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Abstract—This paper studies the throughput capacity of wire-
less networks with social characteristics. We propose a simple
model to reflect both the social relations between nodes and
power-law node degree distribution, and then examine their im-
pact on capacity. We show the fact that two features above lead to
traffic locality and improve capacity. Moreover, multicasting may
be employed to further enhance performance when information
is desired to be published from the source to all its contacts,
of which the number follows power-law distribution. In addition,
we propose the corresponding capacity-achieving communication
schemes which optimally exploit the underlying structure. Our
study is an attempt to understand how social relations may
impact on network capacity from a theoretical perspective, and
provides fundamental insight on the design and analysis of real
wireless networks.

Index Terms—Capacity, Wireless, Social Characteristics

I. INTRODUCTION

The structure of large scale wireless networks are remark-
ably transformed by a myriaid of newly emerged and rapidly
penetrating applications. Typical examples include online so-
cial networks such as MySpace, Facebook, Orku, LiveJournal,
Cyworld and Flickr, which have attracted tens of millions of
users integrating these sites into their daily lives. These online
social services have offered an unprecedented opportunity
for measurement-based studies on human social networks at
massive scale. It is observed that numerous social networks
including Youtube (over 190 million users), Orkut (over 62
million), LiveJournal (over 5.5 million) [2], Cyworld (over 12
million), Myspace (over 130 million) [3], and Flickr (over 1
million) [4], [5] exhibit the characteristics such as the way
people select friends and the number of such friends.

However, most of the existing research with the two char-
acteristics aforementioned mainly focuses on measurement-
based analysis of structural and topological characteristics, and
little is known about their impact on network performance met-
rics such as throughput, delay, etc. That motivates us to present
a look into the throughput capacity of large scale wireless
social networks from a theoretical perspective. Previous work
about mobile social service [6], [7], [8], geosocial networking
[9], [10], [11], [12] and ad hoc social networks [13], [14],
[15] have already pointed out that the social relations bring
new challenges as well as opportunities in system design, and
new communication protocols may be conceived to exploit the
underlying social structure for better performance. As some
initial attempts, Azimdoost et al. [16] present the modeling

framework for the capacity of a wireless network in which
nodes communicate in the context of social groups. They
assumed that in a wireless network with n nodes, each node
is socially connected to its neighbors and also to q other
long-range contacts. Under the assumption that the probability
of selecting destination follows power-law distribution with
parameter α, the order capacity is derived as a function of
the number of nodes n, the social group concentration α, and
the size of social groups q. The model is slightly modified
by Kiskani et al. [17], who further assume that selection of
destination within a social group also follows another power
law distribution with respect to distance. Different capacity
regions are then computed as a function of the social network
size for each node. By separating the highly popular nodes
with those who are less popular, Azimdoost and Sadjadpour
[18] show that nodes with different social status impact the
capacity differently. However, all those works only provide
the capacity upper bound, and the optimal communication
schemes are still not investigated.

In this paper, we bridge the theoretical analysis of funda-
mental scaling laws of wireless networks with the insights
already gained through practical protocol development. By
doing so, we provide a theoretical foundation to the design
of intelligent scheduling and routing schemes that exploit
social relations, analytically demonstrating the benefits of such
schemes in terms of throughput capacity.

In particular, to address the aforementioned two major
features of such large scale networks, we deploy the rank-
based model, where the probability of befriending a particular
node is inversely proportional to the αth power of the number
of closer nodes. The network is assumed to be comprised
by n + 1 uniformly distributed wireless nodes. We choose
the rank-based model over the distance-based one since the
latter one underestimates the friendship probability of the
distant nodes in the low-density region, when the geographical
distribution of users is inhomogeneous in common occurrence.
In contrast, the rank-based model states that the friendship
probability depends on both the geographic distance and node
density, as is pointed out by both Liben-Nowell et al. [1] and
Li et al. [19]. For each node, a random number of friends
that follows power-law distribution with parameter β will be
selected independently.

We study two kinds of common traffic patterns, i.e., unicast
and multicast. The first type represents messaging service
between two friends while the latter represents pattern in-
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formation broadcasted to all the friends of the source, such
as tweets in Twitter and posts in Facebook. This differs our
work from the previous ones [16], [17], [18], where only
unicast is taken into consideration. We show that the per-node
unicast capacity is Θ̃(1/

√
n)1 when α ≤ 1, Θ̃(nα−3/2) when

1 < α < 3/2, and Θ̃(1) when α > 3/2. When α = 0, the
per-node multicast capacity is Θ̃(1/n) when β ≤ 1, Θ̃(nβ−2)
when 1 < β < 3/2, and Θ̃(1/

√
n) when β > 3/2. In the more

general but intricate case that α is arbitrary, we conjecture the
multicast capacity to be Θ̃(nα+β−3) when α, β ∈ [1, 3/2].
The results above are significantly better than the capacity
of networks with classic uniform traffic, which is Θ̃(n− 1

2 ) in
the unicast case and Θ̃(nβ−5/2) in the multiple unicast case,
thanks to the traffic locality and multicast gains resulted from
the underlying network structure. The corresponding capacity-
achieving communication schemes are also discussed.

It is worth noting that both the rank-based model and
the power law node degrees are heavy-tailed distributions.
Heavy-tailed distributions are useful modeling tools in realistic
settings, but are often difficult for analysis because they imply
a great degree of variations in the system, i.e., some of the
source-destination pairs are close neighbors while some may
be very far away. In addition, some nodes have extremely large
number of followers (such as celebrities) while some others
may only have a few. However, our results show that despite
the great heterogeneities in the network, a uniform optimal
performance can be guaranteed.

A. Related Works of Capacity Scaling

The asymptotic capacity of traditional wireless networks
is first studied in [20], where Gupta and Kumar show that
the maximal unicast throughput achievable by each node
for a uniformly distributed destination is Θ(1/

√
n log n)2.

Grossglauser and Tse [21] later introduce mobility to the nodes
and show that by employing a store-carry-forward paradigm,
capacity can be improved to Θ(1), at the expense of increased
delay. A series of works [22], [23], [24], [25], [26] have then
been focusing on the analysis of optimal throughput-delay
tradeoff under different mobility models.

Among numerous papers following Gupta and Kumar’s
framework to investigate the capacity of various kinds of
specific wireless networks, the most related ones consider
heterogeneous networks. Garetto et al. [25], [26] study the
capacity scaling in ad hoc networks with heterogeneous nodes
mobility. Alfano et al. [27], [28] consider the case that
nodes are distributed heterogeneously according to a shot-
noise Cox process, such that clusters may be formed. Huang
and Wang [29] analyze a network consisting of nodes with

1The order notation Θ̃(·) hides polylogarithmic factors for better readabil-
ity. Refined results are available in Section III and IV.

2We use the following notation throughout our paper:
f(n) = o(g(n)) ⇔ lim

n→∞
f(n)
g(n)

= 0,

f(n) = ω(g(n)) ⇔ lim
n→∞

g(n)
f(n)

= 0,

f(n) = O(g(n)) ⇔ lim sup
n→∞

f(n)
g(n)

< ∞,

f(n) = Ω(g(n)) ⇔ lim inf
n→∞

f(n)
g(n)

< ∞,
f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and g(n) = O(f(n)).

heterogeneous priority. Both data collection and coverage
in sensor networks are also investigated in terms of their
performance [30], [31]. However, none of the works study
the impact of heterogenous traffic (service) pattern, which is
an important characteristic of real world social networks.

Finally, multicast in traditional wireless ad hoc network
is investigated by Li [32], who shows that per-node mul-
ticast capacity is Θ(1/

√
nk logn) when k = O(n/ log n)

and Θ(1/k
√
log n) when k = ω(n/ log n), where k is the

number of destinations per multicast session. Wang et al. [33]
generalize the result to anycast traffic pattern and Mao et al.
[34] study multicast networks with infrastructure support.

The rest of the paper is organized as follows. We introduce
the system model in Section 2, and derive the unicast capacity
results in Section 3. Section 4 discusses multicast capacity
results and we conclude the paper in Section 5.

II. SYSTEM MODEL

In this paper, we denote the probability of an event E as
Pr(E) and say E happens with high probability (w.h.p.) if
limn→∞ Pr(E) = 1. By convention, we use {ci} to denote
some positive constants independent of n.

A. Network Topology

We define the network extension O to be a unit torus, i.e.,
the side length of the network is 1. The size normalization and
wrap-around conditions are common technical assumptions
adopted in previous works to avoid tedious technicalities.
These assumptions will not change the main results of this
paper. There are n + 1 nodes with wireless communication
capability in the network and exchange information in an ad
hoc manner. Their locations are {X}n+1

i=1 , which are a series
of independent random variables uniformly distributed in O.
At a given time t, nodes may be denoted by their positions,
i.e., we refer to node i as Xi(t).

B. Communication Model

We assume all nodes share a wireless channel with band-
width W (bps). We base our analysis on the following classic
wireless interference model that governs direct wireless trans-
missions between nodes.

Definition 1: Protocol Model [20]: All nodes use a com-
mon transmission range RT for all their wireless communica-
tion. A wireless transmission from node i to j is successful
only if : 1) ∥Xi(t) − Xj(t)∥ ≤ RT ; and 2) For every
other node k that is simultaneously transmitting, follows,
∥Xk(t) − Xj(t)∥ ≥ (1 + ∆)RT , where constant ∆ defines
the area of guard zone.

C. Node Relationship and Traffic Pattern

It is worth noting that modeling node relationship and
network topology is rather challenging arguably due to the
complicated nature of nodes’ behaviors, the diverse structure
characteristics observed from real data sets and the massive
scale. Sala et al. [35] show that among the existing models
for synthetic graphs, only very few of them may capture
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the full structural characteristics or produce results with high
fidelity. Furthermore, most of these models are based on
numerical methods and will incur high computational and
memory complexity.

We approach the modeling of node relationship in a totally
new and novel way that is motivated by a geographical
perspective. Both daily experience and real data traces from
online social networks [1], [5], [36] have indicated that friend-
ships forming and communication patterns are closely related
to geography and are usually highly localized. We adopt the
following rank-based model in [1] to characterize the relation
between friendship and node location. Consider two nodes i
and j, define the rank of j with respect to i as:

Ranki(j) = |{k : D(k, i) < D(i, j)}|,

where D(·, ·) is the distance between two nodes and k is any of
the n+1 nodes in the network. Then we model the probability
that j is a friend of i as

Pr{i → j} ∝ 1

Rankαi (j)
,

where α ≥ 0. Denoting for short G1 =
∑n

j=1 1/j
α, the

distribution law is

Pr{i → j} =
1

G1Rankαi (j)
. (1)

Liben-Nowell et al. [1] show that this model accounts for the
majorities of the friendships in the LiveJournal online commu-
nity. Further, the work in [37] suggests that the model indeed
guarantees small-world properties, such that with geographical
information only, a friendship chain with at most Θ(log3 n)
hops can be established between an arbitrary source node and
a target node chosen uniformly at random from the whole
population. This clear-cut property remarkably coincides with
the fact that shortcuts can be found between two arbitrary
nodes in LiveJournal with only geographical information.

Another important feature is the power-law degree distribu-
tion [2], [3], [4], [5]. We assume Ki, the number of friends
of a particular node i, is drawn according to Zipf distribution.

Pr{Ki = k} =
1

G2kβ
,

where G2 =
∑n

j=1 1/j
β is the normalizing factor and β ≥ 0 is

the power-law parameter. Ki friends are chosen independently
according to the rank-based model (1). We focus on the case
that β > α such that no node will not be repetitively chosen
in Ki trials w.h.p.3

We study two kinds of major traffic patterns in such net-
works, i.e., unicast and multicast. The traffic type represents
(private) messaging service between two friends, i.e., sources
will select their destinations with the rank-based model (1).
The latter traffic type models information broadcasted to all
the nodes that have relationship with the source, such as tweets
in Twitter and posts in Facebook. Therefore, multiple friends
will be chosen according to the above power-law model.

3Otherwise, if some friends are repetitively selected, our results provide
achievable lower bounds of capacity.

We note that our model may not be a perfect characteriza-
tion of general graphs. For example, some of the friendships in
LiveJournal appear to be geography independent and may be
better correlated with other dimensions such as occupations,
age, etc. However, a complete reproduction of all the features
in a realistic network is too difficult, if at all possible, and
we believe it is beneficial to make the proper simplifications
towards a tractable model and a meaningful look into the
throughput capacity in networks with heterogeneity.

D. Capacity Definition

Definition 2: Feasible unicast(multicast) throughput: Per-
node throughput g(n) is said to be feasible if there is a
spatial and temporal scheme for scheduling transmissions,
such that by operating the network in a multi-hop fashion and
buffering at intermediate nodes when awaiting transmission
opportunities, every source can send g(n) bits/sec to its 1(Ki)
chosen destination nodes. That is, there is a T < ∞ such that
in every time interval [(i− 1) ·T, i ·T ], every source can send
T · g(n) bits to each of its 1(Ki) destinations.

Definition 3: Asymptotic per-node multicast capacity
λm(n) of the network is said to be of order Θ(g(n)) if there
exist two positive constants c1 and c2 such that:{

limn→∞ Pr {λm(n) = c1g(n) is feasible} = 1
limn→∞ Pr {λm(n) = c2g(n) is feasible} < 1

Similarly we define the asymptotic per-node unicast capacity
λu(n).

E. Notations

In table I, we list all the parameters that will be used in
later analysis, proofs and discussions.

TABLE I
NOTATIONS

Notation Definition

n+ 1 The total number of nodes in the network.
W The total transmission bandwidth available.
RT transmission range

α
Power law parameter indicating the strength of the
relation between two nodes.

β Power law parameter indicating the degree of a node.
λu(n) Asmptotic per-node unicast capacity.
λm(n) Asmptotic per-node multicast capacity.

III. MAIN RESULTS

A graphical representation of our results is reported in
Figures 1 and 2, respectively. We adopt the order notation Θ̃(·)
to hide poly logarithmic factors for better readability. Refined
results are available in Section V.

Figures 1 plots the per-node unicast capacity λu(n)
achieved versus different values of parameter α. As a coun-
terpart, Figure 2 represents the per-node multicast capacity
λm(n), which exhibits different scaling behaviors with dif-
ferent values of parameter β. A common phenomenon from
both figures is that the capacity increases as α and β increase.
And the maximum capacity can be achieved in the range
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α > 3/2 for unicast and β > 3/2 for multicast. In unicast,
larger α means that the destination selected locates more
closer to the source. This leads to a stronger traffic locality,
which greatly reduces the transmission length between source
and destination. As α becomes smaller, such transmission
length gradually increases. Specifically, when α < 1, a length
of 1, i.e., the network size is needed in order to transmit
a packet from the source to its destination. Under such
circumstance, there is no capacity gain since the capacity
yields the same result as the one achieved in traditional ad hoc
wireless networks. For multicast, a larger β means a smaller
number of friends in each multicast session. Specifically, when
β > 3/2, the capacity result is close to the unicast one in
traditional wireless networks, since the number of friends in
each multicast session is Θ(1) in such case. In contrast, when
β < 1, almost all the nodes in the network are selected as
friends in each multicast session and traffic pattern therefore
yields to broadcast, which brings about the capacity of 1/n.
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Fig. 1. The per-node unicast capacity λu(n) versus α.
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Fig. 2. The per-node multicast capacity λm(n) versus β.

IV. UNICAST

A. Traffic Locality

Comparing with classic unicast networks, the traffic pattern
in our model is significantly different because the destinations
are selected according to the rank-based model, which will
result in a certain degree of traffic locality. Intuitively, as
parameter α increases, sources will be more likely to befriend
a node located in closer proximity, and therefore less distance
or hops are needed to be covered in the packet delivery
process. This amounts to a smaller interference per traffic flow,
and in terms imply a larger degree of transmission concurrency
can be achieved. As a result, the unicast capacity is increased.

However, the non-uniformity of the traffic pattern will cause
significant difficulty in analysis. In order to proceed, we first
need to establish some important properties and implications
of the ranked-based model. Denote Yi as the destination
selected by Xi, the following lemma shows the distribution
of the distance between Yi and Xi conditioning on rank.

Lemma 1: Consider a generic node i, conditioning on the
event that Ranki(Yi) = r, the probability density function
(PDF) of random variable D(Xi, Yi) is:

f (D)
r:n (d) =

n!

(r − 1)!(n− r)!
2πrd2r−1(1− πd2)n−r (2)

for 0 ≤ d ≤ 1√
π

.
Proof: Let Xj , j ̸= i be an arbitrary node in the

system. According to our model, Xj is uniformly distributed,
and the cumulative distribution function (CDF) of D(Xi, Xj)
follows4:

F (D)(d) = Pr{D(i, j) ≤ d} =

∫ ∫
x2+y2≤d2

1dxdy

= πd2, 0 ≤ d ≤ 1√
π
.

And the corresponding PDF is :

f (D)(x) = 2πd, 0 ≤ d ≤ 1√
π
.

Now, consider the mechanism of the rank-based model,
conditioning on the event of Ranki(Yi) = r, it is clear that
D(Xi, Yi) is the rth order statistics [38] of n independent and
identically distributed (i.i.d.) {D(i, j)}j ̸=i. By convention we
denote D(Xi, Yi) as Dr:n.

4More rigorously, taking the four corners of the square extension into
account, the CDF should be:

Pr{D ≤ d} =

{
πd2 0 ≤ d ≤ 1

2

πd2(
π−4 arccos 1

2d
π

) +
√
4d2 − 1 1

2
< d ≤

√
2

2

This piecewise function is awkward for presentation and we therefore simplify
the extension to be a disk in the lemma derivation. However, it can be easily
shown that this slight modification does not have any significance in order
sense.
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The CDF of Dr:n may be obtained by standard technique,

F (D)
r:n (d) = Pr{Dr:n ≤ d}

= Pr{at least r of D(i, j)’s are at most d}

=

n∑
k=r

Pr{exactly k of D(i, j)’s are at most d}

=

n∑
k=r

(
n

k

)
{F (D)(d)}k{1− F (D)(d)}n−k

=

n∑
k=r

(
n

k

)
(πd2)k(1− πd2)n−k

=

∫ πd2

0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−rdt (3)

=

∫ d

0

n!

(r − 1)!(n− r)!
2πrt2r−1(1− πt2)n−rdt,

(4)

where Equation (3) holds because of the fact that,

n∑
k=r

(
n

k

)
pr(1− p)n−r =∫ p

0

n!

(r − 1)!(n− r)!
tr−1(1− r)n−rdt, 0 < p < 1,

which may be proved by repeated integration by parts. From
Equation (4), we observe that the density function of Dr:n is

f (D)
r:n (d) =

n!

(r − 1)!(n− r)!
2πrd2r−1(1− πd2)n−r

for 0 ≤ d ≤ 1/
√
π.

In the next step we characterize the conditional expectation
of D(Xi, Yi).

Lemma 2: Conditioning on the event that Ranki(Yi) = r
and denote E as expectation, then

E{D(Xi, Yi)|r : n} =
√
π

Γ(n+ 1)

Γ(n+ 3/2)

Γ(r + 1/2)

Γ(r)

∼
√
r/n.

Proof: By definition,

E{Dr:n} =

∫
xf (D)

r:n dx

=

∫ 1√
π

0

n!

(r − 1)!(n− r)!
2πrx2r(1− πx2)n−rdx

=

∫ 1

0

n!

(r − 1)!(n− r)!

2√
π
t2r(1− t2)n−rdt

=
B(r + 1/2, n− r + 1)√

πB(r, n− r + 1)

=
1√
π

Γ(n+ 1)

Γ(n+ 3/2)

Γ(r + 1/2)

Γ(r)
,

where B(·, ·) is the complete beta function:

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt, p, q > 0

and Γ(·) is the complete gamma function:

Γ(p) =

∫ ∞

0

e−ttp−1dt, p > 0.

With Stirling’s approximation of gamma function [43],

Γ(p) =
√
2πp

(p
e

)p
(
1 +O

(
1

p

))
holds,

E{Dr:n} ∼
√
n+ 1(n+1

e )n+1√
n+ 3

2 (
n+ 3

2

e )n+
3
2

√
r + 1

2 (
r+ 1

2

e )r+
1
2

√
r( re )

r

∼
(
n+ 1

n+ 3
2

)n+1
1

(n+ 3
2 )

1
2

(
r + 1

2

r

)r (
r +

1

2

) 1
2

∼
(
1− 1

2(n+ 3
2 )

)n+1

·
(
1 +

1

2r

)r √
r

n

∼
√
r/n.

Before proceeding to the capacity results, we introduce a
useful lemma on estimating the partial sum of p-series by the
integral test inequality.

Lemma 3: Suppose g(x) is a continuous decreasing func-
tion and g(x) > 0 for all x ≥ 1, then∫ n

1

g(x)dx ≤
n−1∑
m=1

g(m) ≤ g(1) +

∫ n−1

1

g(x)dx.

We conclude this subsection with the expectation of
D(Xi, Yi) in general.

E{D(Xi, Yi)} = Er{E{D(Xi, Yi)|r : n}}

∼ 1

G1
√
n

n∑
r=1

√
r

rα

Recall that G1 is the normalizing factor in (1). Setting g(x) =
1/xα, by Lemma 3 it is clear that,

G1 =

 Θ(1) α > 1
Θ(log n) α = 1
Θ(n1−α) 0 ≤ α < 1.

Similarly, by setting g(r) =
√
r/rα,

n∑
r=1

1

rα−
1
2

=


Θ(1) α > 3/2
Θ(log n) α = 3/2
Θ(n3/2−α) 0 ≤ α < 3/2.

Combing the above formulas we have

E{D(Xi, Yi)} ∼


1/

√
n α > 3/2

log n/
√
n α = 3/2

n1−α 1 < α < 3/2
1/ log n α = 1
1 0 ≤ α < 1.

(5)
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B. Upper Bound of Capacity

Based on the spatial characteristics of the traffic pattern, an
upper bound of capacity can be derived by establishing the
relation between throughput and the average distance that the
packets need to be relayed.

Lemma 4: Suppose that on average a packet is relayed over
a total distance not less than D, then λu(n) = O(1/D

√
n).

Proof: The proof follows that in [20], [23]. Consider a
time interval T which is large enough, then the total number of
packets transmitted end-to-end between all source-destination
pairs during T is cPλu(n+ 1)T , where the positive constant
1/cP is the average number of bits per packet. By the law of
large numbers, with high probability, the total distance traveled
by these packets is at least cPλu(n+1)TD. Denote hp as the
number of hops packet p is relayed, and let lhp , h = 1, . . . , hp,
be the transmission range of the hth hop. Denote for short
Np = cPλu(n+ 1)T , clearly it holds,

Np∑
p=1

hp∑
h=1

lhp ≥ cPλu(n+ 1)TD. (6)

Consider that at time t generic nodes i, j are transmitting
directly to nodes k and l, respectively. According to the
protocol interference model, the following conditions must
hold in order for successful reception:

d(Xj , Xk) ≤ (1 + ∆)d(Xi, Xk)

d(Xi, Xl) ≤ (1 + ∆)d(Xj , Xl).

Therefore,

d(Xj , Xi) ≥ d(Xj , Xk)− d(Xi, Xk)

≥ ∆d(Xi, Xk).

Likewise, we have

d(Xi, Xj) ≥ ∆d(Xj , Xl).

Hence,

d(Xi, Xj) ≥
∆

2
(d(Xi, Xk) + d(Xj , Xl)) .

The above inequality states that as a consequence of the
protocol model5, disks of radius ∆/2 times the transmission
range centered at the transmitter are disjoint from each other.
This “ transmission consumes area ” argument serves as one
cornerstone of the upper bounds on achievable throughput.
Notice that 1) O has unit area; 2) for each of these disjoint
disks, at least 1/4 of it must lie within O and 3) transmitting
a packet requires 1/cPW duration of time, therefore,

1

4

Np∑
p=1

hp∑
h=1

π

[
∆

2
lhp

]2
≤ cpWT. (7)

By the Cauchy-Schwarz Inequality, Np∑
p=1

hp∑
h=1

lhp

2

≤

 Np∑
p=1

hp∑
h=1

(lhp )
2

 Np∑
p=1

hp∑
h=1

1

 , (8)

5It is also possible to establish similar observations under the generalized
physical model [39].

where observing the fact that at any time there are at most n+1
transmissions in the network, the last factor can be reduced
to,

Np∑
p=1

hp∑
h=1

1 =

Np∑
p=1

hp ≤ cpWT (n+ 1), (9)

Substituting (6)-(9) we have,

16cPWT

π∆2
≥

Np∑
p=1

hp∑
h=1

(lhp )
2

≥

[∑Np

p=1

∑hp

h=1 l
h
p

]2
∑Np

p=1 hp

≥ (cpλu(n+ 1)TD)2

cpWT (n+ 1)
,

Thus,

λ ≤ 4W

∆D

1√
π(n+ 1)

∼ 1

D
√
n
.

With Lemma 4 and (5), we have
Theorem 1: Under the ranked-based model, an upper bound

of per-node unicast capacity is

λu(n) ∼


O(1) α > 3/2
O(1/ log n) α = 3/2
O(nα−3/2) 1 < α < 3/2
O(log n/

√
n) α = 1

O(1/
√
n) 0 ≤ α < 1,

C. Capacity Achieving Scheme

In this subsection, we will show that a straightforward cell
tessellation multi-hop relaying scheme suffices to achieve the
capacity upper bound in Theorem 1.
Optimal Scheme for Unicast:
1. Tessellate O into squarelets (cells) with area a(n).
2. Employ a cellular time-division multi-access (TDMA) trans-
mission scheme such that each cell is scheduled to be active
regularly according to cell time-slots. When a cell is activated,
nodes within it are allowed to transmit to nodes inside the same
cell or neighboring cells.
3. Denote a straight line segment connecting the source Xi

and the destination Yi as S-D line. Sources send their packets
to destinations hop by hop along the cells which the S-D lines
intersect.
4. When a cell is scheduled to be active, it transmit a single
packet for each of the passing through S-D lines. This is again
accomplished by adopting a TDMA scheme such that the cell
time-slot is further divided into sub packet time-slots.

The simple scheme above is similar to the one used in
[22]. To establish the optimality of the scheme, we need to 1)
choose a proper a(n) which guarantees network connectivity;
2) show that the TDMA scheme allows high spatial reuse and
concurrent transmissions, and 3) analyze the service load of
the cells. We begin with a well-known lemma in [39] which
is a standard application of Chernoff bounds [40].
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X i

Y i

a n( )

1

Fig. 3. Multi-hop scheme from Xi to Yi.

Lemma 5: Let a(n) = K log n/n, for any K > 1, uniform-
ly over O it holds that each cell contains at least one nodes
but no more than Ke log n nodes w.h.p.
Lemma 5 ensures connectivity and as a result, we choose
a(n) = Θ(log n/n) for minimal interference. The next lemma
is a simple consequence of the protocol model and the well-
known fact about vertex coloring of graphs of bounded degree,
see [20] for a proof.

Lemma 6: With the TDMA scheme described above, each
cell has a constant fraction of time to be active (See illustration
4.).

1

1

1 1

1 1

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

3 3 3

3 3 3

4 4 4

4 4 4

4 4 4

5 5 5

5 5 5

5 5 5

6 6 6

6 6 6

6 6 6

7 7 7

7 7 7

7 7 7

8 8 8

8 8 8

8 8 8

9 9 9

9 9 9

9 9 9

1

Fig. 4. 9-TDMA scheme where the whole network is divided into clusters
with equal area. Each 9 groups are categorized as a group. All the grey cells
in each group (numbered with 1) can transmit simultaneously in a time slot.
In the next time slot all the cells numbered with 2 transmit and so on.

Lemma 6 equivalently states that each cell has a constant
throughput capability. In the following, we calculate how many
traffic flows shall share this throughput.

Lemma 7: The number of S-D lines passing through any
cells is O

(
nE[D(Xi, Yi)]

√
a(n) + na(n)

)
w.h.p. uniformly

over O.
Proof: Consider n + 1 S-D pairs in the network and

denote di as the distance between S-D pair (Xi, Yi), i.e.,
di = D(Xi, Yi). Denote hi as the number of hops per packet

for S-D pair i, then

hi =
di√
a(n)

+ 1

where the additional one hop is to guarantee that at least
one hop is required for transmission even if di = o(

√
a(n)).

Define H =
∑n+1

i=1 hi, i.e., the sum of hops required for each
source in the network to send a single packet to its destination.

Now, consider a generic cell V and define the Bernoulli
random variable Iik for S-D pairs 1 ≤ i ≤ n+1 and 1 ≤ k ≤
hi, such that Iik = 1 if the kth hop originated from S-D pair
i intersects cell V . Therefore, the total number of S-D lines
passing through the cell is I =

∑n+1
i=1

∑hi

k=1 I
i
k. Notice that all

Iik are identically distributed; further, Iik and Ijl are pairwise
independent if i ̸= j. However, Iik and Iil are dependent since
an S-D line can intersect a given cell by at most once.

Now, I is the major quantity of interest because it character-
izes the relaying load of a cell. In the following we shall first
determine its expectation, and then bound the tail probability:

E[I] = EH [E[I|H]]

= EH [
n+1∑
i=1

hi∑
k=1

E[I11 ]]

= EH [HE[I11 ]] = EH [Ha(n)]

= a(n)E

[
n+1∑
i=1

di√
a(n)

+ 1

]
= (n+ 1)(E[di]

√
a(n) + a(n)),

where in the third equation, E[I11 ] equals a(n) since by the
symmetry of the torus, any hop is equally likely to originate
from any of the 1/a(n) cells.

The remaining part of the proof essentially needs to show
that I will not deviate too much from E[I] w.h.p. A common
technique is to apply Chernoff bounds to obtain the tail
probability of I , which is a sum of random variables (RVs).
However, two major challenges are: 1) I is a sum of random
number of RVs and 2) these RVs are not independent. Tradi-
tional Chernoff bounds cannot be used under these conditions,
whereas we are going to prove that a similar bound still holds
for our probability structure.

First, it is helpful to bound the range of H . We claim that
w.h.p. (1−ϵ)E[H] < H < (1+ϵ)E[H], for any constant ϵ > 0.
Indeed, define by short P (H, ϵ) = Pr {|H − µH | < ϵµH},
with Chebyshev’s inequality,

P (H, ϵ) = Pr

{∣∣∣∣ H

n+ 1
− E[hi]

∣∣∣∣ < ϵE[hi]

}
≥ 1− Var(hi)

(n+ 1)ϵ2E2[hi]
,

where Var(hi) is the variance of hi (for all i). And,

Var(hi) = E[h2
i ]− E2[hi]

= (E[d2i ]− E2[di])/a(n).
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Since di < 2/
√
2, Var(hi) = O(1/a(n)) = O(n/ log n).

Therefore, for some constant c, it holds

P (H, ϵ) ≥ 1− 1

ϵ2E2[hi]c log n
→ 1, as n → ∞.

Let H̄ be the event that H is bounded by (1± ϵ)µH .
Now we construct random variable Ĩ =

∑H
i=1 Ĩi, where Ĩi

are i.i.d. Bernoulli random variables with the same distribution
as Iik. Because of the dependency between Iil and Iik (i.e., the
event that both Iil and Iik equals 1 is not possible), Ĩ is stochas-
tically larger than I . By the property of stochastic ordering, for
any increasing function ϕ(·) such that the expectation6 exists,
we have

E[ϕ(I)] ≤ E[ϕ(Ĩ)]. (10)

Let t be an arbitrary positive constant, define for short
P+(I, δ) = Pr{I ≥ (1 + δ)E[I]}, proceed with the main
steps in the proof of Chernoff bounds:

P+(I, δ) = Pr{I ≥ (1 + δ)E[I]}
= Pr{exp(tI) ≥ exp(t(1 + δ))E[I]|}

≤ E[exp(tI)]
exp(t(1 + δ)E[I])

(11)

≤ E[exp(tĨ)]
exp(t(1 + δ)E[Ĩ])

, (12)

where (11) is the consequence of Markov inequality and (12)
holds from (10). Exploiting the independence between Ĩi,
yields

E[exp(tĨ)] = E[
H∏
i=1

exp(tĨi)] = EH [
H∏
i=1

E[exp(tĨi)|H]].

Let p = a(n) = Pr{Ii = 1} be the success probability,

P+(I, δ) <
EH [

∏H
i=1(pe

t + 1− p)]

exp(t(1 + δ)E[Ĩ])

<
EH [

∏H
i=1 exp(p(e

t − 1))]

exp(t(1 + δ)E[Ĩ])
(13)

=
EH [exp(

∑H
i=1 p(e

t − 1))]

exp(t(1 + δ)E[Ĩ])

<
exp(

∑(1+ϵ)E[H]
i=1 p(et − 1))

exp(t(1 + δ)E[Ĩ])
Pr{H̄}+ Pr{H̄c}

(14)

=
exp((et − 1)(1 + ϵ)E[Ĩ])

exp(t(1 + δ)E[Ĩ])
Pr{H̄}+ Pr{H̄c},

(15)

where (13) holds due to inequality 1 + x < ex; (14) holds
due to the law of total probability and the monotonicity of
exp and; (15) holds because of the fact that E[Ĩ] = E[H]E[Ĩ].
Lastly, by setting t = log(1+δ) and noticing that E[I] = E[Ĩ],

6It is easy to show that the same result holds for conditional expectation
in our case. Refer to [41] for more about stochastic ordering.

we recover a bound which is arbitrarily closed to the classic
Chernoff bound,

P+(I, δ) <

[
e(1+ϵ)δ

(1 + δ)(1+δ)

]E[I]
Pr{H̄}+ Pr{H̄c}.

Now we may choose δ as7,

δ =

(
4 log n2

E[I]

) 1
2−ϵ

<

(
8 logn

na(n)

) 1
2−ϵ

= O(1).

Thus,

P+(I, δ) = Pr{I ≥ (1 +O(1))E[I]}

<
1

n2
Pr{H̄}+ Pr{H̄c}.

Therefore, for a general cell V , the number of S-D
lines passing through it is upper bounded by Θ(E[I]) =

O
(
nE[D(Xi, Yi)]

√
a(n) + na(n)

)
with probability 1−1/n2

conditioning on event H̄. Since H̄ happens w.h.p. and with the
uniform bound the above bound holds uniformly for all cells
in O with probability 1− 1/n, this completes the proof.

Remark 1: Lemma 7 has an interesting implication: notice
that the rank-based model follows power law and is in fact a
heavy-tailed distribution. Therefore the tail of D(Xi, Yi) plays
an important role and cannot be ignored. Hence the number
of hops hi is likely to deviate much from its expectation and
its variance might not be bounded. These observations lead to
concerns that whether the load of the cells are disproportional
so bottlenecks may be formed in the network and capacity
is reduced. The answer is no, according to Lemma 7, which
shows that we still have nice convergence in probability
uniformly over all cells in the network. This not only enables
succinct capacity results to be obtained, but also implies
that we can combat network heterogeneities and achieve load
balancing using simple scheduling schemes.

Combining Lemma 5, 6 and 7, the following theorem is
straightforward.

Theorem 2: The per-node throughput of the scheme for
unicast is Ω

(
1/n(E[D(Xi, Yi)]

√
a(n) + a(n))

)
=

Ω
(
(log n+

√
n log nE[D(Xi, Yi)])

−1
)
. That is,

λu(n) ∼


Ω(1/ log n) α > 3/2

Ω(1/ log
3
2 n) α = 3/2

Ω(nα− 3
2 /

√
log n) 1 < α < 3/2

Ω(
√
log n/

√
n) α = 1

Ω(1/
√
n log n) 0 ≤ α < 1.

Comparing with the results in Theorem 1,
Corollary 1: The lower bounds in Theorem 2 is tight up to

a logarithmic factor.
Remark 2: In fact except for the case that α > 3/2, the

lower bounds in Theorem 2 differ from the upper bounds in
Theorem 1 by only a factor of 1/

√
log n. This well-known

difference is due to the simplicity of the cell tessellation
scheme that employs an almost uniform transmission range
of Θ(

√
log n/n). However, such slight performance drawback

7See [40] for details on the choosing technique.
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can be eliminated by adopting a more sophisticated tessella-
tion scheme and applying percolation theory in routing [42].
Though it is not our main focus, we remark that it is not
difficult to extend percolation theory based schemes to our
framework and achieve a throughput that strictly meets the
upper bounds.

V. MULTICAST

As a major kind of traffic in many online networks, the
information from a source is often desired to be disseminated
to all its corresponding friends, such as tweets in Twitter and
posts in Facebook. In this section we discuss the network
throughput capacity under such traffic pattern, i.e., multicast.

Multicasting in traditional wireless network has been in-
vestigated in [32], [33]. Since relaying links may be shared
by different destinations in a multicast session, multicast is
more efficient and is able to achieve a better throughput than
multiple unicast. A common approach for multicasting is to
establish a spanning tree structure for routing.

However, comparing with traditional multicast, a major
challenge that we face in studying multicast is that the number
of destinations (friends) in each multicast session is assumed
to be a random variable following a power-law distribution,
while in previous related works it is assumed to be a fixed
quantity. Intuitively, this implies that the multicast tree in our
case is more random in size.

The problem is further complicated by the rank-based des-
tination selection mechanism. In previous works, destinations
in a multicast session are assumed to be selected indepen-
dently and uniformly from the population, whereas under our
framework they are selected in a much more complicated way.
In fact, the rank-based selection mechanism implies that the
locations of the destinations are subtly dependent, which cause
significant difficulties in the analysis of multicast trees. In
order to proceed, we have to therefore limit our analysis to
the special case that α = 0, such that the destinations are
selected independently and uniformly over the whole network.
We note that this degenerated rank-based model is equivalent
to the uniform model widely adopted in related works, and
more importantly, the simplification enable us to focus on the
impact of power-law distributed destination numbers without
entangling with the delicate multicast tree generated by the
rank-based model. Our conjecture on the more general case
of arbitrary α is proposed at the end of the section.

A. Upper Bound of Capacity
Consider a generic source Xi and denote Y 1

i , Y
2
i ...Y

Ki
i

as its Ki friends (destinations). Denote EMST(U ) as the
Euclidean minimum spanning tree of set U , and |EMST(U)|
represents its total Euclidean edge lengths. The following
lemma is a famous result on the asymptotic length of the
Euclidean minimum spanning tree generated by i.i.d. point
processes.

Lemma 8: Let Yi, 1 ≤ i < ∞ be independent and
identically distributed random variables in Rd, d ≥ 2, denote
Mk = |EMST ({Y1, ..., Yk})|, then with probability 1,

lim
k→∞

Mk = c(d)n(d−1)/d

∫
Rd

f(x)(d−1)/ddx,

where f denotes the density of the distribution of Yi and
c(d) > 0 is a constant independent of k.

With d = 2 and f(x) = 1 in our case, it is clear that
Mk ∼

√
k as k → ∞. Then we may compute the average

length of the Euclidean minimum spanning tree covering the
source Xi and its Ki destinations, where Ki follows power-
law distribution with parameter β.

E[EMST(Xi, Y1, ...YKi)]

= EKi [EMST(Xi, Y1, ...Yk)|Ki = k]

∼ 1

G2

n∑
k=1

√
k

kβ

∼


1 β > 3/2
log n β = 3/2
n3/2−β 1 < β < 3/2√
n/ log n β = 1√
n 0 ≤ β < 1.

Then with the minimum spanning tree we can establish a
upper bound for the multicast capacity.

Lemma 9: Let Ui = {Xi, Y
1
i ...Y

Ki
i }, if on average

|EMST(U)| is at least D, then λm(n) = O(1/D
√
n).

Proof: We define a multicast session as the duration from
a packet arrives at the source till the packet is delivered to all
destinations. Note that by the definition of Euclidean minimum
spanning tree, in a multicast session the packet must be relayed
over a distance of at least |EMST(U)|. Again consider a
time interval T which is large enough such that the total
number of packets transmitted between all multicast sessions
is cPλm(n + 1)T . Denote hp as the number of hops packet
p is relayed, lhp as the transmission range of the hth hop, and
Np = cPλm(n+ 1)T , it follows,

Np∑
p=1

hp∑
h=1

lhp ≥ cPλmT
n+1∑
i=1

|EMST(Ui)|

≥ cPλmT (n+ 1)D, (16)

where (16) follows from the strong law of large numbers be-
cause |EMST(Ui)| are i.i.d. distributed and E[|EMST|] < ∞.
The rest part of the proof is clear by applying the same logic
as Lemma 4.

Theorem 3: If the number of destinations per multicast
session follows power-law distribution with parameter β, an
upper bound of the per-node multicast capacity is

λm(n) ∼


O(1/

√
n) β > 3/2

O(1/ log n
√
n) β = 3/2

O(nβ−2) 1 < β < 3/2
O(log n/n) β = 1
O(1/n) 0 ≤ β < 1.

B. Capacity Achieving Scheme

For multicasting, the cell partition TDMA scheme that we
employ in Section III.C is still highly efficient for scheduling
active transmissions in the network. However, routing becomes
a major issue in multicast since an optimal routing tree
needs to be constructed. Our main idea is to first construct
a Euclidean spanning tree using Prim’s algorithm, and then
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Fig. 5. Multicast routing tree and multi-hop scheme in step 2.

convert it to a multicast routing tree.
Optimal Routing Tree for Multicast Session Ui:
1. Construct a spanning tree using Prim’s algorithm:
(1)Initially, nodes in Ui form Ki components. Set g = 1.
(2)Partition the network into at most Ki−g squares, such that
their side length is 1/

√
Ki − g8.

(3)Find a square that contains two nodes from two different
connected components. Merge the two components by adding
a edge between the two nodes.
(4)Return the constructed tree ST(Ui) if g = Ki−1, otherwise
g := g + 1 and goto step (2).
2. Tessellate the network extension into squarelets (cells) with
area a(n). For each edge uv in ST(Ui), arbitrarily select a
point w in the cell that lies in the same row as u and the same
column as v, select a node in each of the cells that uw and
wv crosses and connect these nodes to form a path from u to
v.
3. Combine the paths and remove cycles, if any. Return the
obtained multicast routing tree MRT(Ui). Notice that in Step
1-(3), the square exists due to Pigeonhole principle, and in
step 2, the node exists as long as the connectivity criterion
a(n) = Ω(log n/n) is satisfied.

Intuitively, we can use these cells (with area a(n)) as
scheduling units and employ the TDMA scheduling scheme
proposed in Section III.C, and route the packets along tree
MRT(Ui). In order to analyze throughput, it is important to
study the “load” of each cell under these schemes.

Lemma 10: Given an arbitrary cell s, the probability that a
multicast session Ui is routed throughput s is upper bounded
by c3|EMST(Ui)|

√
a(n).

Proof: Notice that the construction of MRT(Ui) consists
of Ki − 1 steps, and s may be invoked in any of these steps.
Denote Ig as the indicator that whether s is invoked in step
g, it follows,

Pr{Ig = 1|Ki} =
1

Ki − g
· ps(g),

8More strictly it should be
⌈
1/

√
⌊Ki − g⌋

⌉
, but we assume it to be an

integer for the ease of presentation.

where 1/(Ki− g) is the probability that the square (with side
length 1/

√
Ki − g) containing s is selected in the gth iteration

of Prim’s algorithm, and ps is the probability that s is selected
in this square. Within this square which is further tessellated
into cells with area a(n), assume that s is in the pth row and
qth column, it follows,

ps(g) = (p− 1)a
3
2 (Ki − g)

3
2 · ( 1√

a(Ki − g)
− p+ 1)

+ (q − 1)a
3
2 (Ki − g)

3
2 · ( 1√

a(Ki − g)
− q + 1)

(17)

≤ 2
√
a(n)(Ki − g),

where the first (resp. second) term in (17) is the probability
that s lies in the same row (resp. column) as u (resp. v).
Therefore,

Pr{s selected by Ui} ≤
Ki−1∑
g=1

Pr{Ig = 1|Ki}

≤
n+1∑
k=1

k−1∑
g=1

2
√
a(n)(k − g)

k − g
Pr{Ki = k}

≤
n+1∑
k=1

4
√
2ka(n) Pr{Ki = k}

=
4
√

2a(n)

c(d)
|EMST(Ui)|.

The lemma holds by setting c3 = 4
√

2a(n)/c(d).
Theorem 4: Denote N(s) as the number of multicast ses-

sions that invoke s for routing, then uniformly over all
squarelets, it follows,

lim
n→∞

Pr
{
∩S

{
N(s) ≤ c4n|EMST(U)|

√
a(n)

}}
= 1,

where c4 is a positive constant.
Proof: Given an squarelet s, by definition:

N(s) =
n+1∑
i=1

1{s invoked by Ui},

where 1{s invoked by Ui} are i.i.d. Bernoullian random variables
with mean p1 ≤ c3|EMST(Ui)|

√
a(n) = p2. Denote N∗(s) as

the corresponding sum of i.i.d. Bernoullian random variables
with mean p2, then clearly N∗(s) is statistically larger than
N(s). By applying Chernoff bounds we get,

Pr {N(S) > 2E[N∗(S)]} < Pr {N∗(S) > 2E[N∗(S)]}
< (e/4)np2 < e−np2/8.

Since |EMST(Ui)| ≥ Θ(1), a(n) > Θ(log n/n),

Pr
{
∩S

{
N(s) ≤ 2c3n|EMST(U)|

√
a(n)

}}
≥ 1−

∑
s

Pr {N(S) > 2E[N∗(S)]}

≥ 1− ne−
√
n logn/8 → 1 as n → ∞.

Setting c4 = 2c3 finishes the proof.



11

Lastly, by employing a TDMA scheme as Section 3.3 such that
every squarelet has a constant fraction of time to transmit, and
further dividing a time slot into minislots such that a squarelet
can deliver the traffic for every multicast session that invokes
it, we have,

Theorem 5: The per-node throughput of the scheme for
multicast is Ω

(
1/n|EMST(U)|

√
a(n)

)
=

Ω
(
1/
√
n log n|EMST(U)|

)
, i.e.,

λm(n) ∼


Ω(1/

√
n log n) β > 3/2

Ω(1/ log3/2 n
√
n) β = 3/2

Ω(nβ−2/
√
log n) 1 < β < 3/2

Ω(
√
log n/n) β = 1

Ω(1/n
√
log n) 0 ≤ β < 1.

Corollary 2: The lower bound in Theorem 5 is tight up to
a logarithmic factor.

Remark 3: Again, notice that there is a small gap of
√
log n

between the upper and lower bounds. This gap can be eliminat-
ed by modifying our communication scheme using percolation
theory.

Remark 4: The results in Theorem 5 match well with
Theorem 2 when α < 1 and β > 3/2. For more sophisticated
cases that α takes an arbitrary value, the multicast capacity is
difficult to be obtained since calculating EMST(Ui) appears
intimidating. However, the nice consistency of the results in
Theorem 5 with that in Theorem 2 helps us to conjecture a
more general result for arbitrary a. Interestingly, the results
in Theorem 5 match well with Theorem 2 when α < 1 and
β > 3/2.

Conjecture 1: If the number of destinations per multicas-
t session follows a power-law distribution with parameter
β, and each destination is selected according to the rank-
based model with parameter α, then the multicast capacity
is Θ(1/|D(Xi, Yi)| |EMST(Ui)|

√
n).

VI. CONCLUSION AND FUTURE WORKS

This paper studies the throughput capacity of wireless
networks with social characteristics. We propose a simple
model which captures the two key characteristics observed
in real large scale networks, i.e., the way people selects
friends and the number of friends, and examine their impact
on capacity. We show the fact that social relations leads to
traffic locality and improves capacity in wireless networks. In
addition, in the common traffic pattern where information is
desired to be disseminated from the source to all its contacts
(e.g., friends, fans or followers) whose number follows power-
law distribution, multicast may be employed to further enhance
performance.

There are still many interesting directions for us to explore
in the future. As is mentioned in previous sections, The
network performance may be quite different from that obtained
under static model. Furthermore, it is also interesting to
take energy consumption and delay performance in mobile
network into consideration. Because energy-efficiency and
latency minimization are both hot topic in recent study of
wireless networks.
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