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Social Networks

We are in many social networks nowadays.
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Booming Social Networks

Social networks explode these days.

More Social Networks

Larger Social Networks
5 / 44
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Privacy Exposed to Public

Private information becomes more often released to public.

It gives opportunities for adversaries to identify users.

How to protect ?
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Anonymize Yourself !

Anonymization : Removing Personal Identifiers.
IDs, Names, Records, Institutes...

Is it safe ?
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A Toy Example

IF : Another identical un-anonymized networks ?

Anonymized Facebook : Un-Anonymized Linkedin :

It is trivial to identify all users in Facebook.
It is NOT safe.
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A Toy Example

Social networks on different platforms are often different.
Friends may/may not be connected in social networks.

Anonymized Facebook : Un-Anonymized Linkedin :

Can we identify users in Facebook now ?
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Social Network De-anonymization

De-anonymization is a way to identify users in an
anonymized network by another un-anonymized network.

We need to find a mapping from un-anonymized networks
to anonymized networks.

1↔ A
2↔ B
3↔ C
4↔ D
5↔ E
6↔ F
7↔ G
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Different Versions of De-anonymization

Seeded De-anonymization : There are pre-mappings.

Seedless De-anonymization : No pre-mappings.
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Different Versions of De-anonymization

De-anonymization with Communities :
Social cliques.
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Our Contributions

In this work, we
study the effect of overlapping communities on seedless
de-anonymization ;
target at minimizing the expected de-anonymization error
initially ;
provide a systematic study for the above setting, including
model, theory, algorithm, and experiments on real data.
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Problem Formulation

How to build the model ?

Observation :
Connection→ Friends.
Friends 6→ Connection.

Characterization :
Connection : Social Networks (Exposed).
Friends : Relationship Networks (Underlying).

Modeling :
Social Network partially presents Relationship Network ;
Social network : a sampling of Relationship Network.

16 / 44
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Problem Formulation

G(V ,E) : The Underlying Relationship Networks.
G1(V ,E1) : The Anonymized Networks.
G2(V ,E2) : The Un-anonymized Networks.

Parameters : θ = {{p}ij , s1, s2}.
17 / 44
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Social Network De-anonymization

Definition (Social Network De-anonymization)

Given G1 = (V ,E1), G2 = (V ,E2), and θ = {{pij}, s1, s2}, the
goal is to construct a mapping π that is closest to the correct
mapping π0.

π0 = {(1,1), (2,6), (3,3), (4,4), (5,5), (6,2), (7,8), (8,7), (9,9)}
18 / 44
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Overlapping Communities

Overlapping Stochastic Block Model (OSBM)
Overlapping communities.
Higher overlapping, Higher connection possibility.

A simple version of OSBM :

P((i , j) ∈ E) , pij =
1

1 + ae−xij
.

x : number of common communities of user i and j .
a : the density parameter.
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Overlapping Communities

P((i , j) ∈ E) , pij =
1

1 + ae−xij

Example :

P((1,4) ∈ E) = p14 = 1
1+ae−1

P((2,5) ∈ E) = p25 = 1
1+a

P((3,4) ∈ E) = p34 = 1
1+ae−3
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Minimization of Expected Error

Goal : minimizing the expected de-anonymization error.

De-anonymization Error :
A mapping π ↔ A permutation matrix Π0

π = {(1,2), (2,1), (3,3)} ↔ Π =

0 1 0
1 0 0
0 0 1


d(Π,Π0) = 1

2 ||Π− Π0||2F is the number of error mappings.

Expected :
Minimizing EΠ0{d(Π,Π0)},

Expectation over different ground-truth Π0.

Minimum Mean Square Error (MMSE)

22 / 44
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Minimum Mean Square Error (MMSE)

We intend to find Π as a minimizer of the expected
de-anonymization error.

MMSE Estimator
Given G1, G2 and θ, the MMSE estimator is an estimation of Π0
minimizing the number of mistakenly matched nodes in
expectation, which is

Π̂ = arg min
Π∈Πn

EΠ0{d(Π,Π0)}

= arg min
Π∈Πn

∑
Π0∈Πn

||Π− Π0||2F Pr(Π0|G1,G2,θ),

where Πn is the set of n × n permutation matrices.

23 / 44
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Minimum Mean Square Error (MMSE)

Theorem 1
Given G1, G2 and θ, the MMSE estimator can be equivalently
reformed as

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π− Π0||2F ||W ◦ (Π0A− BΠ0)||2F ,

where ◦ means the Hadamard product, W satisfies that

W(i , j) =
√wij and wij = log

(
1−pCi Cj

(s1+s2−s1s2)

pCi Cj
(1−s1)(1−s2)

)
.

But, Is it easy to solve ?

It is NP-hard.
24 / 44



logo-irisa

Introduction
Problem Formulation

Analytical Aspect
Algorithmic Aspect

Experimental Aspect
Conclusion

Transformation of MMSE

Transform and simplify the original problem.

Π̂ = arg maxΠ∈Πn
∑

Π0∈Πn ||Π− Π0||2F ||W ◦ (Π0A− BΠ0)||2F .

Weighted-Edge Matching Problem (WEMP)

Given G1(V ,E1), G2(V ,E2) and weight matrix W, the
weight-edge matching problem is to find

Π̃ = arg min
Π∈Πn

||W ◦ (ΠA− BΠ)||2F

25 / 44
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Validity of Transformation

Π̂ = arg max
Π∈Πn

∑
Π0∈Πn

||Π− Π0||2F ||W ◦ (Π0A− BΠ0)||2F

⇓ ?

Π̃ = arg min
Π∈Πn

||W ◦ (ΠA− BΠ)||2F

Valid ?
In average case : valid based on Sequence Inequality.
For a specific network : an approximation ratio with lower
bound 0.5.
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Algorithmic Aspect

After transforming to WEMP, there are 2 crucial issues :
Why does optimizing WEMP work ?

The advantage of solving WEMP ?
How can we solve it ?

The mechanism for solving WEMP ?

Optimality v.s. Complexity

28 / 44



logo-irisa

Introduction
Problem Formulation

Analytical Aspect
Algorithmic Aspect

Experimental Aspect
Conclusion

Advantage of Solving WEMP

Aspect 1 : Advantage of WEMP

Under mild conditions, the optimal solution of WEMP Π̃ can
make the error negligible.
Negligible : Relative Node Mapping Error (RNME)→ 0.

RNME =
||Π̃− Π0||2F
||Π0||2F

Notation : ||W ◦ (ΠA− BΠ)||2F = ||ΠÂ− B̂Π||2F

29 / 44
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Advantage of Solving WEMP

Theorem 2
Given G1, G2, θ, W. Set

K = min
s,t,j
{(pCsCj + pCt Cj ) min{s1, s2}},

L = max
s,t,j
{[(pCsCj + pCt Cj ) max{s1, s2}]2}.

If the following four conditions :
L
K = o(1) ;

the minimizer of WEMP, Π̃, satisfies that
||Â− Π0B̂ΠT

0 ||2F/||Â− Π̃B̂Π̃T ||2F = Ω(1) ;

||Â− Π0B̂ΠT
0 ||2F = o(Kn2) ;

Π0 and Π̃ keep invariant of the community representations,

hold, then the RNME , ||Π̃− Π0||2F/||Π0||2F , can be upper bounded by the
minimum value of WEMP, i.e., ||Â− Π̃B̂Π̃T ||2F , and as n→∞, RNME → 0.
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Advantage of Solving WEMP

Why are the conditions mild ?

Take the example of OSBM.

a = Ω(1).
s = o(1) and p̂ = 1− o(1), then p̂ log( 1−p̂(2s−s2)

p̂(1−s)2 ) =

p̂ log(1 + 1−p̂
p̂(1−s)2 ) ≈ 1−p̂

(1−s)2 = o(1) = o(mini,j pCi Cj ), thus
condition (iii) holds.
Meanwhile s = o(1) makes condition (i) hold.
Easy to verify that condition (ii),(iv) hold.
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Mechanism for Solving WEMP

Aspect 2 : Mechanism for WEMP

Definitions :
Community Representation (Ci ) : Communities
{1,2,3,4}, vertex i in {1,3}, then Ci = {1,0,1,0}.
Community Representation Matrix (M) :

The i th row of M is Ci .

If

 1→ C1
2→ C2

3→ C1,C2

 then M =

1 0
0 1
1 1

.
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Mechanism for Solving WEMP

Formulating WEMP :
minimize ‖ΠÂ−B̂Π‖2F

s.t. ∀i ∈ V1,
∑

i Πij = 1 (1)
∀j ∈ V2,

∑
j Πij = 1 (2)

∀i , j , Πij ∈{0,1}, (3)

∀i ∈ V1,Ci = Cπ(i). (4)

Embedding Eqn. (4) into the objective function we get

F0(Π) = ||ΠÂ− B̂Π||2F + µ||ΠM−M||2F .
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Idea of Algorithm Design

Problem Relaxation :

Ω0 = {Πij ∈ {0,1}|∀i , j ,
∑

i Πij = 1 ,
∑

j Πij = 1};
Ω = {Πij ∈ [0,1]|∀i , j ,

∑
i Πij = 1 ,

∑
j Πij = 1}.

Convex-Concave Relaxation Method :

F (Π) = (1− α)F1(Π) + αF2(Π)

F1 is the convex relaxation of F .
F2 is the concave relaxation of F .
α is an adjustable parameter from [0,1].
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A simple way to obtain F1 and F2

Lemma 3

A way to get convex and concave relaxation is

F1(Π) = F0(Π) +
λmin

2
(n − ||Π||2F )

F2(Π) = F0(Π) +
λmax

2
(n − ||Π||2F )

Therefore we form our new objective function in CCOM as

Fξ(Π) = (1− α)F1(Π) + αF2(Π) = F0(Π) + 2ξ(n − ||Π||2F ),

where λmin (λmax ) is the smallest (largest) eigenvalue of the
Hessian matrix of F0(Π) ,and ξ = (1− α)λmin + αλmax ,
ξ ∈ [λmin, λmax ].
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An illustration of Convex-Concave Method

minimal value
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Main Algorithm

Main Algorithm
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Convergence Proof

Lemma 4
CBDA converges and the final output is a permutation matrix in
the original feasible region Ω0.

Proof sketch :

Fξ(Πk+1) ≤ Fξ(Πk ) + γk (Fξ(Πξ)− Fξ(Πk )) + γk ∆Rk .

Fξ(Πk+1)− Fξ(Πξ)

≤
k∏

i=1

(1− γi )∆ξ(||Πξ−∆ξ||2F − ||Πξ||2F ) +
k∑

i=1

γi

k−i∏
j=1

(1− γj )∆Ri .
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Experimental Aspect

Synthetic Networks :

Notation Definition Range
N Number of Nodes {500, 1000, 1500, 2000}
s Sampling Probability (s1 = s2 = s) 0.3-0.9
a OSBM Parameter {3, 5, 7, 9}
η Community Ratio {0.05, 0.1}

OL/NOL Overlapping or Non-Overlapping {OL, NOL}
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Experimental Aspect

Sampled Social Networks :

Cross-Domain Networks :
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Conclusion

Conclusion :
De-anonymization can be achieved under mild conditions.
Overlapping communities benefits de-anonymization.

Future directions :
Theoretical bounds for successful de-anonymization ;
Partial overlapping users ;
Multilevel network de-anonymization.
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Thanks !
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