Social Network De-anonymization with Overlapping Communities: Analysis, Algorithm and Experiments

Xinyu Wu,¹ Zhongzhao Hu,¹ Xinzhe Fu,¹ Luoyi Fu,¹ Xinbing Wang,¹ Songwu Lu.²

¹Shanghai Jiao Tong University, China ²University of California, Los Angeles

April 18, 2018

Contents

Introduction

- Problem Formulation
- 3 Analytical Aspect
- Algorithmic Aspect
- 5 Experimental Aspect
- 6 Conclusion

- 2 Problem Formulation
- 3 Analytical Aspect
- Algorithmic Aspect
- 5 Experimental Aspect
- 6 Conclusion

Social Networks

• We are in many social networks nowadays.

Booming Social Networks

Social networks explode these days.

More Social Networks

Larger Social Networks 5/44

Privacy Exposed to Public

• Private information becomes more often released to public.

Xinyu (Xinyu Wu) Wu Senior Student-Shanghai Jiao Tong University Shanghai Jiao tong University - Shanghai Jiao Tong University Minhang District, Shanghai, China - 46 &

It gives opportunities for adversaries to identify users.

• How to protect?

Anonymize Yourself!

- Anonymization : Removing Personal Identifiers.
 - IDs, Names, Records, Institutes...

• Is it safe?

A Toy Example

IF : Another identical un-anonymized networks ?

Anonymized Facebook : Un-Anonymized Linkedin :

- It is trivial to identify all users in Facebook.
- It is NOT safe.

A Toy Example

- Social networks on different platforms are often different.
 - Friends may/may not be connected in social networks.

Anonymized Facebook : Un-Anony

Un-Anonymized Linkedin :

• Can we identify users in Facebook now?

Social Network De-anonymization

- De-anonymization is a way to identify users in an anonymized network by another un-anonymized network.
- We need to find a mapping from un-anonymized networks to anonymized networks.

10/44

Different Versions of De-anonymization

• Seeded De-anonymization : There are pre-mappings.

• Seedless De-anonymization : No pre-mappings.

Different Versions of De-anonymization

- De-anonymization with Communities :
 - Social cliques.

Related Work

• Pioneering Works :

- A. Narayanan and V. Shmatikov, "De-anonymizing social networks", in IEEE Symposium on Security and Privacy, pp. 173 – 187, 2009. (Seeded)
- P. Pedarsani and M. Grossglauser, "On the privacy of anonymized networks" in Proc. ACM SIGKDD, pp. 1235 – 1243, 2011. (Seedless)

• De-anonymization with Communities :

- E. Onaran, G. Siddharth and E. Erkip, "Optimal de-anonymization in random graphs with community structure", arXiv preprint arXiv :1602.01409, 2016.
- X. Fu, Z. Hu, Z. Xu, L. Fu and X. Wang, "De-anonymization of Networks with Communities : When Quantifications Meet Algorithms", IEEE Globecom, 2017.

Our Contributions

In this work, we

- study the effect of overlapping communities on seedless de-anonymization;
- target at minimizing the expected de-anonymization error initially;
- provide a systematic study for the above setting, including model, theory, algorithm, and experiments on real data.

- Problem Formulation
 - 3 Analytical Aspect
- 4 Algorithmic Aspect
- 5 Experimental Aspect
- 6 Conclusion

Problem Formulation

How to build the model?

Observation :

- Connection \rightarrow Friends.
- Friends $\not\rightarrow$ Connection.

Characterization :

- Connection : Social Networks (Exposed).
- Friends : Relationship Networks (Underlying).

Modeling :

- Social Network partially presents Relationship Network;
- Social network : a sampling of Relationship Network.

Problem Formulation

- G(V, E) : The Underlying Relationship Networks.
- $G_1(V, E_1)$: The Anonymized Networks.
- $G_2(V, E_2)$: The Un-anonymized Networks.
- Parameters : $\theta = \{\{p\}_{ij}, s_1, s_2\}.$

Social Network De-anonymization

Definition (Social Network De-anonymization)

Given $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, and $\theta = \{\{p_{ij}\}, s_1, s_2\}$, the goal is to construct a mapping π that is closest to the correct mapping π_0 .

 $\pi_{0} = \{(1,1), (2,6), (3,3), (4,4), (5,5), (6,2), (7,8), (8,7), (9,9)\}$

Overlapping Communities

Overlapping Stochastic Block Model (OSBM)

- Overlapping communities.
- Higher overlapping, Higher connection possibility.

A simple version of OSBM :

$$P((i,j) \in E) \triangleq p_{ij} = \frac{1}{1 + ae^{-x_{ij}}}$$

- x : number of common communities of user *i* and *j*.
- *a* : the density parameter.

Overlapping Communities

$$\mathsf{P}((i,j)\in E) riangleq \mathsf{p}_{ij}=rac{1}{1+ae^{-x_{ij}}}$$

Example :

• $P((1,4) \in E) = p_{14} = \frac{1}{1+ae^{-1}}$ • $P((2,5) \in E) = p_{25} = \frac{1}{1+a}$ • $P((3,4) \in E) = p_{34} = \frac{1}{1+ae^{-3}}$

- Problem Formulation
- 3 Analytical Aspect
- Algorithmic Aspect
- 5 Experimental Aspect
- 6 Conclusion

Minimization of Expected Error

- Goal : minimizing the expected de-anonymization error.
- De-anonymization Error :
 - A mapping $\pi \leftrightarrow A$ permutation matrix Π_0

$$\pi = \{(1,2),(2,1),(3,3)\} \leftrightarrow \Pi = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

• $d(\Pi, \Pi_0) = \frac{1}{2} ||\Pi - \Pi_0||_F^2$ is the number of error mappings.

- Expected :
 - Minimizing $\mathbf{E}_{\Pi_0}\{d(\Pi,\Pi_0)\},\$
 - Expectation over different ground-truth Π_0 .
 - Minimum Mean Square Error (MMSE)

Minimum Mean Square Error (MMSE)

• We intend to find Π as a minimizer of the expected de-anonymization error.

MMSE Estimator

Given G_1 , G_2 and θ , the MMSE estimator is an estimation of Π_0 minimizing the number of mistakenly matched nodes in expectation, which is

$$\begin{split} \hat{\Pi} &= \arg\min_{\Pi \in \Pi^n} \mathbf{E}_{\Pi_0} \{ d(\Pi, \Pi_0) \} \\ &= \arg\min_{\Pi \in \Pi^n} \sum_{\Pi_0 \in \Pi^n} ||\Pi - \Pi_0||_F^2 Pr(\Pi_0 | G_1, G_2, \theta) \end{split}$$

where Π^n is the set of $n \times n$ permutation matrices.

Minimum Mean Square Error (MMSE)

Theorem 1

Given G_1 , G_2 and θ , the MMSE estimator can be equivalently reformed as

$$\hat{\boldsymbol{\Pi}} = \arg \max_{\boldsymbol{\Pi} \in \boldsymbol{\Pi}^n} \sum_{\boldsymbol{\Pi}_0 \in \boldsymbol{\Pi}^n} ||\boldsymbol{\Pi} - \boldsymbol{\Pi}_0||_F^2 ||\boldsymbol{W} \circ (\boldsymbol{\Pi}_0 \boldsymbol{A} - \boldsymbol{B} \boldsymbol{\Pi}_0)||_F^2,$$

where \circ means the Hadamard product, **W** satisfies that $\mathbf{W}(i,j) = \sqrt{w_{ij}}$ and $w_{ij} = \log\left(\frac{1-p_{c_i}c_j(s_1+s_2-s_1s_2)}{p_{c_i}c_j(1-s_1)(1-s_2)}\right)$.

- But, Is it easy to solve?
- It is NP-hard.

Transformation of MMSE

Transform and simplify the original problem.

•
$$\hat{\Pi} = \arg \max_{\Pi \in \Pi^n} \sum_{\Pi_0 \in \Pi^n} ||\Pi - \Pi_0||_F^2 ||\mathbf{W} \circ (\Pi_0 \mathbf{A} - \mathbf{B} \Pi_0)||_F^2$$
.

Weighted-Edge Matching Problem (WEMP)

Given $G_1(V, E_1)$, $G_2(V, E_2)$ and weight matrix **W**, the weight-edge matching problem is to find

$$ilde{\mathsf{\Pi}} = rg\min_{\mathsf{\Pi}\in\mathsf{\Pi}^n} ||\mathbf{W}\circ(\mathsf{\Pi}\mathbf{A}-\mathbf{B}\mathsf{\Pi})||_F^2$$

Validity of Transformation

Valid?

- In average case : valid based on Sequence Inequality.
- For a specific network : an approximation ratio with lower bound 0.5.

Outline

- Problem Formulation
- 3 Analytical Aspect
- Algorithmic Aspect
- 5 Experimental Aspect
- 6 Conclusion

Algorithmic Aspect

After transforming to WEMP, there are 2 crucial issues :

- Why does optimizing WEMP work?
 - The advantage of solving WEMP?
- How can we solve it ?
 - The mechanism for solving WEMP?

Optimality v.s. Complexity

Advantage of Solving WEMP

Aspect 1 : Advantage of WEMP

 Under mild conditions, the optimal solution of WEMP Π can make the error negligible.

29/44

• Negligible : Relative Node Mapping Error (RNME) \rightarrow 0.

$$\mathsf{RNME} = \frac{||\tilde{\Pi} - \Pi_0||_F^2}{||\Pi_0||_F^2}$$

Notation : $||\mathbf{W} \circ (\Pi \mathbf{A} - \mathbf{B}\Pi)||_F^2 = ||\Pi \hat{\mathbf{A}} - \hat{\mathbf{B}}\Pi||_F^2$

Advantage of Solving WEMP

Theorem 2

Given G_1 , G_2 , θ , **W**. Set

$$\begin{split} & \mathcal{K} = \min_{s,t,j} \{ (p_{c_s}c_j + p_{c_t}c_j) \min\{s_1, s_2\} \}, \\ & \mathcal{L} = \max_{s,t,j} \{ [(p_{c_s}c_j + p_{c_t}c_j) \max\{s_1, s_2\}]^2 \} \end{split}$$

If the following four conditions :

$$\bullet \ \frac{L}{K} = o(1)$$

• the minimizer of WEMP, $\tilde{\Pi}$, satisfies that $||\hat{\mathbf{A}} - \Pi_0 \hat{\mathbf{B}} \Pi_0^T||_F^2 / ||\hat{\mathbf{A}} - \tilde{\Pi} \hat{\mathbf{B}} \tilde{\Pi}^T||_F^2 = \Omega(1);$

• $||\hat{\mathbf{A}} - \Pi_0 \hat{\mathbf{B}} \Pi_0^T||_F^2 = o(Kn^2);$

• Π_0 and $\tilde{\Pi}$ keep invariant of the community representations,

hold, then the *RNME*, $||\tilde{\Pi} - \Pi_0||_F^2 / ||\Pi_0||_F^2$, can be upper bounded by the minimum value of WEMP, i.e., $||\hat{\mathbf{A}} - \Pi \hat{\mathbf{B}} \Pi^T||_F^2$, and as $n \to \infty$, *RNME* $\to 0$.

うへで 30/44

Advantage of Solving WEMP

- Why are the conditions mild?
- Take the example of **OSBM**.

•
$$a = \Omega(1)$$
.

- s = o(1) and $\hat{p} = 1 o(1)$, then $\hat{p} \log(\frac{1 \hat{p}(2s s^2)}{\hat{p}(1 s)^2}) = \hat{p} \log(1 + \frac{1 \hat{p}}{\hat{p}(1 s)^2}) \approx \frac{1 \hat{p}}{(1 s)^2} = o(1) = o(\min_{i,j} p_{C_i C_j})$, thus condition (iii) holds.
- Meanwhile s = o(1) makes condition (i) hold.
- Easy to verify that condition (ii),(iv) hold.

Mechanism for Solving WEMP

- Aspect 2 : Mechanism for WEMP
- Definitions :
 - Community Representation (C_i) : Communities {1,2,3,4}, vertex *i* in {1,3}, then $C_i = \{1,0,1,0\}$.
 - Community Representation Matrix (M) :
 - The *i*th row of **M** is C_i.

If
$$\begin{cases} 1 \to C_1 \\ 2 \to C_2 \\ 3 \to C_1, C_2 \end{cases}$$
 then $M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$.

Mechanism for Solving WEMP

Formulating WEMP :

 $\begin{array}{ll} \text{minimize} & \|\Pi \hat{\mathbf{A}} - \hat{\mathbf{B}}\Pi\|_{F}^{2} \\ \text{s.t. } \forall i \in V_{1}, \ \sum_{i} \Pi_{ii} = 1 \end{array}$ (1)

$$\forall j \in V_2, \sum_j \Pi_{ij} = 1$$

$$\forall i, i, \Pi_{ij} \in \{0, 1\}$$

$$(2)$$

$$\forall I, J, \Pi_{ij} \in \{0, 1\}, \tag{3}$$

$$\forall i \in V_1, C_i = C_{\pi(i)}. \tag{4}$$

Embedding Eqn. (4) into the objective function we get

$$F_0(\Pi) = ||\Pi \hat{\mathbf{A}} - \hat{\mathbf{B}}\Pi||_F^2 + \mu ||\Pi \mathbf{M} - \mathbf{M}||_F^2.$$

Idea of Algorithm Design

Problem Relaxation :

$$\begin{aligned} \Omega_0 &= \{ \Pi_{ij} \in \{0,1\} | \forall i, j, \sum_i \Pi_{ij} = 1, \sum_j \Pi_{ij} = 1 \}; \\ \Omega &= \{ \Pi_{ij} \in [0,1] | \forall i, j, \sum_i \Pi_{ij} = 1, \sum_j \Pi_{ij} = 1 \}. \end{aligned}$$

Convex-Concave Relaxation Method :

$$F(\Pi) = (1 - \alpha)F_1(\Pi) + \alpha F_2(\Pi)$$

- *F*₁ is the convex relaxation of *F*.
- *F*₂ is the concave relaxation of *F*.
- α is an adjustable parameter from [0, 1].

A simple way to obtain F_1 and F_2

Lemma 3

A way to get convex and concave relaxation is

$$F_{1}(\Pi) = F_{0}(\Pi) + \frac{\lambda_{min}}{2}(n - ||\Pi||_{F}^{2})$$
$$F_{2}(\Pi) = F_{0}(\Pi) + \frac{\lambda_{max}}{2}(n - ||\Pi||_{F}^{2})$$

Therefore we form our new objective function in CCOM as

$$F_{\xi}(\Pi) = (1 - \alpha)F_{1}(\Pi) + \alpha F_{2}(\Pi) = F_{0}(\Pi) + 2\xi(n - ||\Pi||_{F}^{2}),$$

where $\lambda_{min} (\lambda_{max})$ is the smallest (largest) eigenvalue of the Hessian matrix of $F_0(\Pi)$, and $\xi = (1 - \alpha)\lambda_{min} + \alpha\lambda_{max}$, $\xi \in [\lambda_{min}, \lambda_{max}]$.

An illustration of Convex-Concave Method

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 36/44

Main Algorithm

Main Algorithm

Algorithm 1: Convex-concave Based De-anonymization Algorithm (CBDA)

Input: Adjacent matrices A and B; Community assignment matrix M; Weight controlling parameter μ ; Adjustable parameters δ , $\Delta \xi$. **Output:** Estimated permutation matrix $\tilde{\Pi}$. 1: Form the objective function $F_0(\mathbf{\Pi})$ and $F(\mathbf{\Pi})$. 2: $\xi \leftarrow 0, k \leftarrow 1, \Pi_1 \leftarrow \mathbf{1}_{n \times n} / n$. Set ξ_m , the upper limit of ξ . 3: while $\xi < \xi_m$ and $\Pi_{\mathbf{k}} \notin \Omega_0$ do 4: while k = 1 or $|F(\Pi_{k+1}) - F(\Pi_k)| \ge \delta$ do $\mathbf{X}^{\perp} \leftarrow \arg\min_{\mathbf{X}^{\perp}} \operatorname{tr}(\nabla_{\mathbf{\Pi}_{\mathbf{k}}} \widetilde{F}(\mathbf{\Pi}_{\mathbf{k}})^{T} \mathbf{X}^{\perp}), \text{ where } \mathbf{X}^{\perp} \in \Omega.$ 5: $\gamma_k \leftarrow \arg \min_{\gamma} F(\mathbf{\Pi}_{\mathbf{k}} + \gamma(\mathbf{X}^{\perp} - \mathbf{\Pi}_{\mathbf{k}})), \text{ where } \gamma_k \in [0, 1].$ 6: $\Pi_{k+1} \leftarrow \Pi_k + \gamma_k (\mathbf{X}^{\perp} - \Pi_k), \ k \leftarrow k+1.$ 7: 8: end while 9: $\xi \leftarrow \xi + \Delta \xi$. 10: end while

Convergence Proof

Lemma 4

CBDA converges and the final output is a permutation matrix in the original feasible region Ω_0 .

Proof sketch :

$$\begin{split} & F_{\xi}(\Pi_{k+1}) \leq F_{\xi}(\Pi_{k}) + \gamma_{k}(F_{\xi}(\Pi^{\xi}) - F_{\xi}(\Pi_{k})) + \gamma_{k}\Delta R_{k}. \\ & F_{\xi}(\Pi_{k+1}) - F_{\xi}(\Pi^{\xi}) \\ & \leq \prod_{i=1}^{k} (1-\gamma_{i})\Delta\xi(||\Pi^{\xi-\Delta\xi}||_{F}^{2} - ||\Pi^{\xi}||_{F}^{2}) + \sum_{i=1}^{k} \gamma_{i}\prod_{j=1}^{k-i} (1-\gamma_{j})\Delta R_{i}. \end{split}$$

Outline

- Problem Formulation
- 3 Analytical Aspect
- Algorithmic Aspect
- 5 Experimental Aspect
- 6 Conclusion

Experimental Aspect

Synthetic Networks :

Notation	Definition	Range
N	Number of Nodes	{500, 1000, 1500, 2000}
S	Sampling Probability ($s_1 = s_2 = s$)	0.3-0.9
а	OSBM Parameter	{3, 5, 7, 9}
η	Community Ratio	{0.05, 0.1}
OL/NOL	Overlapping or Non-Overlapping	{OL, NOL}

Experimental Aspect

Sampled Social Networks :

Fig. 8: Experiments on Sampled Real Social Networks.

Cross-Domain Networks :

41/44

Outline

- Problem Formulation
- 3 Analytical Aspect
- 4 Algorithmic Aspect
- 5 Experimental Aspect

Conclusion

Conclusion :

- De-anonymization can be achieved under mild conditions.
- Overlapping communities benefits de-anonymization.

Future directions :

- Theoretical bounds for successful de-anonymization;
- Partial overlapping users;
- Multilevel network de-anonymization.

Thanks!

4日 > 4日 > 4目 > 4目 > 4目 > 目 のQで
44/44