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Introduction

Social Networks

@ We are in many social networks nowadays.




Introduction

Booming Social Networks

@ Social networks explode these days.
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Introduction

Privacy Exposed to Public

@ Private information becomes more often released to public.
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@ It gives opportunities for adversaries to identify users.
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@ How to protect ?



Introduction

Anonymize Yourself !

@ Anonymization : Removing Personal Identifiers.
o IDs, Names, Records, Institutes...

Un-anonymized Facebook Anonymized Facebook
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@ Isitsafe?



Introduction

A Toy Example

@ IF : Another identical un-anonymized networks ?

Anonymized Facebook :  Un-Anonymized Linkedin :

@ ltis trivial to identify all users in Facebook.
@ It is NOT safe.



Introduction

A Toy Example

@ Social networks on different platforms are often different.
e Friends may/may not be connected in social networks.

Anonymized Facebook :  Un-Anonymized Linkedin :

@ Can we identify users in Facebook now ?



Introduction

Social Network De-anonymization

@ De-anonymization is a way to identify users in an
anonymized network by another un-anonymized network.

@ We need to find a mapping from un-anonymized networks
to anonymized networks.

o1+ A
2+ B
3« C
4+ D
) 5« E
@6« F
07+ @G
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Different Versions of De-anonymization

@ Seeded De-anonymization : There are pre-mappings.
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Introduction

Different Versions of De-anonymization

@ De-anonymization with Communities :
@ Social cliques.
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Related Work

@ Pioneering Works :

@ A. Narayanan and V. Shmatikov, “De-anonymizing social
networks”, in IEEE Symposium on Security and Privacy, pp.
173 — 187, 2009. (Seeded)

e P. Pedarsani and M. Grossglauser, “On the privacy of
anonymized networks” in Proc. ACM SIGKDD, pp.

1235 — 1243, 2011. (Seedless)
@ De-anonymization with Communities :

e E. Onaran, G. Siddharth and E. Erkip, “Optimal
de-anonymization in random graphs with community
structure”, arXiv preprint arXiv :1602.01409, 2016.

o X.Fu, Z. Hu, Z. Xu, L. Fu and X. Wang, “De-anonymization
of Networks with Communities : When Quantifications Meet
Algorithms”, IEEE Globecom, 2017.
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Introduction

Our Contributions

In this work, we

@ study the effect of overlapping communities on seedless
de-anonymization ;

@ target at minimizing the expected de-anonymization error
initially ;

@ provide a systematic study for the above setting, including
model, theory, algorithm, and experiments on real data.
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Problem Formulation

Problem Formulation

@ How to build the model ?

@ Observation :

@ Connection — Friends.
e Friends 4 Connection.

@ Characterization :

e Connection : Social Networks (Exposed).
e Friends : Relationship Networks (Underlying).

@ Modeling :

@ Social Network partially presents Relationship Network ;
e Social network : a sampling of Relationship Network.
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Problem Formulation

Problem Formulation

//
, /
G, ® °

@ G(V, E) : The Underlying Relationship Networks.
@ Gy(V, E;) : The Anonymized Networks.
@ Gy(V, Ey) : The Un-anonymized Networks.

@ Parameters : 0 = {{p}j, s1, S}
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Problem Formulation

Social Network De-anonymization

Definition (Social Network De-anonymization)

Given Gy = (V,Eq), Go = (V,Ep), and 0 = {{p;}, s1, S2}, the
goal is to construct a mapping = that is closest to the correct
mapping mo.

mo ={(1,1),(2,6),(3,3),(4,4),(5.5),(6,2),(7,8),(8,7),(9,9)}
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Problem Formulation

Overlapping Communities

@ Overlapping Stochastic Block Model (OSBM)

e Overlapping communities.
e Higher overlapping, Higher connection possibility.

A simple version of OSBM :

1

. . A T
P(i.J) € B) 2 py = 7o

@ x : number of common communities of user / and j.
@ a:the density parameter.
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Problem Formulation

Overlapping Communities

Example :

o P((1,4) € E) = pyg =

]
TTae T
® P((2,5) € E) = ps = 113

® P((3,4) € E)=pas=

1
1+ae—3
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Analytical Aspect

Minimization of Expected Error

@ Goal : minimizing the expected de-anonymization error.

@ De-anonymization Error :
o A mapping 7 < A permutation matrix M
010
m={(1,2),(2,1),(3,3)} «+»N=1{1 0 0
0 0 1

e d(M,Mo) = [|M — Mp||2 is the number of error mappings.
@ Expected :

e Minimizing En,{d(M,Mo)},
@ Expectation over different ground-truth My.

@ Minimum Mean Square Error (MMSE)
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Analytical Aspect

Minimum Mean Square Error (MMSE)

@ We intend to find N as a minimizer of the expected
de-anonymization error.

MMSE Estimator

Given Gy, G, and 0, the MMSE estimator is an estimation of g
minimizing the number of mistakenly matched nodes in
expectation, which is

M= arg rr]r;i[%]n En,{d(M,Mo)}

= arg I_r|r€"|!|1” Z Hrl - n0||%Pr(n0|G1> 6270))
Moenn

where " is the set of n x n permutation matrices.
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Analytical Aspect

Minimum Mean Square Error (MMSE)

Given Gy, G» and 6, the MMSE estimator can be equivalently
reformed as

fM=argmax 3 || —Mo||Z|W o (MoA — BIo)|[Z,
Mpen”

where o means the Hadamard product, W satisfies that

- 1—pc;c;(s1+52—5152)
W(7.j) = v/wj and w; = log ( Poc,(T—sn(1=s) )

@ But, Is it easy to solve ?

@ Itis NP-hard.
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Analytical Aspect

Transformation of MMSE

@ Transform and simplify the original problem.

@ M =argmaxnen~ >n,cno [N — Mol[2||W o (MoA — BIMp)||2.

Weighted-Edge Matching Problem (WEMP)

Given G1(V, Ey), Go(V, Ez) and weight matrix W, the
weight-edge matching problem is to find

N =arg min [|Wo (NA - BN)|%
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Analytical Aspect

Validity of Transformation

M=argmax » (|- Moll|[W o (MoA — BIo)|[Z
€ Moen”?
I ?
= in [|Wo (NMA — BM)||2
arg min |[Wo ( )IIF
Valid ?
@ In average case : valid based on Sequence Inequality.

@ For a specific network : an approximation ratio with lower
bound 0.5.
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Algorithmic Aspect

Algorithmic Aspect

After transforming to WEMP, there are 2 crucial issues :
@ Why does optimizing WEMP work ?
e The advantage of solving WEMP ?
@ How can we solve it ?
e The mechanism for solving WEMP ?

Optimality v.s. Complexity
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Algorithmic Aspect

Advantage of Solving WEMP

@ Aspect 1 : Advantage of WEMP

e Under mild conditions, the optimal solution of WEMP 1 can
make the error negligible.
o Negligible : Relative Node Mapping Error (RNME) — 0.

A — Mol[2
1Mo |2

Notation : ||W o (MA — BM)|[2 = ||NA — BN||2

RNME =
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Algorithmic Aspect

Advantage of Solving WEMP

Given G1, Gz, o, W. Set
K= rsntir/]{(pcscj + pC(C/) min{s1 s 32}}7
L = max{[(pcsq; + Peic;) max{st, 2317}

If the foIIowmg four conditions :
x =0(1);
(*) the minimizer of WEMP, [, satisfies that
||A — MBS |[Z/(|A — ABAT|IZ = Q(1);
® ||A—MoBNJ|2 = o(KP);
@ My and 1 keep invariant of the community representations,

hold, then the RNME, ||f1 — I'Io||F/|\I‘I0||F, can be upper bounded by the
minimum value of WEMP, i.e., ||A — F1BM7||2, and as n — oo, RNME — 0.
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Algorithmic Aspect

Advantage of Solving WEMP

@ Why are the conditions mild ?

@ Take the example of OSBM.
e a=0Q(1).

e s=o(1)and p=1 —o( ), thenplog(%):

plog(1 + 51=57) ~ 5=5= = o(1) = o(min;; pe,c,), thus
condition (i) holds.

e Meanwhile s = o(1) makes condition (i) hold.

e Easy to verify that condition (ii),(iv) hold.
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Algorithmic Aspect

Mechanism for Solving WEMP

@ Aspect 2 : Mechanism for WEMP

@ Definitions :

e Community Representation (C;) : Communities
{1,2,3,4}, vertex i in {1,3}, then C; = {1,0,1,0}.
e Community Representation Matrix (M) :
@ The i row of M is C;.
10
0 1{.
1 1]

1—)C1
If 2 — Co then M =

3—>C1,Cz
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Algorithmic Aspect

Mechanism for Solving WEMP

Formulating WEMP :
minimize ||[NA—BM|2
st.VviecVy, >, N=1
Vje V2, Zjl'l,-j: 1
vi,j, Ny €{0,1},

Vie Vi,Ci = Cﬂ.(,').

Embedding Eqgn. (4) into the objective function we get

Fo(M) = |INA — BM|[Z + 4INM — M]|%.
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Algorithmic Aspect

ldea of Algorithm Design

Problem Relaxation :

Q= {Ny [0V j,>;Ny=1,>,M;=1}.

Convex-Concave Relaxation Method :
F() = (1 —a)F (M) + aFp()

@ F; is the convex relaxation of F.
@ F is the concave relaxation of F.
@ «is an adjustable parameter from [0, 1].
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Algorithmic Aspect

A simple way to obtain Fy and F;

A way to get convex and concave relaxation is

Fi(T) = Fo(M) + 222(n — 1M )
Fa(TT) = Fo(M) + 272 (n — ||| 2)
Therefore we form our new objective function in CCOM as
Fe(M) = (1 — @)F(N) + aFa(M) = Fo(M) + 2¢(n— [|N]|7),

where \min (Amax) is the smallest (largest) eigenvalue of the
Hessian matrix of Fo(MM) ,and £ = (1 — a)Amin + aAmax,
& € [Amins Amax]-
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Algorithmic Aspect

An illustration of Convex-Concave Method

_ Ff (H) €=Amax

£=0.2Amin + 0.8 1m0

® minimal value
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Algorithmic Aspect

Main Algorithm

@ Main Algorithm

Algorithm 1: Convex-concave Based De-anonymization
Algorithm (CBDA)

Input: Adjacent matrices A and B; Community assignment matrix M;
Weight controlling parameter z1; Adjustable parameters &, Ag.
Qutput: Estimated permutation matrix IT.
1: Form the objective function Fy(IT) and F'(IT).

20 £+ 0, k<« 1, II1 + lyxn./n. Set &y, the upper limit of £.

3: while £ < &, and ITy & Qo do

4: while k = 1 or |F(IIxyq) — F(IIy)| > 6 do

5: X+ argming | tr(Vi, F(ITk)TXL), where X+ € Q.
6: vk ¢ argming F (I, + (XL — IIy)), where v, € [0, 1].
7 Iy yq + Iy + "fk(xi' —TIy). k+ k+ 1

8: end while

9: E—E+ AL
10: end while
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Algorithmic Aspect

Convergence Proof

CBDA converges and the final output is a permutation matrix in
the original feasible region €.

Proof sketch :
Fe(Mii1) < Fe(Mi) + vk (Fe(N®) — Fe(Mk)) + vk ARk
Fs(”k+1) — Fe(N%)

k—
H1—% A(IME2)2 — [ME12) + Z H(1—7/)AR:-~
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Experimental Aspect

Experimental Aspect

Synthetic Networks :

Notation Definition Range
N Number of Nodes {500, 1000, 1500, 2000}
S Sampling Probability (s1 = s, = 8) 0.3-0.9
a OSBM Parameter {8,5,7,9}
n Community Ratio {0.05, 0.1}
OL/NOL | Overlapping or Non-Overlapping {OL, NOL}

() N=1000, 7=0.1 2
-a-GA-NOL ~v-CBDA-OL -v- CBDA-NOL COBA-NOL

Fig. 2: Experiments on Synthetic Networks.
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Experimental Aspect

Sampled Social Networks :

S 03 05 s 07 03 6 03 05 0 07 o

(®) N=1000,

(©) N=1500, C=0.05

T03 0% 05 07 0w Tod 05 0s 07 s 0 T 03 9% 0s 07 8w 303 05 06 07 o8 0

(©) N=500, C=0.1 () N=1000, C=0.1 (&) N=1500, C=0.1 ) N=2000, C=0.1

—8— GA-OL - B - GA-NOL —%— CBDA-OL - ¥ - CBDA-NOL COBA-NOL

Fig. 8: Experiments on Sampled Real Social Networks.

Cross-Domain Networks :

1
I cBpA-OL [ GA-OL|
08
>
g 06
£
=
g 04
=
02
[ LN EN |
AvB AvC AvD BvC BvD CvD

AvB AvC AvD BvC BvD Cvp
Network Combination Network Combination
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Conclusion

Conclusion

@ Conclusion:

e De-anonymization can be achieved under mild conditions.
e Overlapping communities benefits de-anonymization.

@ Future directions :

e Theoretical bounds for successful de-anonymization ;
e Partial overlapping users;
e Multilevel network de-anonymization.
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