit solution to the combina-
torial problem [35]. CUCB selects the super-arm based on
the estimated means and the variances of the reward of
base-arms. Corresponding to the adaptive diffusion prob-
lem, CUCB selects a combination of base-arms with the
minimum sum of µi,t − cσ√

Ti,t

(c is a preset constant).

As illustrated before, minimizing the sensitive informa-
tion diffusion size is equivalent to minimizing the reward
obtained from the bandit. We present in Table 1 the rewards
of ADSN and CUCB over the B.A. graph with n = 10k
and p = 5. In this comparison, we set the number of
diffusion rounds as 1000, 3000 and set the size of base-arms
as 200, 5k, 20k, 2M to reveal the effect of the number of
diffusion rounds and the size of base-arms. We set ε0 = 1.

From Table 1, we can see that ADSN significantly out-
performs CUCB on minimizing reward. This is because
that ADSN conducts Exploration with the decreasing prob-
ability εt, and determines the value of super-arms as Ex-
ploitation with high probability in the later stage. Such
preference for Exploitation then enables ADSN to achieve
stable performance. However, in CUCB, the base-arms with
the smaller value of Ti,t tends to have the smaller value of
µi,t− cσ√

Ti,t

. With the aim of obtaining the minimum sum of
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Fig. 3. Information loss incurred by different algorithms over semi-known networks.

TABLE 1
Comparison of cumulative reward between CUCB and ADSN under

different sizes of base-arms.

Rounds Base-arms CUCB ADSN

1000
200 -0.6 -6.7
5K -0.6 -32
20K -0.4e-1 -4.8e-1
2M -0.2e-3 -12.3e-2

3000
200 -1.4 -8.4
5K -0.8e-1 -22.3e-1
20K -0.5e-1 -109.9e-1
2M -1.6e-2 -14.8e-2

µi,t − cσ√
Ti,t

, CUCB tends to pick the base-arms which have

never been picked or have just been picked in a few rounds.
Due to the large scale of the base-arm set, most of the base-
arms are picked only a few times during the limited rounds.
As a result, CUCB spends most of the diffusion rounds on
Exploration and leads to the unstable performance.

Furthermore, with the number of base-arms increasing
from 200 to 2M , CUCB yields more deteriorating perfor-
mance. This is also because that CUCB tends to pick the
base-arms with smaller Ti,t. With the increase of the number
of base-arms, CUCB costs more rounds on Exploration and
results in the worse performance.
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5.4 Diffusion Size of Sensitive Information

We now take a look into the effectiveness of the pro-
posed solutions on constraining the cascading of sensitive
information. We present in Fig. 4 the ratio of sensitive
users, say “Node Cover”, over time in the three synthetic
networks and three real social networks. The black line in
Fig. 4 represents the increase of “Node Cover” over time
under original diffusion (i.e., without diffusion constraining
measures), and the red line represents the “Node Cover”
under ADSN. A common observation from Figs. 4 (a)-(f) is
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Fig. 5. Running time of ADFN and ADSN.

that the diffusion size of sensitive information undergoes a
transition, i.e., the diffusion size increases explosively after a
certain time. Notably, ADSN can effectively postpone such
transition of sensitive information diffusion size. Consider-
ing the timeliness of sensitive information in reality, if the
transition is postponed to after the timeliness of sensitive
information, no sensitive information will be widely spread.

5.5 Distributed Implementation

Last but not least, we report the running time of both
ADFN and ADSN in one round to validate the efficiency
of the proposed distributed implementation schemes. In
Fig. 5, Fig. 5(a) presents the running time of ADFN as the
original procedures in Algorithm 1 and as the distributed
implementation scheme, and Fig. 5(b) presents the running
time of ADSN. In the distributed implementation, we set the
number of slaves as 32. That is, we distributedly store the
base-arms into 32 units, and parallelly conduct the traverse
process in both Exploration and Exploitation over the 32
units. Since the traverse of base-arms is the most time-
consuming task when determining the super-arm, we can
see from Fig. 5 that the running time of the distributed
implementation is much less than the running time of the
original procedures.

6 RELATED WORKS

For characterizing the information diffusion process in
online social networks, Kempe et al. [23] first propose two
classic diffusion models: Independent Cascading (IC) model
and linear threshold (LT) model. In the IC model, each user
has a single chance to successfully diffuse the information to
his neighbors with a given probability after this user having
received the information. While in the LT model, a user
would get the information if a certain fraction of his neigh-
bors have received the information. Since then, a great deal
of works study the Influence Maximization (IM) problem,
which focuses on efficiently selecting the optimal seed users
to trigger a diffusion process in hope of maximizing the
final information diffusion size [1]. Recently, due to the high
cost of seeding influential users, Shi et al. [3] propose to let
influential users repost the required information while seed
the ordinary users for lowering the cost of IM campaign.
Similar to the multi-round setting in this paper, the seed se-
lection for maximizing the information diffusion in multiple
time rounds is considered in [2] [40]. Moreover, considering
the widespread interactions between the cyber (online) and

physical (offline) worlds, offline events are utilized in [7] to
further improve the performance of IM.

On the contrast of the IM problem, there are also abun-
dant researches focusing on minimizing the influence of
rumors. One strategy for rumor influence minimization is
diffusing the truths over network to counteract rumors
[12]- [14]. Specifically, the competitive linear threshold (CLT)
model that characterizes the competing diffusion of truth
and rumor is introduced in [12]. Then He et al. [12] and Chen
et al. [14] propose to select a set of seed users to maximize
the diffusion of truths under the CLT model. Chen et al. [13]
extends the IC model to describe the diffusion of positive
informations under the effect of negative information, and
studies how to maximize the positive information diffusion.
However, such clarifying measure cannot be used to con-
strain the diffusion of private sensitive informations such as
personal informations, trade secrets.

Another class of rumor blocking measures focuses on
blocking a certain number of influential users [9] [15] or
social links [17]- [20]. On one hand, Song et al. [15] propose
to temporarily block a number of users with high diffusion
abilities to reduce the diffusion of rumors before a deadline.
With the consideration of user experiences, Wang et al. [9]
study the online rumor blocking problem that periodically
blocking a fraction of users during the rumor diffusion, and
set a threshold to controls the blocking time of each user.
Further, for coping with the unforeseen events in rumor
diffusion, the adaptive blocking strategy is proposed in
[10]. On the other hand, considering that straightforwardly
blocking users is not desirable, [17]- [20] propose to block
a given number of social links for minimizing the diffusion
of rumors. However, as we illustrated before, this kind of
measures may incur much information diffusion loss, if
being adopted to constrain the diffusion of the sensitive
informations considered in this paper. In addition, taking
measures to constrain or promote information diffusion
is also related to the studies about the effect of human
behaviors on diffusion [29] [41] [42].

Besides the information diffusion, our work is also re-
lated to the combinatorial multi-arm bandit model. [36]
[43] introduce the general multi-arm bandit model where
only one arm is picked in each round. Recent studies [40]
[44] [45] utilize the combinatorial bandit in the IM problem
over unknown or dynamic networks, where the diffusion
probabilities in IC model are assumed to be unknown in
advance. In each round, the solutions proposed in [40] [44]
[45] first take the diffusion results in previous rounds as the
feedback to learn the diffusion probability via each edge,
and then conduct the seed selection based on the learned
diffusion probabilities.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of constraining the
diffusion of sensitive informations in social networks while
preserving the diffusion of non-sensitive informations. We
model the diffusion constraining measures as the variations
of diffusion probabilities via social links, and model the
problem of interest as adaptively determining the probabil-
ity variations through a constrained minimization problem
in multiple rounds. We utilize the CCMAB framework to
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jointly design our solutions in the fully-known and semi-
known networks. Over the fully-known network, we pro-
pose the CCMAB based algorithm ADFN to efficiently
determine the probability variations via social links. Over
the semi-known network, for tackling the challenge of un-
known diffusion abilities of partial users, we propose the
algorithm ADSN to iteratively learn the unknown diffusion
abilities and determine the probability variations based on
the learned diffusion abilities in each round. The analysis
of regret bound and extensive experiments have been con-
ducted to justify the superiority of our solutions.

In addition, in the current work, we define the constraint
of maintaining the sum of diffusion probabilities via edges
in the objective problem, for the aim of preserving the global
diffusion ability of the whole network on diffusing non-
sensitive informations. In the future work, we will explore
other relevant solutions such as simultaneously minimizing
the sensitive information diffusion and maximizing the non-
sensitive information diffusion.
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APPENDIX A
PROOF FOR LEMMA 1

Lemma 1. Given the sensitive node set V 1 and the target
edge set E1 at the beginning of the 1-st round, the expected
size of sensitive nodes until the end of the T rounds is upper
bounded by MT = |V 1|+ |E1|wmax2T + n−|V 1|

4 wmax(2T +
1)T .
Proof. Throughout the proof, we characterize the size of
sensitive nodes during diffusion via hops. Specifically, there
are two hops during each round and totally 2T hops during
the T rounds. We use S(t) to denote the set of the sensitive
nodes after the diffusion in the t-th hop, and use N(S(t))
to denote the set of non-sensitive neighbors of the nodes in
S(t). Then, we use ∂S(t) to denote the set of edges con-
necting the nodes in S(t) and N(S(t)), and use ∂(S(t), j) to
denote the set of edges that are in the set ∂S(t) and connect
the destination node vj .

With the symbols defined above, assuming that all the
edges whose destination nodes are a same node vj share the
same original diffusion probability wj , for the size of the set
∂S(t), we have

E[|∂S(t+ 1)| − |∂S(t)|]
≤

∑
vj∈N(S(t))

[1− (1− wj)|∂(S(t),j)|](dj − |(∂(S(t), j)|),

where dj is the degree of node vj . Throughout the proof,
we assume that the out-degree of a node is equal to its in-
degree. Given wj ≤ wmax � 1, with approximation, we
have

1− (1− wj)|(E
t,j)|

=1− [1− wj |(Et, j)|+ o(wj)] ≈ wj |(Et, j)|

Then

E[|∂S(t+ 1)| − |∂S(t)|]
≈

∑
vj∈N(S(t))

wj |(∂(S(t), j)|(dj − |(∂(S(t), j)|).

Suppose that the social network G has a power-law degree
distribution. Then, |(∂(S(t), j)| can be rewritten as

|(∂(S(t), j)| =
∑

vi∈S(t)

di∑
vm∈V dm

· dj .

At last, we have
E[|∂S(t+ 1)| − |∂S(t)|]

≤
∑

vj∈N(S(t))

wjdj
2

 ∑
vi∈S(t)

di∑
vm∈V dm

1−
∑

vi∈S(t)

di∑
vm∈V dm


<

∑vi∈S(t)
di∑

vm∈V dm
+ (1−

∑
vi∈S(t)

di∑
vm∈V dm

)

2

2

·

∑
vj∈N(S(t))

dj
2wmax

<
1

4
|N(S(t))|,

when wmax is sufficiently small. Provided that S(t) ∪
N(S(t)) ⊆ V and S(t) ∩N(S(t)) = ∅, we further have

|∂S(t+ 1)| − |∂S(t)| < 1

4
(N − |S(t)|)

Furthermore, the expected size of nodes that become
sensitive in each hop is also upper bouned by the diffusion
probability wmax and the value of |∂S(t)|, then

2T∑
t=1

|S(t+ 1)| − |S(t)| <
2T∑
t=1

|∂S(t)|wmax.

For the initial value of |S(t)| and |∂S(t)|, we have |S(0)| =
|V 1| and |∂S(0)| ≤ |E1|. Consequently,

|S(2T )| < |V 1|+ wmax

2T∑
t=1

|∂S(t)|

< |V 1|+ wmax

2T∑
t=1

[
|E1|+ (N − |V 1|)

4
· t
]

= |V 1|+ |E1|wmax2T +
N − |V 1|

4
wmaxT (2T + 1).

Thus we obtain the conclusion in Lemma 1.

APPENDIX B
PROOFS IN REGRET ANALYSIS IN SECTION 4.3
B.1 Proof for Theorem 1

According to Section 4.3, the expected regret of ADSN
in the t-th round is given by

E[
−→
Dt ·
−→
∆βt −

−→
Dt−→∆βt∗]



2

=εtE[
−→
Dt ·
−→
∆βtep −

−→
Dt−→∆βt∗] + (1− εt)E[

−→
Dt ·
−→
∆βtet −

−→
Dt−→∆βt∗].

Before we proceed to analyze the expected regret of
ADSN over the T rounds, let us give a few properties that
we will use later. (1): Given µi,t being the estimated mean
reward of base-arm

−→
βi at round t, according to the Chernoff-

Hoeffding Bound [1], we have

P
(
|
−→
Dt · −→β i − µi,t| > δ

)
≤ 2e−

Ti,tδ
2

2σ2 ,

where Ti,t is the times that base-arm
−→
β i has been picked

until the t-th round. For the base-arms with exact mean re-
wards, we have

−→
Dt ·
−→
β i−µi,t = 0. (2): The base-arms chosen

in exploitation satisfy: E
[∑
−→
βi∈St

µi,t
]
≤ E

[∑
−→
βi∈S∗t

µi,t
]
,

where St denotes the output combination of Algorithm 4
in the main text, and S∗t is the set of base-arms in the
optimal combination. Without loss of generality, we sort
the elements in vector

−→
Dt and let Bt0 ,

∑|Et|
j=1

−→
β t0(j), Bt∗ ,∑Bt0

j=1

−→
Dt(j) −

−→
Dt ·

−→
β t0 and Bt× ,

∑|Et|
j=|Et|−Bt0+1

−→
Dt(j) −∑Bt0

j=1

−→
Dt(j).

Lemma B.1. In the t-th round, for any valid combination
−−→
∆βt,

we have
−→
Dt ·
−−→
∆βt −

−→
Dt ·
−→
β t0 ≥ Bt∗.

Proof. In the t-th round, let vector −→y ∗ be

−→y ∗(j) ,

{
1, 1 ≤ j ≤ Bt0
0, Bt0 < j ≤ |Et|

then
|Et|∑
j=1

(
−−→
∆βt(j)−−→y ∗(j)) = 0

For 1 ≤ j ≤ Bt0,
−−→
∆βt(j) − −→y ∗(j) ≤ 0. Similarly, for Bt0 <

j ≤ |Et|,
−−→
∆βt(j)−−→y ∗(j) ≥ 0. Then

−→
Dt ·
−−→
∆βt −

−→
Dt · −→y ∗

=

Bt0∑
j=1

−→
Dt(j)(

−−→
∆βt(j)−−→y ∗(j)) +

|Et|∑
j=Bt0+1

−→
Dt(j)(

−→
∆β(j)−−→y ∗(j))

≥
−→
Dt(B0)

Bt0∑
j=1

(
−→
∆β(j)−−→y ∗(j))

+
−→
Dt(Bt0 + 1)

|Et|∑
j=Bt0+1

(
−→
βt(j)−−→y ∗(j))

≥
[−→
Dt(Bt0 + 1)−

−→
Dt(Bt0)

] |Et|∑
j=Bt0+1

(
−−→
∆βt(j)−−→y ∗(j)) ≥ 0

Finally, we have
−→
Dt ·
−−→
∆βt −

−→
Dt ·
−→
βt0 ≥

−→
Dt · −→y ∗ −

−→
Dt ·
−→
βt0 = Bt∗

Lemma B.2. In the t-th round, for any two valid combinations−−→
∆βt1,

−−→
∆βt2, we have

−→
Dt ·
−−→
∆βt1 −

−→
Dt ·
−−→
∆βt2 ≤ Bt×.

Proof. Similar to Lemma B.1, let

−→z ∗(j) ,

{
1, 1 ≤ j ≤ |Et| −Bt0
0, |Et| −Bt0 < j ≤ |Et|

and, since
∑|Et|
j=1 ∆βt(j) =

∑|Et|
j=1 β

t
0(j), then

∀
−−→
∆βt :

|Et|∑
j=1

∆βt(j) = Bt0,
−→
Dt
−−→
∆βt ≥

|Et|∑
j=|Et|−Bt0+1

−→
Dt(j)

we have

−→
D t ·

−−→
∆βt1 −

−→
Dt ·
−−→
∆βt2 ≤

Bt0∑
j=1

−→
Dt(j)−

|Et|∑
j=|Et|−Bt0+1

−→
Dt(j) = Bt×

Lemma B.1 gives the bound of the value of
−→
Dt ·

−−→
∆βt,

which denotes the mean value of the reward of any super-
arm. At the same time, Lemma B.2 gives the bound of the
gap between the values of

−→
Dt ·
−−→
∆βt of any two super-arms.

Now, we move to derive the bound of the expected regret
in the t-th round. We first explore the bound of the regret
in the Exploitation, i.e., E[

−→
Dt ·

−→
∆βtet −

−→
Dt ·

−→
∆βt∗]. Let Ft

denote the event
{
|
−→
Dt ·
−→
β i − µi,t| ≤ cσ√

Ti,t
, ∀
−→
βti ∈ Vt

}
,

where Vt is the base-arm set in the t-th round and c is a
constant. We let a constant M t = |Vt|. Based on Lemmas
B.1 and B.2, Lemma B.3 gives the expected regret in the
Exploitation in the t-round.

Lemma B.3. For the regret in the the Exploitation in the t-th
round, i.e., E[

−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗], we have

E[
−→
Dt ·
−→
∆βtet−

−→
Dt ·
−→
∆βt∗] ≤ cσ

∑
−→
βi∈St

1√
Ti,t

+Bt×P(Ft). (1)

Proof. Decomposing the regret E[
−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗] by

event Ft, we have

E[
−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗] =E[

−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗|Ft]P(Ft)

+E[
−→
Dt·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗|Ft]P(Ft) (2)

For the term E[
−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗|Ft]P(Ft), we have

E[
−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗|Ft]

≤E

−→Dt ·
−→
∆βtet −

∑
−→
βi∈St

µi,t|Ft

+ E

 ∑
−→
βi∈St

µi,t|Ft

−−→Dt ·
−→
∆βt∗

(i)

≤ E

 ∑
−→
βi∈St

∣∣∣∣−→Dt ·
−→
β i − µi,t

∣∣∣∣
∣∣∣∣∣∣Ft
+

E

∑
i∈S∗t

µi,t

∣∣∣∣∣∣Ft
−−→Dt−→∆βt∗


(ii)

≤ cσ
∑
i∈St

1√
Ti,t

(3)

The rationale of the Inequality (i) above is that as Exploita-
tion selects the set St of base-arms instead of the set S∗t for
minimizing the reward, there must be E

[∑
i∈S∗t µi,t

∣∣∣Ft] ≥
E
[∑

i∈St µi,t
∣∣Ft]. In addition, the Inequality (ii) holds

since that under the event Ft, we have
∣∣∣−→Dt ·

−→
β i − µi,t

∣∣∣ ≤
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cσ√
Ti,t

and E
[∑

i∈St

∣∣∣−→Dt ·
−→
β i − µi,t

∣∣∣∣∣∣Ft] ≤ cσ
∑
i∈St

1√
Ti,t

.

For the term
(
E
[∑

i∈S∗t µi,t

∣∣∣Ft]−−→Dt−→∆βt∗
)

, since
−→
Dt−→∆βt∗

represents the minimum reward obtained from the op-
timal super-arm, then E

[∑
i∈S∗t µi,t

∣∣∣Ft] ≥ −→Dt−→∆βt∗ and(
E
[∑

i∈S∗t µi,t

∣∣∣Ft]−−→Dt−→∆βt∗
)
≥ 0.

Furthermore, we move to the term E[
−→
Dt ·

−→
∆βtet −

−→
Dt ·−→

∆βt∗|Ft]P(Ft) in Eqn (2). According to Lemma B.2 that−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗|Ft ≤ Bt× always holds, we have

E[
−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗|Ft]P(Ft) ≤ Bt×P(Ft). (4)

Together with Inequalities (3) and (4), we finish the proof
for Lemma B.3.

Upon Lemma B.3 giving the expected regret in the Ex-
ploitation in the t-th round, we continue to explore the sum
of the regret in the Exploitation overall all the T rounds.

Lemma B.4. For the regret in the the Exploitation in all the T
rounds, we have

E

[
T∑
t=1

−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗

]
≤ 2cσM ′

√
T + 1, (5)

where M ′ = max{M1, . . . ,MT } and .

Proof. With the regret in the Exploitation in the t-th round
given in Eqn. (1), for the regret over T rounds, we have

E

[
T∑
t=1

−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗

]

≤cσ
T∑
t=1

∑
i∈St

1√
Ti,t

+B′×
∑
t=1

P(Ft)

≤cσ
∑
βi∈Vt

Ti,T−1∑
l=1

1√
l

+B′×

T∑
t=1

P(Ft)

(i)

≤2cσM ′
√
T +B′×

T∑
t=1

P(Ft), (6)

where B′× = max{B1
×, . . . , B

T
×}. The Inequality (i) above

holds because Ti,T − 1 ≤ T and
∑T
l=1

1√
l
≤ 2
√
T .

For the term B′×
∑T
t=1 P(Ft), let c ≥

√
2 ln 2B′×M

′T ,
we have

B′×

T∑
t=1

P(Ft) ≤ B′×M ′T · 2e−
c2

2 ≤ 1. (7)

Together with Inequalities (6) and (7), we obtain the bound
of the regret in Exploitation in Lemma B.4.

On the other hand, the regret in Exploration is given by∑T
t=1 εt

(−→
Dt ·
−→
∆βtep −

−→
Dt ·
−→
∆βt∗

)
.

Combining the expected regret in the Exploitation and
Exploration, we can obtain the upper bound of the regret of
ADSN, say E[RADSN] as

E[RADSN] ≤
T∑
t=1

(−→
Dt ·
−→
∆βtet −

−→
Dt ·
−→
∆βt∗

)
+

T∑
t=1

εt

(−→
Dt ·
−→
∆βtep −

−→
Dt ·
−→
∆βt∗

)

(i)

≤ 2cσM ′
√
T + 1 +B′×

T∑
t=1

εt

(ii)

≤ 2cσM ′
√
T + 1 + 2B′×

√
T . (8)

The Inequality (i) holds with Lemma B.4, and the Inequality
(ii) holds with εt = 1√

t
and

∑T
t=1

1√
t
≤ 2
√
T . Since M ′ =

O(|ET |2) ≥ B′×, we have

E[RADSN] ≤ O(M ′
√
T ). (9)

Thus we finish the proof for Theorem 1.

B.2 Superiority of ADSN on Regret
We further prove ADSN has superior performance on

the regret comparing with the alternative algorithm CUCB
CUCB selects the super-arm based on the estimated means
and variances of base-arm rewards. Corresponding to the
adaptive diffusion problem which aims at minimizing the
reward, CUCB selects the combination with the minimum
sum of µi,t− cσ√

Ti,t
. Next, we are going to present that CUCB

has twice regret bound comparing with ADSN.
For the regret in the t-th round, we have

E[
−→
Dt ·
−→
∆βt −

−→
Dt ·
−→
∆βt∗] = E[

−→
Dt ·
−→
∆βt −

−→
Dt ·
−→
∆βt∗|Ft]P (Ft)

+ E[
−→
Dt ·
−→
∆βt −

−→
Dt ·
−→
∆βt∗|Ft]P (Ft)

(10)
For E[

−→
Dt ·
−→
∆βt −

−→
Dt ·
−→
∆βt∗|Ft], we have

E[
−→
Dt ·
−→
∆βt −

−→
Dt−→∆βt∗|Ft]

≤E

−→Dt ·
−→
∆βt −

∑
−→
βi∈St

(
µi,t −

cσ√
Ti,t

)
|Ft


+E

 ∑
−→
βi∈St

(
µi,t −

cσ√
Ti,t

)∣∣∣∣∣∣Ft
−−→Dt ·

−→
∆βt∗ (11)

≤E

 ∑
−→
βi∈St

∣∣∣∣∣−→Dt ·
−→
β i −

(
µi,t −

cσ√
Ti,t

)∣∣∣∣∣
∣∣∣∣∣∣Ft


+

E

 ∑
−→
βi∈S∗t

(
µi,t −

cσ√
Ti,t

)∣∣∣∣∣∣∣Ft
−−→Dt ·

−→
∆β∗

 ≤ 2cσ
∑
−→
βi∈St

1√
Ti,t

The above inequalities hold because, under event Ft, we
have

µi,t −
cσ√
Ti,t
≤
−→
Dt ·
−→
β i.

Here c andFt follow the same definitions as those in ADSN.
Then the expected regret of CUCB in the t-round is equal to

E[
−→
Dt ·
−→
∆βt −

−→
Dt ·
−→
∆βt∗] ≤ 2cσ

∑
−→
βi∈St

1√
Ti,t

+Bt×P(Ft)

Then the regret bound E[RCUCB] of CUCB is given by

E[RCUCB] = E

[
T∑
t=1

−→
Dt ·
−→
∆βt −

−→
Dt ·
−→
∆βt∗

]

≤2cσ
T∑
t=1

∑
i∈St

1√
Ti,t

+Bt×
∑
t=1

P(Ft) ≤ 4cσM ′
√
T + 1.

(12)
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The parameter M ′ in the Eqns. (8) and (12) refers the
size of the base-arm set in the T -th round. Then we have
M ′ = Θ(|ET |2) = Θ(m2). On the other hand, B′× ≤∑|ET |
j=1

−→
DT (j) = Θ(m). Then E[RCUCB] = 4cσM ′

√
T + 1 ≈

4cσM ′
√
T and E[RADSN] = 2cσM ′

√
T + 2B′×

√
T + 1 ≈

2cσM ′
√
T . Comparing to E[RADSN], we can see that ADSN

has half of the regret bound of CUCB when T is limited. The
reason of the larger regret lies on the rationale of CUCB that
estimated the reward of base-arms as µi,t − cσ√

Ti,t
and then

determining the value of super-arm by a valid combination
with the minimum sum of µi,t − cσ√

Ti,t
. As the base-arms,

which have never been picked before or just been picked for
few times, have small value of Ti,t and thus have the smaller
value of µi,t − cσ√

Ti,t
, CUCB actually tends to pick the

base-arms with unstable estimated rewards. That is CUCB
prefers Exploration during all the T rounds in the adaptive
diffusion problem and thus obtains unstable rewards. On
the contrast, ADSN limits Exploration rounds through the
decreasing probability εt, and has a comparatively more
stable performance on getting smaller reward.

APPENDIX C
PROCEDURES IN DISTRIBUTED IMPLEMENTATION
OF ADFN AND ADSN

Here, we present the procedures for the master and
slaves in the distributed implementation of ADFN in Al-
gorithms 1 and 2, and present the procedures for the master
and salves of ADSN in Algorithms 3 and 4.

Algorithm 1: Distributed ADFN–Master
Input: All the base-arms, number of rounds T
Output: Combination
for t=1 to T do

Combination← ∅;
Conducting Distributed ADFN–Slave for all salves;
for local combination of each slave do

insert Buffer(local combination);
end
ActionPool← Buffer;
while ActionPool 6= ∅ do

v =MIN(ActionPool);
if µv,t > 0 then

End While ;
end
ActionPool← ActionPool\{v};
if VALID(Combination, v) then

Combination← Combination ∪ {v};
end

end
end
return Combination

REFERENCES

[1] D. Pollard, “ Convergence of stochastic processes”, pringer
Science & Business Media, 2012.

Algorithm 2: Distributed ADFN–Slave
ActionPool← base-arms in local memory;
local combination← ∅;
while ActionPool 6= ∅ do

v =MIN(ActionPool);
if µv,t > 0 then

End While ;
end
ActionPool← ActionPool\{v};
if VALID(local combination, v) then

local combination← local combination∪{v};
end

end
return local combination

Algorithm 3: Distributed ADSN–Master
Input: All the base-arms, ε0, number of rounds T
Output: Combination
for t=1 to T do

εt ← ε0√
t
;

if εt then
send(master, selected slave, any base-arm);
recv(selected slave, master, selected base-arm);
u← selected base-arm;
Combination← u;
send(master, slaves, Exploration, u);
Conducting Distributed BLAG–Slave for all
salves;

for local combination of each slave do
insert Buffer(local combination);

end
ActionPool = Buffer;
for v in ActionPool do

if VALID(Combination, v) then
Combination← Combination ∪ {v};

end
end

else
send(master, slaves, Exploitation);
Combination← ∅;
Conducting Distributed BLAG–Slave for all
salves;

for local combination of each slave do
insert Buffer(local combination);

end
ActionPool = Buffer;
while ActionPool 6= ∅ do

v =MIN(ActionPool);
ActionPool← ActionPool\{v};
if VALID(Combination, v) then

Combination← Combination ∪ {v};
end

end
end

end
return combination
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Algorithm 4: Distributed ADSN–Slave

recv(slave,master, order);
if order == Exploration then

local combination← u;
ActionPool← base-arms in local memory;
for v in ActionPool do

if VALID(Combination, v) then
local combination←
local combination ∪ {v};

end
end

else
ActionPool← base-arms in local memory;
local combination← ∅;
while ActionPool 6= ∅ do

v =MIN(ActionPool);
if µv,t > 0 then

End While ;
end
ActionPool← ActionPool\{v};
if VALID(local combination, v) then

local combination←
local combination ∪ {v};

end
end

end
return local combination
//learning phase
for
−→
βi in Combination do
if
−→
βi ∈ local memory then
Ti,t ← Ti,t−1 + 1;
µi,t ← [(t− 1)× µi,t−1 + reward(i)]/Ti,t;
Update µi,t in look up table;

end
end
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