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Abstract—In this paper, we investigate the impact of
information-theoretic secrecy constraint on the capacity and delay
of mobile ad hoc networks (MANETs) with mobile legitimate
nodes and static eavesdroppers whose location and channel state
information (CSI) are both unknown. We assume n legitimate
nodes move according to the fast i.i.d. mobility pattern and each
desires to communicate with one randomly selected destination
node. There are also nν static eavesdroppers located uniformly
in the network and we assume the number of eavesdroppers
is much larger than that of legitimate nodes, i.e., ν > 1. We
propose a novel simple secure communication model, i.e., the
secure protocol model, and prove its equivalence to the widely
accepted secure physical model under a few technical assumptions.
Based on the proposed model, a framework of analyzing the
secrecy capacity and delay in MANETs is established. Given a
delay constraint D, we find that the optimal secrecy throughput
capacity is1 Θ̃

(
W
(
D
n

) 2
3

)
, where W is the data rate of each link.

We observe that: 1) the capacity-delay tradeoff is independent
of the number of eavesdroppers, which indicates that adding
more eavesdroppers will not degenerate the performance of the
legitimate network as long as ν > 1; 2) the capacity-delay tradeoff
of our paper outperforms the previous result Θ

(
1
nψe

)
in [11],

where ψe = nν−1 = ω(1) is the density of the eavesdroppers.

I. INTRODUCTION

Though having the advantage of convenience and low cost,
wireless networks are vulnerable to attacks such as eavesdrop-
ping and jamming due to its broadcast nature. Most of existing
solutions are based on cryptographic methods, e.g., RSA public
key crypto-system. However, there two major drawbacks of
the cryptographic solutions. First, the key distribution can be
very costly in terms of both energy consumption and compu-
tation/decoding capability because of the rapid growth of the
size of today’s wireless networks, which makes the traditional
cryptographic methods infeasible. Second, the cryptographic
schemes essentially guarantee security by imposing hard math-
ematical problems on the eavesdroppers, whose computational
ability are not high enough to solve the problems. But the
eavesdroppers do obtain the data information and the enemy
will decode the message with enough time and computational
power. Therefore, to avoid the limitations of the cryptographic
solutions, we focus on information theoretic security in this

1Throughout this paper, for functions f(n) and g(n), we denote f(n) =

o(g(n)) if limn→∞
f(n)
g(n)

= 0; f(n) = ω(g(n)) if g(n) = o(f(n));
f(n) = O(g(n)) if there is a positive constant c such that f(n) ≤ cg(n) for
sufficiently large n; f(n) = Ω(g(n)) if g(n) = O(f(n)); f(n) = Θ(g(n)) if
both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. Besides, the order notation
Θ̃ omits the polylogarithmic factors for better readability.

paper, i.e., safety is ensured even though the eavesdroppers
have infinite computational and decoding power.

The study of information-theoretic secrecy originates from
the seminal works of Shannon [1], Wyner [2], Csiszar and
Korner [3], where the secrecy requires the receiver to have
better channel than eavesdroppers. Recently, a few schemes
are proposed to guarantee the secret communication. Geol
and Negi [4] exploit artificial noise to suppress the SNR at
the eavesdroppers so as to ensure security. Independence of
wireless fading channels are also used to generate noise with
cooperation [5] and multiple antennas [6, 7].

While the above mentioned works all focus on proposing
various techniques to ensure information-theoretic security, a
few papers also investigate the impact of the secrecy constraint
on the network capacity and delay. For example, Vasudevan
et al. [8] study the secrecy-capacity tradeoff in large-scale
wireless networks and introduce helpers around the transmitters
to generate noise to suppress the SNR at the eavesdroppers.
Capar et al. [9] propose a new secrecy communication scheme
that can tolerate o

(
n

logn

)
eavesdroppers while keeping the

network throughput not affected. To transmit a single bit, the
authors proposed to generate multiple bits and transmit all of
them to the desired destinations through different paths. The
original bit can be decoded if and only if all of the generated
bits are obtained and the authors present a routing/scheduling
protocol to make sure no eavesdroppers could get all those bits.
A very related work is a recent paper by Zhang et al. [10]. The
authors let every receiver generate artificial noise in order to
degrade the SNR at the eavesdroppers and study the impact of
secrecy constraints on the capacity scaling in static networks.

However, most existing works such as [9, 10] focus on
secrecy capacity scaling in static networks, yet little is known
about the secrecy capacity-delay tradeoff in MANETs. As an
exception, Liang et al. [11] first attempt to study the secrecy-
capacity-delay tradeoff in MANETs. But, [11] has its limitation.
The authors do not allow receivers to generate artificial noise
so as to degenerate the channel at the eavesdroppers. Instead,
they just let each transmitter wait until the intended receiver is
sufficiently near. This turns out to be very inefficient compared
to the artificial noise methods adopted in [10] and leads to low
throughput and high delay. Observing this limitation, we are
motivated to investigate the impact of secrecy constraint on the
capacity and delay tradeoffs in MANETs with more efficient
secrecy scheme. By MANETs, we mean that the legitimate
nodes are mobile while the eavesdroppers are static. This is
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reasonable since the eavesdroppers may be detected easily
if they move drastically. To see the impact of the secrecy
constraint, we assume that the number of eavesdroppers is
larger than that of the legitimate nodes in this paper. The
physical layer method that we adopt to achieve information-
theoretic security is the same as that of [10]. Specifically,
each intended receiver generates artificial noise to suppress the
SNR at the eavesdroppers and distinguishes its own channel by
adopting the self-interference cancelation techniques proposed
in [12]. Thus, each receiver will not be interfered by the noise
generated by itself, i.e., the channel at the receiver can be much
better than that at the eavesdroppers.

The primary contributions of this work are summarized as
follows:
• We propose a novel simple secure communication model,

i.e., the secure protocol model, to analyze the performance
of wireless networks with secrecy constraint. We show
that the secure protocol model is equivalent to the widely
accepted secure physical model under a few technical
assumptions. Thus, a framework to analyze wireless net-
works with secrecy constraint is established.

• We apply the secure protocol model to MANETs with
mobile legitimate nodes and static eavesdroppers. Given
a delay constraint D, we derive upper bound for the se-
crecy capacity and then present the corresponding capacity
achieving scheme. We find that as long as the eavesdropper
density ψe = ω(1), the optimal capacity delay tradeoff is
always Θ̃

(
W
(
D
n

) 2
3

)
, which is independent of the specific

value of ψe. This significantly improves the previous result
in [11] and shows the great advantage of our scheme.

We remark that although the focus of this paper is on networks
with i.i.d. mobile legitimate nodes, the secure protocol model
we develop is suitable for any wireless networks where the
number of eavesdroppers are larger than that of the legitimate
nodes. The proposed secure protocol model can be applied to
networks with different mobility patterns and traffic patterns
(e.g., unicast, multicast, converge-cast) and is thus quite general
and extendable.

The rest of this paper is organized as follows. In Section
II, we review some related works on the scaling laws of
wireless networks. In Section III, we formulate the system
model formally while in Section IV, an overview of the solution
idea and the main results are presented. In Section V, we
propose the secure protocol model and prove its correspondence
with the widely accepted secure physical model. In Section
VI, we derive an upper bound for the secrecy capacity-delay
tradeoff while the corresponding capacity achieving scheme is
presented in Section VII. Some discussions are presented in
Section VIII and we conclude this work in Section IX.

II. RELATED WORKS

In this paper, we provide the asymptotic analysis for the
optimal secrecy capacity-delay tradeoffs in MANETs. The fun-
damental scaling law analysis of wireless networks is initiated
by the ground-breaking work of Gupta and Kumar [13]. They

show that the per-node unicast capacity for random uniform
networks with n nodes is Θ

(
1√

n logn

)
under the protocol

model. Under this framework, multicast traffic pattern [24],
heterogeneity in nodes’ distribution [25, 26], hybrid networks
[27] and MIMO cooperation [28] are also studied in the
literature.

Another important trend, which is quite related with this
paper, is to introduce mobility to improve the network capacity.
Grossglauser and Tse [14] first take the mobility of wireless
nodes into consideration and find that capacity can be enhanced
significantly by exploiting the nodes’ mobility. In their i.i.d.
mobility model and two-hop transmission scheme, each source
broadcasts the packets to its neighbors which serve as relays,
and then the packets are delivered to the destination whenever
it is within the transmission range of the one of those relays.
However, the major drawback of this scheme is large delay
since the destination may not meet with the relays until a long
time has passed. Hence, since then, great efforts have been
made to improve capacity delay tradeoffs, i.e., to achieve rela-
tively high capacity with acceptable delay [15–19]. Particularly,
for a variety of mobility models, given a delay constraint D,
Ying et al. [19] provides matching (except for poly-log terms)
upper bounds and lower bounds on the throughput capacity.
In addition, various mobility models are also investigated in
[20, 21]. Motioncast, i.e., multicast traffic over MANETs, is
also studied by Wang et al. [22] and Zhang et al. [23].

III. SYSTEM MODEL

In this paper, we assume that the network area is a square
with size

√
n×
√
n, where n is the number of legitimate nodes.

A. Legitimate Network

There are n legitimate nodes in total in the network area.
Denote Xi the position of legitimate node i. Dividing time
into constant duration time slots, we adopt the well known i.i.d.
mobility model to characterize the drastic topology change of
the MANETs. Specifically, the initial position of each legitimate
node is equally likely to be any point in the network area.
At the beginning of each time slot, every node randomly and
uniformly chooses a point i.i.d. in the network area to be its
new position. Throughout this paper, we assume a fast mobility
model [19, 23] for the legitimate nodes, i.e., only one-hop
transmission is allowed in each time slot. Although the i.i.d.
mobility is an oversimplified model to some extent, it is widely
adopted in the literature due to its mathematical tractability. In
addition, i.i.d. mobility can be viewed as the mobility with very
large speed and hence we could use this model to characterize
the fundamental impact of mobility on network performance.
With the help of mobility, packets could reach the destinations
without being relayed for many times, which decreases the
traffic load of the network, and larger capacity is expected.

We assume that the traffic pattern of between legitimate
nodes is unicast. Equivalently speaking, source-destination
pairs are randomly chosen such that each node is the destination
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of exactly one source. We denote T (R) as the sets of legitimate
nodes simultaneously transmitting (receiving) at a given time
slot. As in [10], we assume each legitimate node is equipped
with three antennas. When a legitimate node acts as a receiver,
one antenna is used for message reception while the other
two are devoted to simultaneous artificial noise generation to
suppress the eavesdroppers’ channels. The distances between
the receive antenna and the other two respective transmit an-
tennas should satisfy a difference of half of the wavelength. The
interference can thus be eliminated by invoking the techniques
of self-interference cancelation proposed in [12]. Thus, each
receiver will not be interfered by the artificial noise generated
by itself.

B. Eavesdropper Network

There are nν eavesdroppers located in the same network
area. Denote E as the set of all the eavesdroppers and ye the
position of eavesdropper e ∈ E . We assume that the number of
eavesdroppers is much larger than that of legitimate nodes, i.e.,
ν > 1. Thereby, the density of the eavesdroppers ψe = nν−1 is
much larger than 1, i.e., ψe = ω(1). Different from legitimate
nodes, the eavesdroppers are assumed to be static, i.e., the
position of each eavesdropper does not change with time. This
is reasonable since the eavesdroppers may be detected easily
if they move drastically. More precisely, each eavesdropper
independently and uniformly select a point in the network area
as its fixed position. The eavesdroppers always keep silent since
they may be detected otherwise. Hence, instead of jamming the
signal, the eavesdroppers can only overhear messages in our
setup. The eavesdroppers have infinite computational capability
and thus information-theoretic security is needed. We also
assume that both CSI and location information of eavesdroppers
are unknown to the legitimate nodes.

C. Secure Physical Model

The secure physical model is widely accepted in the literature
and we describe it in the following. Denote Pt,i the transmission
power of node i if i ∈ T . Similarly, denote Pr,j the noise
generation power of node j if j ∈ R. The path loss between
node i and node j is denoted by l(Xi, Xj) with l(Xi, Xj) =
l(|Xi−Xj |) = min {1, |Xi −Xj |−α}. Here, Xi is the position
of node i while α is the path loss exponent. We assume that
2 < α < 4, which is a typical value range for outdoor path loss
exponent. When node i is transmitting messages to node j, the
signal to interference and noise ratio (SINR) at the receiver
node j is given by:

SINRij

=
Pt,il(Xi, Xj)

N0 +
∑
k∈T \{i} Pt,kl(Xk, Xj) +

∑
k∈R\{j} Pr,kl(Xk, Xj)

,

(1)

where N0 denotes the ambient noise power of the network
environment. Note that Pr,j is not an interference to the

receiver, node j, since we adopt self-interference cancelation
techniques.

On the other hand, Pr,j do interfere with the eavesdroppers
and the SINR at the eavesdropper e cab be represented by:

SINRie

=
Pt,il(Xi, Ye)

N0 +
∑
k∈T \{i} Pt,kl(Xk, Ye) +

∑
k∈R Pr,kl(Xk, Ye)

,

(2)

As in [9, 11], we say a transmission is secret if none of
each eavesdropper could decode the messages. Specifically, we
define a transmission to be successful and secret if the following
two conditions hold.
• SINRij ≥ γr.
• For each eavesdropper e ∈ E , SINRie ≤ γe.

Here γr, γe are two positive constants indicating the SINR
thresholds for successful reception of information. The first
condition assures that the receiver, node j, can decode the
message successfully while the second condition guarantees
that none of each eavesdropper could decode the message. We
remark that, in practice, to ensure the transmissions between
legitimate nodes are reliable and all the eavesdroppers cannot
get any useful information, one may require γr to be large and
γe to be low in the secure physical model.

We assume that the data rate for successful secure transmis-
sion is W bit per time slot. We call a couple of nodes a link
if they form a transmitter-receiver pair, e.g., (Xi, Xj). Given
a communication (interference) model, in general there are a
number of subsets of links that can be active simultaneously.
We call such subsets of links together with the corresponding
power management and node positions a feasible state, and
define the set of all feasible states as feasible family [29]. We
use PH (γr, γe) to denote the feasible family of the secure
physical model.

D. Definitions of Performance Metrics

We consider hard delay constraints as [19] in this paper.
Given a delay constraint D, a packet is said to be successfully
delivered if the destination obtains the packet within D time
slots after it is sent out from the source.

The asymptotic per-node secure throughput capacity λ(n) is
said to be achievable if there is a scheduling and routing scheme
such that every legitimate node can transmit λ(n) bps securely
on average to its destination in the long term.

The frequently used parameters are listed in Table I.

IV. OVERVIEW OF IDEA AND MAIN RESULTS

A. Solution Idea

Our system model begins with the widely accepted secure
physical model, i.e., the SINR at the receiver should be larger
than a threshold to guarantee a successful transmission while
the SINR at all the eavesdroppers should be smaller than
another threshold to ensure security. Hence, compared to the
insecure physical model proposed in [13], the secure physical
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TABLE I
NOTATIONS

Notations Definitions

n
The total number of legitimate nodes in the
network.

nν
The total number of eavesdroppers in the network,
where ν > 1.

ψe The density of eavesdroppers, ψe = nν−1.
α The path loss exponent, 2 < α < 4.

λ(n)
The per-node secure throughput capacity of
legitimate nodes.

D The delay constraint imposed on the packets.
Pt The common transmission power at a given time.

Pr
The common noise generation power at a given
time.

PH (γr, γe) The feasible family of secure physical model.
PR(Ct) The feasible family of secure protocol model.

T The set of simultaneously active transmitters at a
given time slot.

R The set of simultaneously active receivers at a
given time slot.

E The set of eavesdroppers.
Xi The position of legitimate node i.
Ye The position of eavesdropper node e.

|·| The Euclidean length or the number of elements
of a set.

D(x, r) The disk with radius r centered at x.
l(Xi, Xj) or
l(|Xi −Xj |)

The path loss function min{1, |Xi −Xj |−α}.

W The data rate for successful secure transmission.

model in Subsection III-C poses another SINR constraint on
those eavesdroppers. The key issue that we aim to address is
how this secrecy constraint may influence the network capacity
and delay.

Though the secure physical model is quite ideal and general
for networks with eavesdroppers, it is not convenient from the
perspective of analysis because it involves many underlying
details such as the network topology, transmission power,
noise generation power and SINR judgement for checking the
eligibility of a link. Therefore, we propose the secure protocol
model (Definition 5.2), which has one parameter Ct and is
shown to be equivalent to the secure physical model under a
few technical assumptions.

The proposed secure protocol model is significantly simpler
to analyze because it only relies on the geometry of the nodes’
positions and conceals other factors such as power, noise and
interference. In Section V, we present the secure protocol model
and establish its equivalence to the secure physical model based
on a few assumptions formally.

Thanks to the secure protocol model, a framework of analyz-
ing the secrecy capacity-delay tradeoff is formed for MANETs.
Under the secure protocol model, we derive an upper bound
on the secrecy capacity given a delay constraint. Afterwards,
we show a capacity-achieving scheme which could obtain the
optimal throughput capacity up to poly-log factors. Since the
secure protocol model is equivalent to the secure physical
model under several assumptions, our results immediately apply
to the secure physical model under those assumptions. Note
that the proposed secure protocol model is quite general and is
applicable to wireless networks with other traffic patterns and

mobility patterns. Indeed, as long as the eavesdropper density
ψe = ω(1), the secure protocol model is always effective.

B. Main Results

Supposing the four technical assumptions in Section V hold,
we list the main results of this paper as follows.
• Correspondence between secure protocol model and

secure physical model:
The secure physical model is shown to be equivalent to
the proposed secure protocol model. By equivalence, we
mean the capacity-delay scaling law is the same. For any
given secure physical model, we can find a secure protocol
model such that the feasible family of the secure protocol
model is a subset of the feasible family of the given secure
physical model (Theorem 5.1). Meanwhile, we can also
find a secure protocol model such that the feasible family
of the given secure physical model is a subset of the secure
protocol model (Theorem 5.2). This equivalence allows us
to analyze the secure physical model by transforming it
into the proposed secure protocol model without changing
the scaling law results.

• Optimal secrecy-capacity-delay tradeoffs in MANETs:

– Under the secure physical model, the secrecy per-node
throughput capacity λ with delay constraint D is no
more than:

λ = O

(
W

(
D

n

) 2
3

log n

)
. (3)

– Under the secure physical model, if D =

Ω
(
n

2
5 (log n)

21
5

)
and D = O(n), then there exists a

feasible scheme achieving a per-node throughput of:

λ = Ω

(
W

(
D

n

) 2
3

(log n)−12

)
. (4)

V. THE SECURE PROTOCOL MODEL

In this section, we propose the secure protocol model for-
mally. Throughout this section, we assume that the eavesdrop-
pers are located uniformly and randomly while the positions
of the legitimate nodes are arbitrary. We then establish the
equivalence between the proposed secure protocol model and
the secure physical model under a few technical assumptions.
Thus, a tractable framework of analyzing the secrecy capacity-
delay tradeoff is formed. Before introducing these assumptions,
we define the parameter d∗ of a state as follows.

Definition 5.1: For a certain state (with at least two si-
multaneously active transmitters), we denote d∗ the minimum
distance between any two simultaneously active transmitters,
i.e.,

d∗ = min
i,j

{
|Xi −Xj |

∣∣∣∣i, j ∈ T , i 6= j

}
. (5)

Now we list four assumptions of a state in the following.
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1) There are at least two simultaneously active transmitters.
For any point P in the network area, there is at least one
active transmitter within the disk D(P, 2d∗).

2) For any transmitter-receiver pair (Xi, Xj), we have2 d∗ ≥
8(|Xi − Xj | + 1). In addition, for the secure physical

model: d∗ ≥
(

144γeα·22α−1

α−2

) 1
α

.
3) For the secure physical model, all the transmitters utilize

the same transmission power, i.e., Pt,i = Pt,∀i ∈ T and
all the receiver utilize the same noise generation power,
i.e., Pr,j = Pr,∀j ∈ R.

4) For the secure physical model, γr > 23α+1γe.
We note that the above four assumptions are all reasonable
and are satisfied by most of the scheduling/routing schemes for
homogeneous networks. The Assumption 13 is satisfied by most
TDMA-based schemes to exploit the network radio resources
efficiently. It basically states that the distances between different
adjacent transmitters are in the same order. The Assumption 2
requires that the distance between two simultaneously active
transmitters is larger than both some constant times of the
transmission range and another certain constant, in order to
avoid interference. Since the network distribution of both the
legitimate nodes and the eavesdroppers is homogeneous, it
is natural to assume that the transmission power and noise
generation power are respectively uniform as in Assumption 3.
This assumption is also made in [10]. The Assumption 4 keeps
a certain gap between the SINR at the receivers and that at the
eavesdroppers so as to guarantee reliable (high value for γr)
and secret (low value for γe) transmissions. The four technical
assumptions are satisfied by most of the scheduling/routing
schemes (such as TDMA) in homogeneous networks in the
literature of scaling law analysis. We have not optimized the
constants involved in these four assumptions to make the
assumptions as weak as possible. Hence, an improvement on
these assumptions, though not being the focus of this paper, is
possible.

Now, we propose the secure protocol model as follows.
Definition 5.2: The Secure Protocol Model with feasible

family PR(Ct): for any feasible state, we have:
1) All transmissions are unicast, i.e., one transmitter can

only have one intended receiver.
2) For any transmitter-receiver pair (Xi, Xj), and any other

simultaneously active transmitter Xp(p 6= i):

|Xi −Xp| ≥ Ct(1 + |Xi −Xj |)2. (6)

Remark 5.1: Compared with the conventional protocol
model in [13], the proposed secure protocol model here is
stricter: 1) broadcast is not permitted, i.e., one transmitter

2In real-world wireless communications, the typical SINR of a ‘relatively
good signal condition’ is 30dB, i.e., SNR=1000. Besides, the typical value
of outdoor path loss exponent is about 3. Suppose the distance between a
transmitter-receive pair is d. Then, the nearest simultaneously active transmitter
should be at least (1000)1/3d = 10d away. Thus, the first requirement of the
assumption 2 is satisfied.

3Throughout this paper, we use Assumption 1, 2, 3 and 4 to denote the above
four assumptions respectively.

can only have one intended receiver; 2) the distance between
simultaneously active transmitters is much larger compared to
the protocol model in [13], i.e., if the transmission range of a
link is d, then loosely speaking, any other simultaneously active
transmitters must be d2 distance away from this transmitter.
Conventional protocol model only needs to guarantee success-
ful transmissions between Tx and Rx, while the secure protocol
model needs to further suppress the SINR at the eavesdroppers
to ensure security, which makes it stricter.
Now, we show in the following theorem that, under Assumption
1, the secure protocol model implies the secure physical model.

Theorem 5.1: For any two positive constants γr, γe, there
exists a positive constant Ct such that, provided Assumption
1 holds, if a state is feasible under the secure protocol model
PR(Ct), then it must be feasible under the secure physical
model PH (γr, γe) by exploiting some uniform transmission
power Pt and some uniform noise generation power Pr i.e.,
Assumption 3 holds.

Proof: We define two positive constants c1, c2 as c1 =
2N0γr and c2 = 2αc1

γe
. Then, there exists a positive constant

Ct > 8 large enough such that:

192α2α−1c1
(α− 2)C2

t

≤ N0

2
, (7a)

12α24α−1c2
Cαt (α− 2)

≤ N0

2
. (7b)

We denote d largest transmission range, i.e.,

d = max
i,j

{
|Xi −Xj |

∣∣∣∣(Xi, Xj) is a transmitter− receiver pair

}
.

(8)
Next, we prove that with power assignment Pt = c1(1 +
d)α, Pr = c2(1+d)2α, the statement in the theorem holds, i.e.,
the secure protocol model PR(Ct) implies the secure physical
model PH (γr, γe). We begin from an arbitrary feasible
state in PR(Ct). Let’s consider two arbitrary links, (Xi, Xj)
and (Xp, Xq). Suppose (Xi0 , Xj0) is the link that gives the
maximization in the definition of d, i.e., d = |Xi0 − Xj0 |.
According to Assumption 1, there is a simultaneously active
transmitter Xi1 such that |Xi1 −Xi0 | ≤ 2d∗. Hence, recalling
the definition of d∗, we have:

2|Xi−Xp| ≥ |Xi1−Xi0 | ≥ Ct(1+|Xi0−Xj0 |)2 = Ct(1+d)2.
(9)

Thus, the disks centered at the transmitters
D
(
Xi,

Ct
4 (1 + d)2

)
, i ∈ T are disjoint. We further have:

|Xp −Xj | ≥ |Xi −Xp| − |Xi −Xj | (10a)

≥ Ct
2

(1 + d)2 − d (10b)

≥ 1 + d. (10c)
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The reason of (10c) is Ct > 8. Then, we divide the set T \{i}
into the following subsets Tk, 1 ≤ k ≤

√
2n

1+d .

Tk =

{
p

∣∣∣∣k(1 + d) ≤ |Xp −Xj | < (k + 1)(1 + d), p ∈ T , p 6= i

}
(11a)

T \{i} =

√
2n

1+d⋃
k=1

Tk (11b)

Noting that each transmitter consumes radio resource of a disk
area yields the following upper bound for |Tk|:

1

3
π

[
Ct
4

(1 + d)2

]2 k∑
l=1

|Tl| ≤ π [(k + 1)(d+ 1)]
2
, (12)

which is equivalent to the following:

k∑
l=1

|Tl| ≤
48

C2
t

1

(d+ 1)2
(k + 1)2. (13)

Hence, the interference caused by other transmitters at Xj ,
which we denote as It(Xj), can be bounded as follows.

It(Xj) ≤

√
2n

d+1∑
k=1

2αPt
[k(d+ 1)]α

|Tk| (14a)

= 2αPt
∑
k

1

[k(d+ 1)]α

(
k∑
l=1

|Tl| −
k−1∑
l=1

|Tl|

)
(14b)

=
2αPt

(d+ 1)α

∑
k

[
1

kα
− 1

(k + 1)α

] k∑
l=1

|Tl| (14c)

≤ 2αPt
(d+ 1)α

∞∑
k=1

αk−α−1 48

C2
t

1

(d+ 1)2
(k + 1)2 (14d)

=
192α2αPt

C2
t

1

(d+ 1)α+2

∞∑
k=1

k1−α (14e)

≤ 192α2α−1c1
(α− 2)C2

t

(14f)

≤ N0

2
(14g)

(14d) utilizes both (13) and the fact that 1
kα −

1
(k+1)α ≤

αk−α−1. (14f) utilizes the power management Pt = c1(1+d)α

while (14g) follows from (7a). Next, we endeavor to bound the
interference from other receivers’ artificial noise. We have:

|Xq−Xj | ≥ |Xp−Xi|−2d ≥ Ct
2

(1+d)2−2d ≥ Ct
4

(1+d)2.

(15)
Hence, the disks D(Xj ,

Ct
8 (1 + d)2), j ∈ R are disjoint.

Similarly, we also divide the set R\{j} into following subsets

Rk, 1 ≤ k ≤ 8
√

2n
Ct(1+d)2 :

Rk =

{
q

∣∣∣∣k × Ct
8

(1 + d)2 ≤ |Xp −Xj | < (k + 1)

× Ct
8

(1 + d)2, q ∈ R, q 6= j

}
, (16a)

R\{j} =

8
√

2n

Ct(1+d)
2⋃

k=1

Rk. (16b)

Each receiver consumes a radio resource of a disk area, hence
we obtain:

1

3
π

[
Ct
8

(1 + d)2

]2 k∑
l=1

|Rl| ≤ π
[
(k + 1)

Cr
8

(1 + d)2

]2

,

(17)
which could be simplified to:

k∑
l=1

|Rl| ≤ 3(k + 1)2 (18)

Thus, the interference at the receiver Xj caused by the artificial
noise generated by other receivers can be bounded as follows:

Ir(Xj) ≤
∑
k

Pr[
kCt

8 (1 + d)2
]α |Rk| (19a)

≤ 8α

Cαt

Pr
(1 + d)2α

∑
k

1

kα

(
k∑
l=1

|Rl| −
k−1∑
l=1

|Rl|

)
(19b)

=
8α

Cαt

Pr
(1 + d)2α

∑
k

[
1

kα
− 1

(k + 1)α

] k∑
l=1

|Rl|

(19c)

≤ 8α

Cαt

Pr
(1 + d)2α

∞∑
k=1

αk−α−1 · 3(k + 1)2 (19d)

≤ 12α24α−1

Cαt (α− 2)
c2 ≤

N0

2
. (19e)

The last step (19e) utilizes the power management Pr = c2(1+
d)2α and (7b). Thereby, the SINR at Xj can be bounded as:

SINR(Xj) ≥
c1

N0 + N0

2 + N0

2

= γr. (20)

For any eavesdropper e, whose position is denoted as Ye, the
interference at it is at least:

Ie ≥
Pr

(|Xj − Ye|+ 1)α
≥ Pr

(1 + d+ |Ye −Xi|)α
. (21)
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Hence, the SINR at e is at most:

SINR(Ye) ≤
2αPt

(1+|Ye−Xi|)α
Pr

(1+d+|Ye−Xi|)α
(22a)

=
2αPt
Pr

(
1 +

d

1 + |Ye −Xi|

)α
(22b)

≤ 2αPt
Pr

(1 + d)α (22c)

=
2αc1
c2

= γe (22d)

Thus, SINR constraint at receivers and eavesdroppers are both
satisfied, indicating that the state is feasible under the secure
physical model PH (γr, γe).
We further assert in the next theorem that, under the previously
presented four assumptions, the secure physical model implies
the secure protocol model, which is converse to Theorem 5.1.

Theorem 5.2: For any two positive constants γr, γe satisfy-
ing Assumption 4, there exists a positive constant Ct such that,
provided Assumption 1, 2 and 3 all hold, if a state is feasible
under the secure physical model PH (γr, γe), then it must be
feasible under the secure protocol model PR(Ct), a.a.s.4.

Proof: Given a state satisfying PH (γr, γe) and the four
assumptions, we first show that all its links are unicast, i.e.,
one transmitter has only one receiver.

Consider an arbitrary active transmitter Xi. Suppose it has
multiple receivers Xj1 , Xj2 , ..., Xjm where m ≥ 2. Without
loss of generality, we let |Xj1 −Xj2 | be the minimum distance
between any two receivers of Xi, i.e., ∀1 ≤ k, l ≤ m, k 6= l, we
have |Xjk −Xjl | ≥ |Xj1 −Xj2 |. We further assume that Xj2

is nearer to Xi than Xj1 does, i.e., |Xj2 −Xi| ≤ |Xj1 −Xi|.
Then, for any other receiver of Xi, say Xj3 , we have:

|Xj3 −Xj1 | ≥ |Xj2 −Xj1 | = 2

∣∣∣∣Xj1 −
Xj1 +Xj2

2

∣∣∣∣ . (23)

Hence,∣∣∣∣Xj3 −
Xj1 +Xj2

2

∣∣∣∣ ≥ |Xj3 −Xj1 | −
∣∣∣∣Xj1 −

Xj1 +Xj2

2

∣∣∣∣
(24a)

≥
∣∣∣∣Xj1 −

Xj1 +Xj2

2

∣∣∣∣ . (24b)

Furthermore,

2

∣∣∣∣Xj3 − Xj1 +Xj2
2

∣∣∣∣ ≥ ∣∣∣∣Xj1 − Xj1 +Xj2
2

∣∣∣∣+

∣∣∣∣Xj3 − Xj1 +Xj2
2

∣∣∣∣
(25a)

≥ |Xj1 −Xj3 |. (25b)

Recall that the density of the eavesdroppers is nν−1, where
ν > 1. So, asymptotically almost surely, for every point in
the network area, there is an eavesdropper within a distance
of o(1). Hence, there exists an eavesdropper e such that

4a.a.s. stands for asymptotically almost surely. We say an event series An
happens asymptotically almost surely if limn→∞ Pr(An) = 1.

∣∣∣Ye − Xj1+Xj2
2

∣∣∣ ≤ 1. Recalling the definition of the path loss
function l(·), we have:

l(|Xj1 −Xj3 |) ≥ l
(

2

∣∣∣∣Xj3 −
Xj1 +Xj2

2

∣∣∣∣) (26a)

≥ 2−αl

(∣∣∣∣Xj3 −
Xj1 +Xj2

2

∣∣∣∣) (26b)

≥ 2−αl(|Xj3 − Ye|+ 1) (26c)
≥ 4−αl(|Xj3 − Ye|) (26d)

Due to the arbitrariness of Xj3 , we actually have:
m∑
k=3

l(|Xjk − Ye|) ≤ 4α
m∑
k=3

l(|Xjk −Xj1 |) (27)

Besides, we can easily show that l(|Xj2 − Ye|) ≤ 4αl(|Xj1 −
Xj2 |). Adding it onto (27) yields:

m∑
k=2

l(|Xjk − Ye|) ≤ 4α
m∑
k=2

l(|Xjk −Xj1 |). (28)

Because l(|Xj1 − Ye|) ≤ 4αl(|Xj1 −Xj2 |), we have:
m∑
k=1

l(|Xjk − Ye|) ≤ 2 · 4α
m∑
k=2

l(|Xjk −Xj1 |). (29)

According to Assumption 2, other simultaneous transmitters
and their intended receivers are far away from Xi and Xjk , 1 ≤
k ≤ m, i.e., for eavesdroppers Ye and the receivers of Xi,
the interference caused by Xi’s receivers dominates. So, we
just ignore the interference from other nodes. A rigorous proof
of the above argument is nothing more than some tedious
bounding using Assumption 2 and is omitted here. From the
above analysis and (29), we obtain I(Ye) ≤ 2 · 4αI(Xj1).
Furthermore,

|Ye −Xi| ≤
∣∣∣∣Ye − Xj1 +Xj2

2

∣∣∣∣+

∣∣∣∣Xj1 +Xj2

2
−Xi

∣∣∣∣ (30a)

≤ 1 +
1

2
|Xj1 −Xi|+

1

2
|Xj2 −Xi| (30b)

≤ 1 + |Xj1 −Xi| (30c)

Hence, l(|Ye −Xi|) ≥ 2−αl(|Xj1 −Xi|). So, we have:

γe ≥ SINR(Ye) ≥ 2−3α−1SINR(Xj1) ≥ 2−3α−1γr. (31)

This contradicts to Assumption 4, indicating that every Xi

cannot have more than 1 receiver, i.e., every link should be
unicast.

Now, we start to prove (6) in the definition of the secure pro-
tocol model. Consider one arbitrary unicast link pair (Xi, Xj).
Let Xp be the nearest simultaneously active transmitter to
Xi and Xq be the intended receiver of Xp. According to
Assumption 1, we know |Xp − Xi| ≤ 2d∗. As previously
mentioned, there should be an eavesdropper Ye′ such that
|Ye′ −Xi| ≤ 1, a.a.s.. Hence,

|Xp − Ye′ | ≥ |Xp −Xi| − |Xi − Ye′ | ≥ d∗ − 1 ≥ 1

2
d∗, (32)
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i.e., every transmitter other than Xi is at least 1
2d
∗ away from

eavesdropper Ye′ . We also know that the distance between
any two transmitters is at least d∗. Hence, the interference at
eavesdropper Ye′ from other simultaneously active transmitters
is at most It(Ye′) ≤ O

(
Pt

(d∗)α

)
. The strict proof of this

statement is similar to that of Theorem 5.1 and is omitted here.
To bound the interference from receivers other than Xj , we
have:

|Xq − Ye′ | ≥ |Xi −Xp| − |Xp −Xq| − 1 ≥ 1

2
d∗, (33a)

|Xq −Xj | ≥ |Xp −Xi| − |Xp −Xq| − |Xi −Xj | ≥
1

2
d∗,

(33b)

where we utilize Assumption 2. Hence, the interference
at eavesdropper Ye′ from receivers other than Xj is at
most O

(
Pr

(d∗)α

)
while the interference from Xj is at most

O
(

Pr
(|Xi−Xj |+1)α

)
. Thus, the total interference at eavesdropper

e is at most:

I(Ye′) ≤ O
(

Pt
(d∗)α

+
Pr

(|Xi −Xj |+ 1)α

)
. (34)

Since the current state is feasible under the secure physical
model PH (γr, γe), at the eavesdropper Ye′ , we have:

Pt

N0 +O
(

Pt
(d∗)α + Pr

(|Xi−Xj |+1)α

) ≤ γe. (35)

We also know that Pt ≥ N0γr. Note that the notation O(·)
only contains some constants terms related to α. Hence, under
Assumption 2 and Assumption 4, the third (last) term of the
denominator must dominate the value of the denominator in
(35). Thereby, (35) can be simplified to:

Pt
Pr
≤ O

(
1

(|Xi −Xj |+ 1)α

)
, (36)

where we absorb the term γe into the notation O(·).
Next, we turn to the interference at the receiver Xj . We have:

|Xq−Xj | ≤ |Xp−Xi|+ |Xp−Xq|+ |Xi−Xj | ≤ 3d∗. (37)

Thus, the interference at the receiver Xj is at least I(Xj) ≥
Pr

(3d∗)α . Hence,
2αPt

(|Xi−Xj |+1)α

Pr
(3d∗)α

≥ γr, (38)

which is equivalent to:

Pt
Pr
≥ Ω

((
|Xi −Xj |+ 1

d∗

)α)
. (39)

Combining (36) and (39), we obtain:

d∗ ≥ Ω
(
(|Xi −Xj |+ 1)2

)
. (40)

Recall that d∗ is the smallest distance between any two trans-
mitters. By choosing the positive constant Ct small enough, we
have:

|Xp −Xi| ≥ Ct(|Xi −Xj |+ 1)2. (41)

Thus, we conclude that the current state is feasible under the
secure protocol model PR(Ct).

Remark 5.2: Theorem 5.1 together with Theorem 5.2 es-
tablishes equivalence between the secure physical model and
the proposed secure protocol model under the four technical
assumptions. By equivalence, we mean that the capacity delay
scaling law results under the two models are the same. Actually,
by using Theorems 5.1 and 5.2, we can easily convert the
capacity scaling results obtained under the secure protocol
model into results under the secure physical model. This works
as follows. Suppose under any secure protocol model PR(Ct),
we could always find a feasible scheduling scheme such that
the per-node throughput is λ (this is exactly what we will do in
Section VII). According to Theorem 5.1, for any given secure
physical model PH (γr, γe) we can find Ct large enough such
that PR(Ct) ⊆ PH (γr, γe). Then the aforementioned λ-
throughput scheduling scheme feasible under PR(Ct) turns
out to be also feasible under PH (γr, γe). So, we can conclude
that any secure physical model could reach a throughput of λ.
Similarly, if we have got an upper bound for the throughput
capacity under the secure protocol model (Section VI), by using
Theorem 5.2, we could assert that the upper bound also holds
for the secure physical model.

Remark 5.3: We can see from the secure protocol model
that the secrecy constraint does have great impacts on network
behaviors. Compared to the insecure protocol model presented
in [13], the secure protocol model is clearly stricter. This will
definitely degenerate the network performance such as capacity
and delay, which we will discuss quantitatively in Section VI
and Section VII. An interesting thing is that the secure protocol
model is independent of the eavesdropper density ψe = nν−1,
as long as it is much larger than one, i.e., ψe = ω(1) or ν > 1.
This indicates that adding more eavesdroppers into the network
will not further degenerate the network capacity.

VI. AN UPPER BOUND ON THE SECRECY
CAPACITY-DELAY TRADEOFF

In this section, we derive the upper bound for the network ca-
pacity under certain secrecy and delay constraints in MANETs,
by using the proposed secure protocol model PR(Ct). Since
the secure protocol model is shown to be equivalent to the
secure physical model if the four technical assumptions hold,
the derived upper bound in this section is also suitable for
a majority of feasible schemes (or more precisely, schemes
satisfying the four technical assumptions) under the secure
physical model. In Section VII, we present a capacity achieving
(except for poly-log gap) scheme satisfying those assumptions.
This indicates that the upper bound derived in this section is
essentially tight.

Denote Db the delay of bit b, i.e., the number of time slots
it takes for bit b to reach its destination after it enters into
the network system. Denote Lb the capture range of bit b, i.e.,
the distance between the last mobile relay of bit b and the final
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destination in the final time slot of bit b5. Denote Rb the number
of duplicates of bit b, i.e., the number of mobile relays holding
bit b before it reaches the destination. Since the legitimate nodes
move according to an i.i.d. pattern, there is a tradeoff between
Db, Lb and Rb, which is stated as the following lemma. This
lemma has been proved in [16].

Lemma 6.1: The following inequality holds for any causal
scheduling policy,

c̃E(Db) log n ≥ 1(
E(Lb)√

n
+ 1

n2

)2

E(Rb)
, (42)

where c̃ is a positive constant.
Under the secure protocol model PR(Ct), every transmission
is unicast. Hence, to make Rb duplicates in the network, we
need Rb transmissions. According to (6), every transmission
will consume at least Ω(1) area of radio resource. Thus, in a
long period of time, say T time slots, the total area of radio
resource consumed by duplication is at least Ω

(∑λnT
b=1 Rb

)
,

where λ is the per-node throughput. On the other hand, because
the capture range is Lb and only one-hop transmission is
allowed in a time slot (fast mobility), the capture phase of bit
b will consume Ω

(
L4
b

)
area of radio resource. The reason is

that, according to (6), disks centered at simultaneously active
transmitters with radius Θ

(
L2
b

)
must be disjoint. Meanwhile,

the total radio resource of T time slots is an area of nWT .
From the above analysis, we obtain the following lemma.

Lemma 6.2: The following inequality holds for any causal
scheduling policy,

Ω

(
λnT∑
b=1

Rb

)
+ Ω

(
λnT∑
b=1

L4
b

)
≤ O(nWT ). (43)

Now, we are ready to derive the upper bound of the secure
capacity for MANETs. We assume that D = O(n) since a delay
constraint of Θ(n) is already sufficient to ensure a constant per-
node throughput, as we will see later. Hence, a weaker delay
constraint D = Ω(n) cannot improve the capacity any more
and is ignored.

Theorem 6.1: Under the secure protocol model, if D =
O (n), the following upper bound holds for any causal schedul-
ing policy,

λ = O

(
W

(
D

n

) 2
3

log n

)
. (44)

Proof: (42) in Lemma 6.1 can be rewritten as:

E(Rb) ≥
1

log n

1(
E(Lb)√

n
+ 1

n2

)2

1

E(Db)
, (45)

where we omit the constant c1 since this will not change our
result in order sense. Summing over all the bits and invoking

5By final time slot, we mean the time slot when the desired destination gets
bit b.

Cauchy-Schwartz inequality twice yields:

λnT∑
b=1

E(Rb) ≥
1

log n

λnT∑
b=1

1(
E(Lb)√

n
+ 1

n2

)2

1

E(Db)
(46a)

≥ 1

log n

(∑λnT
b=1

1
E(Lb)√
n

+ 1
n2

)2

∑λnT
b=1 E(Db)

(46b)

≥ λ4n4T 4

log n

1∑λnT
b=1 E(Db)

 1∑λnT
b=1

(
E(Lb)√

n
+ 1

n2

)
2

(46c)

From (43) in Lemma 6.2, we obtain:

λnT∑
b=1

E(Rb) +

λnT∑
b=1

E
(
L4
b

)
≤ O(nWT ). (47)

Bringing (46c) into (47) yields:

λ4n4T 4

logn
1∑λnT

b=1 E(Db)
1[∑λnT

b=1

(
E(Lb)√
n

+ 1
n2

)]2 +
∑λnT
b=1 E

(
L4
b

)
≤ O (nWT ) . (48)

Now, there are two cases we need to consider.
Case I: If

∑λnT
b=1 ≥

λT√
n

, then (48) can be rewritten as:

λ4n4T 4

logn
1∑λnT

b=1 E(Db)
n

[
∑λnT
b=1 E(Lb)]

2 +
∑λnT
b=1 E

(
L4
b

)
≤ O (nWT ) . (49)

Since f(x) = x4 is a convex function on R+, by applying
Jenson’s inequality, we have:

λnT∑
b=1

E
(
L4
b

)
≥
λnT∑
b=1

[E(Lb)]
4
. (50)

Invoking Holder’s inequality yields:{
λnT∑
b=1

[E(Lb)]
4

} 1
4
(
λnT∑
b=1

1

) 3
4

≥
λnT∑
b=1

E(Lb), (51)

which could be simplified to:

λnT∑
b=1

[E(Lb)]
4 ≥ (λnT )−3

[
λnT∑
b=1

E(Lb)

]4

(52)

Bringing (50) and (52) into (49), we obtain:

λ4n4T 4

log n

1∑λnT
b=1 E(Db)

n[∑λnT
b=1 E(Lb)

]2
+(λnT )−3

[
λnT∑
b=1

E(Lb)

]4

≤ O (nWT ) , (53)
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which could be rewritten as:
[
λ4n4T 4

log n

n∑λnT
b=1 E(Db)

] 2
3

1[∑λnT
b=1 E(Lb)

] 4
3


3
2

+

(λnT )−1

[
λnT∑
b=1

E(Lb)

] 4
3


3

≤ O (nWT ) . (54)

Exploiting Young’s inequality in (54) yields:

(λnT )
5
3

(log n)
2
3

n
2
3[∑λnT

b=1 E(Db)
] 2

3

≤ O (nWT ) . (55)

Noting that D ≥ E(Db), we could simplify (55) as follows:

λ ≤ O

(
W

(
D log n

n

) 2
3

)
. (56)

Case II: If
∑λnT
b=1 E(Lb) <

λT√
n

, then (48) can be rewritten as:

λ4n4T 4

log n

1

λnTD

1(
1
n2 · λnT

)2 ≤ O(nWT ), (57)

which is further simplified to:

λ ≤ O
(
WDn−4 log n

)
. (58)

Combining (56)(58) and noticing that D = O (n), we always
have:

λ ≤ O

(
W

(
D

n

) 2
3

log n

)
. (59)

We thus conclude the proof.
Remark 6.1: Because, under the four assumptions, the se-

cure protocol model is equivalent to the secure physical model,
the result in Theorem 6.1 applies to the latter immediately under
the four assumptions. This is exactly a major result we have
mentioned in (3) in Section IV. From the theorem, we observe
that the upper bound is independent of the eavesdropper density
ψe. This is not surprising since the secure protocol model is
also independent of ψe.

VII. CAPACITY ACHIEVING SCHEME

In this section, under the secure protocol model, assuming
that D = Ω

(
n

2
5 (log n)

21
5

)
and D = O(n), we present and

analyze an efficient scheme which can obtain the capacity upper
bound derived in Theorem 6.1 up to poly-log factors.

A. Scheme

In this subsection, we present the capacity-achieving scheme
explicitly. In order to achieve the upper bound, we require that
the inequalities involved in the derivation of Theorem 6.1 all
hold with equality. This gives the best choice for Rb and Lb.

2
L

L

Feasible Super-cell

Cell

2
L

Fig. 1. An illustration of the capture phase in the proposed capacity achieving
scheme. The small squares with side length L are called cells while the big
squares with side length L2 are called super-cells. Θ(1) percent of the super-
cells are feasible super-cells, which are located regularly in the network. Each
pair of red circle and blue circle depicted in the cell is an active link. In the
capture phase, as the figure indicates, we only allow transmissions inside the
feasible super-cell and in a single feasible super-cell, only one transmission
can occur. The transmitter-receiver pair must reside in the same cell.

Specifically, we choose a common number of duplications R
and common capture range L for all the bits as follows:

R = Θ

(( n
D

) 2
3

)
, L = Θ

(( n
D

) 1
6

log n

)
. (60)

In (60), we add log factor so as to ensure that the proposed
scheme is successful asymptotically almost surely. The scheme
consists of two phases: duplication phase and capture phase. In
duplication phase, we schedule source-to-relay transmissions
to guarantee that each bit is duplicated Θ(R) times. In cap-
ture phase, we arrange relay-to-destination transmissions to
guarantee that each bit generated in the previous duplication
phase can be delivered to its desired destination successfully
asymptotically almost surely. The duplication phase consists
of Θ

(
D

(logn)7

)
time slots while the capture phase consists of

Θ(D) time slots. Thus, if we can schedule each bit generated in
the duplication phase to reach its destination in the next capture
phase, the delay of each bit is upper bounded by O(D). Now,
we present the detailed scheme as follows.

1) Duplication Phase: Tessellate the network area into
small squares with area 7 log n. We call those small
squares duplication cells. Then, asymptotically almost
surely, there are Θ(log n) legitimate nodes in each du-
plication cell. Under the secure protocol model, in or-
der to avoid interference, we invoke traditional TDMA
scheme: simultaneously active duplication cells are at
least Θ((log n)2) away as (6) indicates. Hence, each
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duplication cell could be active for 1
(logn)4 amount of

time in each slot. In each time slot, when a duplication
cell is scheduled to be active, every node6 within that
duplication cell takes turns to transmit bits generated by
it to a relay node inside this duplication cell. Thus, every
node could transmit data for 1

(logn)5 amount of time in

each slot. So, each node could send out Θ
(

W
(logn)5

)
bits

in each time slot. We call such Θ
(

W
(logn)5

)
bits a packet

in the following. We could guarantee that, during the
duplication phase, at different time slot, each source node
can transmit packets to different relays, i.e., after the du-
plication phase, each source has Θ

(
D

(logn)7

)
relays. We

will formally prove this in the next subsection. In every
R slots, each node keeps transmitting the same packet to
its relays. And in the next R slots, it transmits another
packet. Hence, every node transmits Θ

(
D/(logn)7

R

)
=

Θ
(
D

5
3n−

2
3 (log n)−7

)
packets in the duplication phase.

In all, after the duplication phase, each source node7 has
successfully sent out Θ

(
D

5
3n−

2
3 (log n)−7

)
packets with

each packet owned by Θ(R) relays. Then, the network
moves to the capture phase.

2) Capture Phase: This phase is illustrated in Figure 1
and described as follows. Tessellate the network area into
squares with side length L2. We call these squares super-
cells. Further tessellate each super-cell into small squares
with side length L. We call these small squares cells. In
the capture phase, we only allow transmission inside each
cell, i.e., the transmitter and receiver must lie in the same
cell. We regularly select Θ(1) percent of the super-cells as
feasible super-cells such that different feasible super-cells
are separated for at least Θ

(
L2
)

away. Hence, under the
secure protocol model, transmissions at different feasible
super-cells will not interfere with each other. Throughout
the capture phase, we only allow transmissions inside
those feasible super-cells and in each super-cell, we only
allow one transmitter-receiver pair. Thereby, the scheme
accords with the secure protocol model. Inside each cell,
if a node has a packet destined to another node, we
call this packet a deliverable packet. In each time slot,
for each feasible super-cell: 1) if there are one or two
deliverable packets inside the super-cell, then the packets
are delivered; 2) if there are at least three deliverable
packets inside the super-cell, randomly choose one to be
delivered; 3) if no deliverable packet exists in the super-
cell, we still schedule one meaningless transmission8

inside an arbitrary cell in that super-cell (we do this so as
to assure that Assumption 1 always holds). Keep doing
so until the D-slot-long capture phase ends.

6In the following, we use the notation “node” to denote legitimate node.
7Since we consider unicast, each legitimate node is a source node.
8The transmission does not carry any information and its only goal is to

suppress other eavesdroppers’ channels.

B. Analysis

In this subsection, we analyze the feasibility and the through-
put of the proposed scheme. Denote A an arbitrary legitimate
node. We have claimed that in different time slots of the
duplication phase, node A is able to transmit packets to different
relay nodes. Now we formally prove that node A does have this
opportunity. Denote the starting time slot of the duplication
phase as time slot 0. At the beginning of time slot k, if node
A has already transmitted packets to k different relay nodes,
where 0 ≤ k ≤ Θ

(
D

(logn)7

)
, then the probability that none of

the remaining n − k − 1 nodes is located in the same cell as

node A is
(

1− 7 logn
n

)n−k−1

. Hence, the probability that node
A can always find a new relay in each time slot throughout the
entire duplication phase is9:

Θ
(

D
(logn)7

)∏
k=1

[
1−

(
1− 7 log n

n

)n−k−1
]

(61a)

≥

D
(logn)7∏
k=1

[
1− exp

(
−7(n− k) log n

n

)]
(61b)

≥

D
(logn)7∏
k=1

[
1− n−7(1− kn )

]
(61c)

≥
[
1− n−7

(
1− D

n(logn)7

)] D
(logn)7

. (61d)

Therefore, the probability that node A fails to find a new relay
in some time slot in the duplication phase is no more than:

1−
[
1− n−7

(
1− D

n(logn)7

)] D
(logn)7

(62a)

≤ D

(log n)7
n
−7
(

1− D
n(logn)7

)
(62b)

≤ n−2.5. (62c)

Thereby, the probability that there exists a node such that it
fails to find a new relay in some time slot in the duplication
phase is no more than n × n−2.5 = n−1.5 → 0, i.e., every
node is able to transmit to different relay nodes in different
time slots in the duplication phase a.a.s.. Thus, the duplication
phase is successfully a.a.s. and every source node sends out
Θ
(
D

5
3n−

2
3 (log n)−7

)
packets with each packet owned by

Θ(R) relays. There are in total Θ
(

D
(logn)7

)
relays associated

with one source node and these relays are different from each
other.

Now we turn to the capture phase. Denote the
Θ
(
D

5
3n−

2
3 (log n)−7

)
packets sent out by node i as{

(i, 1), (i, 2), ...,
(
i,D

5
3n−

2
3 (log n)−7

)}
. Without loss of

generality, we assume that the destination node of source node
i is node i+ 1. Denote the super-cell with node i+ 1 located

9In the derivation, we may omit some constant factors which do not affect
the scaling results
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in super-cell S. Denote the cell with node i+ 1 located in cell
C. Consider one arbitrary packet of node i, say (i, k), where
1 ≤ k ≤ D

5
3n−

2
3 (log n)−7. Consider an arbitrary fixed time

slot t in the capture phase. Denote D(i,k)[t] the event that the
packet (i, k) is delivered at time slot t. Then, D(i,k)[t] must
occur if the following two conditions hold.

1) One duplicate packet of (i, k) is a deliverable packet.
None of Other duplicate packets of (i, s), 1 ≤ s ≤
D

5
3n−

2
3 (log n)−7, is deliverable. Denote D1

(i,k)[t] this
event. Assume the mentioned deliverable duplicate packet
is (i, k, j), i.e., node j is the relay node which contains
the duplicate packet.

2) Except one deliverable packet from node j to node i+ 1
and one possible deliverable packet from node i + 1 to
node j, there is no other deliverable packet inside the
super-cell S. Let D2

(i,k)[t] denote this event.

Note that a duplicate packet of (i, k) is deliverable if and only
if it is located in the cell C. Since there are in total R duplicate
packet of (i, k) and D

(logn)7 duplicate packets sent out from
node i, we have:

Pr
(
D1

(i,k)[t]
)

=
RL2

n

(
1− L2

n

)D(logn)−7

(63a)

=
(log n)2

D

(
1− n− 2

3D−
1
3 (log n)2

)D(logn)−7

(63b)

=
(log n)2

D
. (63c)

In the derivation, we omit the constant terms since they will not
influence our scaling results. The number of duplicate packets
which are destined to node j is D

(logn)7 . Denote E1 the event
that besides the possible duplicate packet owned by node i+1,
at least one duplicate packet destined to j is deliverable. We
have:

Pr(E1) = 1−
(

1− L2

n

) D
(logn)7

(64a)

= D
2
3n−

2
3 (log n)−5 → 0. (64b)

Consider one arbitrary node p, where 1 ≤ p ≤ n, p 6= i+1, p 6=
j. Denote Ep2 the event that node p is within the super-cell S.
Then,

Pr (Ep2 ) = Θ

(
L4

n

)
= Θ

(
n−

1
3D−

2
3 (log n)4

)
. (65)

Denote Ep3 the event that there is at least one deliverable packet
destined to node p. Thus,

Pr
(
Ep3

∣∣∣∣Ep2) = 1−
(

1− L2

n

) D
(logn)7

= D
2
3n−

2
3 (log n)−5.

(66)
Hence, combining (65) and (66) yields:

Pr
(
Ep2
⋂
Ep3
)

= n−1(log n)−1. (67)

Thus, the probability that there exists a node p such that
Ep2
⋂
Ep3 occurs is no more than:

nPr
(
Ep2
⋂
Ep3
)

=
1

log n
→ 0. (68)

Combing (64b) and (68), we obtain Pr
(
D2

(i,k)[t]

∣∣∣∣D1
(i,k)[t]

)
→

1. Hence, from (63c), we have:

Pr
(
D(i,k)[t]

)
≥ Pr

(
D2

(i,k)[t]
⋂
D1

(i,k)[t]
)
≥ Ω

(
(log n)2

D

)
.

(69)
Thereby, the probability that the packet (i, k) cannot be de-
livered successfully to its destination node i + 1 is no more
than:

D∏
t=1

[
1− Pr

(
D(i,k)[t]

)]
≤
[
1− (log n)2

D

]D
(70a)

≤ exp
[
−(log n)2

]
(70b)

≤ n− logn. (70c)

We notice that the number of packets in the network is no
more than n × D

5
3n−

2
3 = O

(
n2
)
. Hence, the probability

that at least one packet cannot be delivered successfully to its
destination node is no more than: n2 × n− logn → 0. In other
words, every packet generated in the previous duplication phase
can be successfully delivered to its destination in the capture
phase a.a.s.. Thus, the proposed scheme achieves a per-node
throughput of:

λ = Ω

(
1

D

W

(log n)5
D

5
3n−

2
3 (log n)−7

)
(71a)

= Ω

(
W

(
D

n

) 2
3

(log n)−12

)
. (71b)

Remark 7.1: Note that the proposed scheme is subject
to the secure protocol model and satisfies Assumption 1.
Thus, according to Theorem 5.1, it is also feasible un-
der the secure physical model. So, a throughput of λ =

Ω
(
W
(
D
n

) 2
3 (log n)−12

)
is also achievable under the secure

physical model. By choosing the involved constants properly,
we could further assure that Assumption 1, 2 and 3 are all
satisfied by our proposed scheme. Hence, combining Theorem
6.1 and the proposed scheme, we claim that under the four
assumptions, the optimal secrecy capacity-delay tradeoff is
λ = Θ̃

(
W
(
D
n

) 2
3

)
.

VIII. DISCUSSION

For wireless networks without eavesdroppers, the optimal
capacity-delay tradeoff under the i.i.d. fast mobility model
is shown to be λ = Θ

(
W
√

D
n

)
by Ying et al. [19]. In

contrast, our results indicate that as long as the number of
eavesdroppers are sufficiently large, i.e., ψe = ω(1), under a
few technical assumptions, the optimal secure capacity-delay
tradeoff is λ = Θ̃

(
W
(
D
n

) 2
3

)
. Thus, we have the following

three observations:
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Secure Result in [11]

Fig. 2. A comparison between the capacity-delay tradeoff result of this paper
and that of [11] and [19] (we assume that the link data rate is W = 1). The
red line represents the optimal secure capacity-delay tradeoff in this paper. The
blue line corresponds to the optimal insecure capacity-delay tradeoff presented
in [19], and the green one is the secure capacity-delay tradeoff achieved in [11]
when the number of eavesdroppers is larger than that of the legitimate nodes,
i.e., ψe = ω(1).

1) The secrecy constraint has a great impact on the opti-
mal capacity-delay tradeoff. Specifically, given a delay
constraint, it degrades the throughput capacity compared
with networks without eavesdroppers, which is illustrated
by the red line and blue line in Figure 2. An intuitive
explanation of this degradation is as follows. So as to
degrade the channels at the eavesdroppers, the active
receivers should generate sufficiently large artificial noise.
However, the noise generated by a receiver also increases
the interference at the other receivers and hence sup-
presses the SINR at them. In order to control this kind of
interference to be small enough, we should guarantee that
the distance between simultaneous transmissions is large
enough. The quantitative expression of this thought is
just the proposed secure protocol model, which is stricter
than the insecure protocol model and naturally leads to
network performance degradation.

2) It is shown in [10] that secrecy constraint will not
influence the capacity of static networks10. However,
according to our results, the optimal capacity-delay trade-
off is significantly influenced by the secrecy constraint
in MANETs. The main reason of this difference is
discussed as follows. As can be seen from the secure
protocol model, the secrecy constraint has significant
punishment on long-distance transmissions: in insecure
networks, a transmission of distance r consumes Θ

(
r2
)

radio resource while in secure networks, a transmission
of distance r consumes Θ

(
r4
)

radio resource. Hence,
if the transmission range is very small, i.e., r = Θ̃(1),

10Our system model corresponds to the non-colluding model in [10]. For
static networks, it is shown in [10] that in non-colluding case, the per-node
capacity is always 1√

n
, which is not affected by the secrecy constraint.

the secrecy constraint does not impact the network
capacity significantly, as is the case for the capacity
achieving scheme in static networks [10]. However, if
the transmission range is large, the secrecy constraint will
degrade the network performance heavily. In MANETs,
in order to satisfy the delay constraint D, we need
to schedule long-distance transmissions in the capture
phase. Compared with the insecure case, these long-
distance transmissions will consume more radio resource
in the secure case, which is the essential reason of the
network capacity degradation. The above argument also
explains an interesting phenomenon in Figure 2: the gap
between the insecure result in [19] and the secure result in
this paper decreases as the delay constraint D increases
and vanishes when D = Θ(n). The reason is that as
D increases, we are able to schedule transmissions with
smaller transmission range, which reduces the impact of
the secrecy constraint.

3) As can be seen from our results, the density of the
eavesdroppers does not affect the capacity-delay tradeoff
as long as it is much larger than 1, i.e., ψe = ω(1). This
indicates that adding more eavesdroppers into the net-
work will not further degrade the network performance.
Actually, this is not surprising. As long as ψe = ω(1), we
can already ensure that, for every active transmitter, there
is an eavesdropper near enough, i.e., within a distance of
1, to it a.a.s.. This eavesdropper is the critical one since it
has the highest SINR for signals sent by the transmitter.
To guarantee secrecy, we essentially need to guarantee
that the SINR at this eavesdropper is small enough. It is
meaningless to set eavesdroppers even nearer due to the
path loss model. Hence, adding more eavesdroppers will
not help degrade the network performance any more.

4) If unlike the scenario considered here, the number of
eavesdroppers is less than that of the legitimate nodes, the
capacity-delay tradeoff still remains unknown. But, we
observe that the capacity-delay tradeoff must lie between
that in paper [19] (no eavesdroppers) and that in this
paper (large number of eavesdroppers). In other words,
if we plot the capacity-delay tradeoff curve in Figure 2,
it must lie between the blue line and the red line.

A closely related work of this paper is [11]. Compared with
this paper, a major difference is that the authors of [11] do
not allow active receivers to generate artificial noise. Rather,
they only let each transmitter wait until the intended receiver
is sufficiently near and then transmit messages securely. Under
this secrecy scheme, when the number of eavesdroppers is
larger than that of legitimate nodes n, i.e., ψe = ω(1), the
optimal per-node throughput capacity is λ = Θ

(
W
nψe

)
for

whatever delay constraint D. This corresponds to the green
line in Figure 2. Our result evidently enhances this result to
be λ = Θ̃

(
W
(
D
n

) 2
3

)
, which corresponds to the red line in

Figure 2. This shows the great benefit we could obtain from
letting active receivers generate artificial noise.
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IX. CONCLUSION AND FUTURE WORK

Secrecy is a major concern when designing wireless net-
works. This paper studies the optimal secrecy capacity-delay
tradeoff in MANETs. We propose the secure protocol model
to assist analysis, which is also applicable to not only our
system model but also many other network models. We prove
the equivalence between the proposed secure protocol model
and the widely accepted secure physical model under a few
technical assumptions. Based on the secure protocol model,
a tractable framework of analyzing the secrecy capacity-delay
tradeoff is established. We derive an upper bound on the
capacity-delay tradeoff and then present a capacity-achieving
scheme, which justifies the optimality of our result. By allowing
receivers to generate artificial noise, our result outperforms that
of [11].

There are several directions for future work. First, real world
wireless networks are usually heterogeneous to some extent,
which has great impact on the network capacity and delay
[25, 26]. Hence, it is interesting to know the impact of the
network heterogeneity on the mobile or static secrecy networks.
Second, instead of the i.i.d. mobility model, people may want
to know the secrecy capacity-delay tradeoff with more real-
istic mobility model, e.g., random walk mobility. Third, in
some practical applications, the traffic pattern is multicast or
converge-cast instead of the unicast considered in this paper.
The impact of secrecy constraint on the network performance
under those traffic patterns needs to be further investigated.
We remark that the proposed secure protocol model is still
applicable for the situations mentioned above and extensions
to various network models are tractable under our framework.

ACKNOWLEDGEMENT

This work is partially supported by NSF China (No.
61325012, 61271219, 61221001, 61428205); China Ministry
of Education Doctor Program(No.20130073110025); Shanghai
Basic Research Key Project (No.11JC1405100, 13510711300,
12JC1405200); Shanghai International Cooperation Project:
(No. 13510711300).

REFERENCES

[1] C. Shannon, “Communication theory of secrecy system,”
in J. Bell. Syst. Tech, vol. 28, pp. 656-715, 1948.

[2] A. Wyner, “The wire-tap channel,” in J. Bell. Syst. Tech,
vol. 54, no. 8, pp. 1355-1367, Oct. 1975.

[3] I. Csiszar and J. Korner, “Broadcast channels with con-
fidential messages,” in IEEE Trans. Information Theory,
vol. 24, no. 3, pp. 339-348, July 1978.

[4] S. Goel and R. Negi, “Guaranteeing secrecy using artifical
noise,” in IEEE Trans. Wireless Communications, vol. 7,
no. 6, pp. 2180-2189, 2008.

[5] E. Perron, S. Diggavi, E. Telatar, “On cooperative wireless
network secrecy,” in Proc. IEEE INFOCOM, Rio de
Janeiro, Brazil, Apr. 2009.

[6] T. Liu and S. Shamai, “A note on the secrecy capacity
of the multiple antenna wiretap channel,” in IEEE Trans.

Information Theory, vol. 55, no. 6, pp. 2547-2553, June
2009.

[7] A. Khist and G. Wornell, “Secure transmission with mul-
tiple antennas- part II: the MIMOME wiretap channel,”
in IEEE Trans. Information Theory, vol. 56, no. 11, pp.
5515-5532, 2010.

[8] S. Vasudevan, D. Goeckel, D. Towsley, “Security-capacity
trade-off in large wireless networks using keyless secrecy,”
in Proc. ACM MobiHoc, Chicago, Illinois, USA, Sept.
2010.

[9] C. Capar, D. Goeckel, B. Liu, D. Towsley, “Secret com-
munication in large wireless networks without eavesdrop-
per location information,” in Proc. INFOCOM, pp. 1152-
1160, 2012.

[10] J. Zhang, L. Fu, X. Wang, “Asymptotic analysis on
secrecy capacity in large-scale wireless networks,” in
IEEE/ACM Trans. Netw., vol. 22, no. 1, pp. 66-79, 2014.

[11] Y. Liang, H. Poor, L. Ying, “Secrecy throughput of
MANETs under passive and active attacks,” in IEEE
Trans. Information Theory, vol. 57, No. 10, pp. 6692-
6702, 2011.

[12] J. Choiy, M. Jainy, K. Srinivasany, P. Levis, S. Katti,
“Achieving single channel, full duplex wireless commu-
nication,” in ACM Mobicom, Chicago, USA, Sept. 2010.

[13] P. Gupta and P. R. Kumar, “The capacity of wireless
networks,” in IEEE Transactions on Information Theory,
vol. 46, pp. 388-404, March 2000.

[14] M. Grossglauser and D. Tse, “Mobility increases the
capacity of ad hoc wireless networks,” in IEEE/ACM
Transactions on Networking, vol. 10, pp. 477-486, 2002.

[15] M. J. Neely and E. Modiano, “Capacity and delay trade-
offs for ad-hoc mobile networks,” in IEEE Transactions
on Information Theory, vol. 51, no. 6, pp. 1917-1937, June
2005.

[16] X. Lin and N. Shroff, “The fundamental capacity-delay
tradeoff in large mobile ad hoc networks,” in Proc. Third
Annu. Mediterranean Ad Hoc Netw. Workshop, 2004.

[17] A. EI Gammal, J. Mammen, B. Prabhakar, D. Shah,
“Optimal throughput-delay scaling in wireless networks-
part I: the fluid model,” in IEEE Trans. Information
Theory, vol. 52, no. 6, pp. 2568-2592, Jun. 2006.

[18] A. EI Gammal, J. Mammen, B. Prabhakar, D. Shah,
“Optimal throughput-delay scaling in wireless networks-
part II: constant-size packets,” in IEEE Trans. Information
Theory, vol. 52, no. 11, pp. 5111-5116, Nov. 2006.

[19] L. Ying, S. Yang, R. Srikant, “Optimal delay-throughput
tradeoffs in mobile ad hoc networks,” in IEEE Trans.
Information Theory, vol. 54, no. 9, pp. 4119-4143, Sep.
2008.

[20] J. Mammen and D. Shah, “Throughput and delay in
random wireless networks with restricted mobility,” in
IEEE Trans. Information Theory, vol. 53, no. 3, pp. 1108-
1116, Mar. 2007.

[21] P. Li, Y. Fang, J. Li, “Throughput, delay, mobility in
wireless ad hoc networks,” in Proc. IEEE INFOCOM, San



15

Diego, CA, Mar. 2010.
[22] X. Wang, W. Huang, S. Wang, J. Zhang, C. Hu, “De-

lay and capacity tradeoff analysis for motioncast,” in
IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1354-1367,
Oct. 2011.

[23] J. Zhang, X. Wang, X. Tian, Y. Wang, X. Chu, Y.
Cheng, “Optimal multicast capacity and delay tradeoffs in
MANETs,” to appear in IEEE Trans. Mobile Computing,
2013.

[24] X.-Y. Li, “Multicast capacity of wireless ad hoc net-
works,” in IEEE/ACM Trans. Netw., vol. 17, no. 3, pp.
950-961, Jun. 2009.

[25] G. Alfano, M. Garetto, and E. Leonardi,“Capacity scaling
of wireless networks with inhomogeneous node density:
upper bounds,” in IEEE J. Sel. Areas Commun., vol. 27,
no. 7, pp. 1147-1157, Sep. 2009.

[26] G. Alfano, M. Garetto, and E. Leonardi,“Capacity scaling
of wireless networks with inhomogeneous node density:
lower bounds,” in Proc. IEEE INFOCOM, 2009, pp. 1890-
1898.

[27] B. Liu, P. Thiran, D. Towsley, “Capacity of a wireless
ad hoc network with infrastruture,” in ACM MobiHoc’07,
New York, NY, USA, 2007.

[28] A. Ozgur, O. Leveque, D. Tse, “Hierarchical cooperation
achieves optimal capacity scaling in ad hoc networks,”
in IEEE Trans. Information Theory, vol. 53, no. 10, pp.
3549-3572, 2007.

[29] W. Huang and X. Wang, “Capacity scaling of general
cognitive networks,” in IEEE/ACM Trans. on Networking,
vol 20, no. 5, pp. 1501-1513, 2012.

Xuanyu Cao received the B.E. degree in electronic
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2013. He won the first prizes
in Chinese National Mathematics Contest in 2007
and 2008. He received the Jimmy Lin scholarship
from the Department of Electrical and Computer
Engineering at the University of Maryland, College
Park, MD, where he is now pursuing the Ph.D. degree.
His current research interests are in the area of data
science, network science, social networking and social
media.

Jinbei Zhang received his B. E. degree in Electronic
Engineering from Xidian University, Xi’an, China, in
2010, and is currently pursuing the Ph.D. degree in
electronic engineering at Shanghai Jiao Tong Univer-
sity, Shanghai, China.

His current research interests include network se-
curity, capacity scaling law and mobility models in
wireless networks.

Luoyi Fu received the B.E. degree in electronic
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2009, and is currently pursuing
the Ph.D. degree in electronic engineering under the
supervision of Prof. Xinbing Wang at Shanghai Jiao
Tong University.

Her research of interests are in the area of scaling
laws analysis in wireless networks and performance
evaluation in social networks.

Weijie Wu is an Assistant Professor in School of
Electronic, Information and Electrical Engineering,
Shanghai Jiao Tong University. Before that, he was a
research fellow working with Dr. Richard T.B. Ma in
National University of Singapore, and a postdoctoral
fellow working with Prof John C.S. Lui at The
Chinese University of Hong Kong. He obtained his
Ph.D. degree in computer science from The Chi-
nese University of Hong Kong in August 2012, and
Bachelor’s degree in electronic & information science
and technology from Peking University in July 2008.

When he was a Ph.D. student, he spent two months at National University
of Singapore working as a research intern. His current research interests
are in computer networks from mathematical modelling, data analytics, and
economic perspectives. In particular, he is recently interested in network
science (e.g., online social networks, large scale network with data implications,
etc.), network economics (e.g, game theoretic analysis on communication
networks, pricing and incentive design in network applications, etc.), and
network optimization (e.g., resource allocation and pricing in cloud computing,
information centric networks, etc). His personal interests include table-tennis,
badminton and hiking.

Xinbing Wang received the B.S. degree (with hons.)
from the Department of Automation, Shanghai Jiao-
tong University, Shanghai, China, in 1998, and the
M.S. degree from the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China, in 2001. He received the Ph.D. degree, major
in the Department of electrical and Computer Engi-
neering, minor in the Department of Mathematics,
North Carolina State University, Raleigh, in 2006.
Currently, he is a professor in the Department of
Electronic Engineering, Shanghai Jiaotong University,

Shanghai, China. Dr. Wang has been an associate editor for IEEE/ACM
Transactions on Networking and IEEE Transactions on Mobile Computing,
and the member of the Technical Program Committees of several conferences
including ACM MobiCom 2012, ACM MobiHoc 2012-2014, IEEE INFOCOM
2009-2014.


