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Abstract—Since wireless channel is vulnerable to eavesdrop-
pers, the secrecy during message delivery is a major concern
in many applications such as commercial, governmental and
military networks. This paper investigates information-theoretic
secrecy in large-scale networks and studies how capacity is
affected by the secrecy constraint where the locations and channel
state information (CSI) of eavesdroppers are both unknown. We
consider two scenarios: 1) non-colluding case where eavesdrop-
pers can only decode messages individually; and 2) colluding case
where eavesdroppers can collude to decode a message. For the
non-colluding case, we show that the network secrecy capacity is
not affected in order-sense by the presence of eavesdroppers. For
the colluding case, the per-node secrecy capacity of Θ( 1√

n
) can

be achieved when the eavesdropper density ψe(n) is O(n−β),
for any constant β > 0 and decreases monotonously as
the density of eavesdroppers increases. The upper bounds on
network secrecy capacity are derived for both cases and shown
to be achievable by our scheme when ψe(n) = O(n−β) or
ψe(n) = Ω(log

α−2
α n), where α is the path loss gain. We show

that there is a clear tradeoff between the security constraints
and the achievable capacity. Furthermore, we also investigate the
impact of secrecy constraint on the capacity of dense network,
the impact of active attacks and other traffic patterns as well as
mobility models in the context.

I. INTRODUCTION

Although facilitating communications through quick de-
ployment and low cost, the broadcast nature of wireless
channel makes it vulnerable to attacks such as eavesdropping
and jamming, which are important concerns for commercial,
governmental and military networks. Traditional solutions are
based on cryptographic methods such as the well-known RSA
public key cryptosystem. However, due to the expensive key
distribution, the rapid growth of computation power and im-
provement on decoding technology, cryptographic techniques
encounter some limitations, especially as the network size
increases. Hence, to avoid such limitations, this paper focuses
on information theoretic security where eavesdroppers are
assumed to have infinite computational power.

The basis for information theoretic security stems from
Shannon’s notion of perfect secrecy [1], which is then ex-
tended to noisy channels by Wyner [2] and later by Csiszár
and Körner [3]. Information theoretic security is achieved
by exploiting the difference between channels of legitimate
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nodes and that of eavesdroppers, which requires the intend-
ed receiver to have a stronger channel than eavesdroppers.
Recently, securing wireless communications at the physical
layer is intriguing renewed interests among research area.
Haenggi [4] and Pinto et al. [5] study the in-degree and out-
degree distributions under the security constraints. As is shown
in both papers, even a small number of eavesdroppers will
cause dramatic decreasing in nodes’ connectivity. To guarantee
the secret transmission, Geol and Negi [6] propose artificial
noise generation to suppress eavesdroppers’ receiving signal.
The independence of fading channels is exploited to generate
noise to suppress eavesdroppers’ channels taking advantage
of cooperative schemes [7] and multiple antennas [8], [9].
Furthermore, Barros et al. [10] show that theoretic information
secrecy can be achieved by fading alone if channel state
information (CSI) is available.

However, so far the research about information theoretic
security mainly focuses on distinctive techniques to enhance
the security, yet little is known about their impact on network
performance such as capacity, delay, etc, especially in large
scale wireless networks. As some exceptions, Vasudevan et al.
[12] study the secrecy capacity issue in a large-scale network.
Specifically, they introduce helper nodes around transmitters to
generate noise to degrade eavesdroppers’ channel and utilize
channel fading gain of receivers to enhance secure commu-
nications. The impact of secrecy guard zone on capacity is
investigated by Koyluoglu et al. [13] and Zhou et al. [14].
On the other hand, what is the upper bound of secrecy capacity
is unknown. Furthermore, some of pre-known information
is needed in the previous works, such as pre-known CSI
information of receivers or some pre-known location informa-
tion of eavesdroppers. These pre-known information can be
used by transmitters to differentiate receivers’ channels from
eavesdroppers’. And, in real applications it is difficult to obtain
such information a prior, especially in large scale wireless
networks. Therefore, a fundamental question arises: what will
be the performance of secrecy capacity, if both the CSI and
location information are unknown to legitimate nodes?

We are thus motivated to investigate this issue in static
wireless networks. Our main idea to solve the aforementioned
problem is to let a receiver distinguish its own channel
by adopting self-interference cancelation. More precisely, we
assume each receiver is equipped with three antennas, one for
message reception and the other two for simultaneous artificial
noise generation to suppress eavesdroppers’ channels. Since
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the three antennas are all equipped on one node, the noise
generated by the receiver itself can be eliminated through
the technique of antenna cancelation proposed in [17]. This
differs our noise generation pattern from previous works and
we will show in later part that such difference can dramatically
improve network secrecy capacity.

Our main contributions are summarized as follows:
• In the non-colluding case, the optimal per-node secrecy

capacity Θ( 1√
n
) is achievable in the presence of eaves-

droppers. This result holds even in the scenario where
there are more eavesdroppers than legitimate nodes in
the network.

• In the colluding case, we establish the relationship be-
tween the secrecy capacity and the tolerable number
of eavesdroppers. More importantly, we first derive the
upper bound for secrecy capacity which is achievable.

• We identify the underlying interference model to capture
the fundamental impact of secrecy constraints. This mod-
el relies weakly on the specific settings such as traffic
pattern and mobility models of legitimate nodes. Hence,
our study can be flexibly applied to more general cases
and shed insights into the design and analysis of future
wireless networks.

The rest of this paper is organized as follows. In Section II,
we present the system model. Asymptotic analysis on different
scenarios is carried out in Section III and IV. We investigate
the effect of dense network in Section V. Jamming as a
different kind of network attacking is investigated in Section
VI. Discussions and concluding remarks are given in Section
VII and VIII, respectively.

A. Related Works

Asymptotic analysis can provide fundamental insight on
network performance as the network size increases. The
ground-breaking work is initiated by Gupta and Kumar [18],
who study capacity performance in a network with n randomly
distributed nodes. They show that the per-node capacity is
lower bounded by Ω( 1√

n logn
) and upper bounded by O( 1√

n
).

This gap is closed later by Franceschetti et al. [20] using
percolation theory. The fundamental difference behind these
two works is the underlying connectivity. The communication
range in [18] should be Θ(

�
logn
n ) to guarantee full connec-

tivity whereas it only needs to be Θ(
�

1
n ) in [20] to guarantee

partial connectivity at the bottleneck. Later on, Grossglauser
and Tse [23] further indicate the capacity can be improved
to Θ(1) when mobility is introduced to nodes, at the expense
of increased delay [19]. Since then, asymptotic analysis has
drawn considerable attention in research area and we will give
a brief introduction in the following.

While interference always has an negative effect on wireless
communication, MIMO technology turns it into useful signal
and hence greatly enhance the communication. In [28], Özgür
et al. propose an iterative MIMO scheme to obtain a constant
per-node capacity which is a great improvement compared to
hop-by-hop transmissions. Infrastructure is another effective
way to overcome the interference. Liu et al. [27] prove that the

gain on capacity can increase linearly with the number of base
station under certain circumstances. Multicast is a common
traffic pattern in real networks which makes the analysis much
more difficult. Li [24] proposes a tree-based routing scheme
to deal with it. More recently, Wang et al. [25] and Tang et
al. [26] study multicast capacity in hybrid networks. Mobility
pattern plays an important part in wireless networks and Neely
[19] uses queuing theory to study the delay and capacity. Hu
[11] further study the multicast capacity in mobile large scale
networks. Brownian motion is an important mobility pattern
which is studied in [30] by Lin et al.. Homogeneous mobility
pattern and uniform node density is the first step for the
study on mobile networks. Garetto et al. [21] investigate the
heterogeneous cases which include a large body of mobility
models.

II. NETWORK MODELS AND DEFINITIONS

In this paper, we consider a static ad hoc network in an
extended network B = [0,

√
n]× [0,

√
n].

Legitimate Nodes: Legitimate nodes follow a Poisson dis-
tribution with unit intensity over the whole network. And
transmitter-receiver pairs are randomly chosen such that each
node is the destination of exactly one source. We denote T
and R as the subsets of nodes simultaneously transmitting and
receiving at a given time-slot. We assume that each legitimate
node is equipped with three antennas. When a legitimate node
acts as a receiver, one antenna is used for message reception
while the other two are devoted to simultaneous artificial noise
generation to suppress eavesdroppers’ channels. The distances
between the receive antenna and the two respective transmit
antennas should satisfy a difference of half the wavelength.
The interference can therefore be eliminated using the tech-
nique of self-interference cancelation proposed in [17].

Eavesdroppers: Independently of legitimate nodes, eaves-
droppers also follow a Poisson distribution in the network
with intensity λe. Let E be the set of eavesdroppers. We
assume eavesdroppers always keep silent since they will be
easily detected if active. In order to have an insight on
the fundamental information theoretical secrecy capacity, we
assume eavesdroppers have infinite computation ability which
means that traditional cryptography method can not be applied
here. We also assume that both CSI and location information
of eavesdroppers are unknown to legitimate nodes.

The Physical Model: For simplicity, we denote uniform
transmission power as Pt and uniform noise generation power
as Pr. The path loss between node i and node j is denoted by
l(xi, xj), which can be expressed as l(xi, xj) = min(1, d−α

ij ).
Here dij is the transmission distance and the loss exponent
α > 2. When node i is transmitting messages to node j, the
signal to interference and noise ratio (SINR) received by node
j over a channel of unit bandwidth can be given by:

SINRij =
Ptl(xi, xj)

N0 +
�

k∈T \{i} Ptl(xk, xj) +
�

k∈R\{j} Prl(xk, xj)
,

where N0 denotes the ambient noise power at the receiver.
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The SINR received by eavesdropper e can be represented by:

SINRie =
Ptl(xi, xe)

N0 +
�

k∈T \{i} Ptl(xk, xe) +
�

k∈R Prl(xk, xe)
.

Secrecy Throughput Per Hop: As is defined in [3], the secure
throughput between any active transmitter-receiver pair is:

Rs
ij = Rij −Rie = log2(1 + SINRij)− log2(1 + SINRie)

where SINRie = maxe∈E SINRie.
Asymptotic Capacity: Asymptotic per node capacity λ(n)

is said to be achievable if there is a scheduling and routing
scheme such that every node can transmit λ(n) bits per second
on average to its destination in the long term.

Knuth Notations: Denote λ(n) = O(f(n)) if there is a
positive constant c1 such that limn→∞ P (λ(n)f(n) ≤ c1) = 1

and λ(n) = Ω(f(n)) if f(n) = O(λ(n)). λ(n) is said to be
Θ(f(n)) if both λ(n) = O(f(n)) and λ(n) = Ω(f(n)) hold.

In Table 1, we list the parameters that will be frequently
used in later analysis, proofs and discussions.

TABLE I: Notations

Notation Definition
n The total number of legitimate nodes in the network.

λs(n) The per-node secrecy capacity.

ψe(n)
The expected density of poisson distributed eaves-
droppers.

Pt The power to transmit packets.
Pr The power to generate noise.

R(d)
The rate that a transmitter can transmit to an intend-
ed receiver which is located d distance away.

Re
The rate that an eavesdropper can obtain from a
transmitting node.

Rs(d)
The rate that a transmitter can securely transmit to an
intended receiver which is located d distance away.

III. SECURITY CAPACITY FOR INDEPENDENT
EAVESDROPPERS CASE

In this section, we investigate secrecy capacity for indepen-
dent eavesdroppers. We use percolation theory to construct
the routing scheme which contains three phases, e.g., draining
phase, highway transmission and delivery phase. Since our
scheme should guarantee the secrecy communication, it seems
that the capacity should be degraded. However, we show
that regardless of the fact that the capacity will be sacrificed
to ensure secrecy in draining phase and delivery phase, the
bottleneck still lies in the highway phase where the secrecy
capacity remains the same as that in the network without
eavesdroppers.

We present the following lemma which will be quoted
throughout this paper.

Lemma 1: When a legitimate node t is transmitting to a
legitimate receiver r, the maximum rate that an independent
eavesdropper e can obtain is upper-bounded by

Re ≤ min

�
Ptd

−α
te

N0
,
Pt

Pr
(1 + dtr)

α

�
, (1)

where dtr is the Euclidean distance between legitimate node
t and node r and dte is the distance between legitimate node
t and eavesdropper e.

Proof: First we prove the maximum SINR that eaves-
droppers can obtain is Pt

Pr
(1 + drt)

α. Consider the following
four cases.

Case 1: When dte and dre are both greater than 1, then

SINRe =
Ptl(xt, xe)

N0 +
�

k∈T \{t} Ptl(xk, xe) +
�

k∈R Prl(xk, xe)

<
Ptl(xt, xe)

Prl(xr, xe)
=

Ptd
−α
te

Prd
−α
re

≤ Ptd
−α
te

Pr(drt + dte)−α

=
Pt

Pr

�
1 +

drt
dte

�α

≤ Pt

Pr
(1 + drt)

α.

(2)
Case 2: When dte > 1 and dre <= 1, it is obvious to see

that eavesdroppers’s interference is more severe than that in
case 1 while the signal received is not stronger than that in
case 1. So the bound still holds.

Case 3: When dte <= 1 and dre > 1, we can easily see
that the path loss gain of T-E pair is 1 when the bound derived
in case 1 holds, which means that the bound cannot be broken
by condition dte <= 1.

Case 4: When dte <= 1 and dre <= 1, the SINR at
eavesdroppers will not be greater than that in case 3 since
eavesdroppers in case 4 suffer more interference. Hence the
bound still holds.

Notice that SINRe is also smaller than Ptd
−α
te

N0
. Hence, since

Re = log(1+max(SINRe)), it is straightforward to conclude
this lemma.

From the analysis, we can see that the rate is tight in order
sense when dtr = Θ(1). And according to our following
analysis, the bottleneck of secrecy capacity lies in the highway
phase where dtr = Θ(1). Hence, from this point of view, this
rate is tight.

A. The Highway System
The network is divided into non-overlapping cells with side

length of c, where c is a constant. We say that a cell is open
if there is at least one node in it. Hence cells are open with
probability p = 1− e−c2 independently.

For ease of exposition, denote m as
√
n/

√
2c and we

assume m to be an integer, which will not change our results in
order sense. As is shown in [20], when the constant c is large
enough, there are a lot of crossing paths in the network which
behave almost as straight lines. For any κ > 0, partition the
network into rectangles of size m×(κ logm−εm) and choose
εm = o(1) as the smallest value such that the side length is an
integer. Denote Ri as the ith rectangle and Ci as the number
of edge-disjoint crossings of Ri. Then the minimal number of
disjoint crossing paths Np = mini Ci can be upper bounded by
δ logm when m goes to infinity and δ is a constant. Further,
to make sure that there are at least as many paths as slices
inside each rectangle, each rectangle is sliced into horizontal
strips with constant w = κ logm/Np.
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Fig. 1: There are at least δ logm disjoint highways in each
rectangle. Nodes in i-th slice will transmit to nodes located in
the i-th highway and crosses denote eavesdroppers.

Our packet routing scheme includes three steps:
Step 1: Each source in the i-th slice transmits directly to a

legitimate relay located on the i-th path. The relay is chosen
in a way such that it is closest to the source among all other
nodes on the i-th path, as is shown in Fig. 1.

Step 2: Packets are relayed horizontally through the high-
way and then along a vertical highway until it arrives at an
exit point closest to the destination in a multi-hop fashion.

Step 3: Packets are directly delivered from the highway to
the destination similar to the first step.

B. Analysis of Secrecy Capacity

Next we present our scheduling scheme and compute the
lower bound of the legitimate receiver’s rate. Note that our
scheduling scheme is different from that proposed in [20],
since we should take the issue of secrecy into account. And
the basic idea is to space concurrent transmission sufficiently
far away so that the interference is tolerable.

Lemma 2: When a legitimate node is transmitting to a
legitimate receiver which is located d cells apart, the minimum
rate that the legitimate node can receive is lower-bounded by
c2Ptd

−α, where c2 is a constant.
Proof: First we compute the interference at the receiver.

Divide the network into disjoint subsquares of (k+ d)× (k+
d) cells, where k will be explained later. Every cell in each
subsquare takes turn to transmit. Consider a given transmitter-
receiver pair, the eight closest transmitters and receivers are
located at distance of at least ck and c(k + d − 1) from the
receiver. The sixteen next closest transmitters and receivers
are located at distance at least c(2k + d) and c(2k + 2d− 1)
away from the receiver and so on. Taking into consideration
all the interferences in the whole network, the interference at
the intended destination can be upper-bounded as follows:

I(d) ≤
∞�
i=1

8i(Ptl(c(i(k + d)− d)) + Prl(c(i(k + d)− 1)))

≤
∞�
i=1

8i(Pt + Pr)l(cik)

= (Pt + Pr)(kc)
−α

∞�
i=1

8i(ci)−α.

(3)

Note that
�∞

i=1 8i(ci)
−α converges to a constant c

′
1 when α ≥

2.

Since the distance from the transmitter to the designated
receiver is at most c(d+ 1), the receiving signal S(d) can be
lower-bounded by

S(d) ≥ Ptl(c(d+ 1))

= Pt(c(d+ 1))−α.
(4)

Notice that l(c(d + 1)) = (c(d + 1))−α since d is an integer
and c is greater than 1.

Now the accurate rate that the legitimate receiver may
achieve can be derived as follows:

R(d) = log

�
1 +

S(d)

N0 + I(d)

�

≥ log

�
1 +

Pt(c(d+ 1))−α

N0 + c
′
1(Pt + Pr)(kc)−α

�

≥ c
′
2Pt(c(d+ 1))−α

≥ c2Ptd
−α,

(5)

when choosing k = Θ(P
1
α
r ) and c2 is a constant.

Now we will show that secrecy communication can be as-
sured for any T-R pairs by appropriately spacing for concurrent
transmissions.

Theorem 1: For any legitimate transmitter-receiver pair
which is spaced at a distance of d cells apart, there exists
an Rs(d) = Ω(d−α−4), so that the receiver can receive at a
rate of Rs(d) securely from the transmitter.

Proof: According to the definition of secure rate and
combining with Lemma 1 and Lemma 2, the secrecy rate
Rs(d) each cell can transmit can be denoted as:

Rs(d) =
1

(k + d)2
(R(d)−Re)

≥ 1

(k + d)2

�
c2Ptd

−α − c3
Pt

Pr
dα
� (6)

where 1
(k+d)2 is the time utilization factor, c2 and c3 are both

constants.

Let Pr = 2 c3
c2
d2α. Hence, to bound the interference in-

curred to the intended receiver, according to Equation (5),
k = Θ(P

1
α
r ) = Θ(d2). Therefore, the secrecy rate each cell

can receive is Ω(d−α−4).

Theorem 1 indicates positive secrecy rate is achievable even
under the worst attack. In order to calculate per-node secrecy
capacity, we first compute the number of legitimate nodes in
each cell and then derive the traffic load that each node in
the highway should relay, as are shown in the following two
lemmas.

Lemma 3: There are at most log n legitimate nodes in each
cell of constant size c2 w.h.p.1.

1In this paper, w.h.p stands for with high probability, which means the
probability tends to 1 as n goes to infinity.
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Proof: Let Ai be the number of legitimate nodes in cell
i and A be the maximum number of Ai. Hence, we have

P (A ≥ log n) = P (maxAi ≥ log n)

≤ P (∪i(Ai ≥ log n))

≤
�
i

P (Ai ≥ logn)

≤ n

c2
e−c2

�
c2e

log n

�c2 logn

=
1

c2
e−c2

�
c2e1+1/c2

log n

�c2 logn

→ 0.

Note that the third inequality follows from union bounds and
the fourth one follows from Chernoff bounds [31].

Lemma 4: If nodes are poisson distributed with intensity
ψ(n) in the network B, partition the network into disjoint
regions with same size f(n), let Ni be the number of nodes
inside region i. We have

P

�
1

2
f(n)ψ(n) ≤ Ni ≤ 2f(n)ψ(n), ∀i

�
= 1

when f(n)ψ(n) ≥ log4/e n and f(n) = Ω(1).
Proof: The number of nodes inside each region Ni is a

poisson variable and denote its expectation as ψ. Hence, we
have ψ = E(Ni) = f(n)ψ(n). Letting N be the maximum
number of Ni, for all i. Under similar derivation of Lemma
3, we can get that

P (N ≥ 2f(n)ψ(n)) ≤ n

f(n)
P (Ni ≥ 2f(n)ψ(n))

≤ n

f(n)
e−ψ

�
eψ

2ψ

�2ψ

=
n

f(n)

�e
4

	f(n)ψ(n)

≤ 1

f(n)
→ 0

(7)

when f(n)ψ(n) ≥ log4/e n and f(n) = Ω(1).
Similarly, we can show that mini Ni is greater than

1
2f(n)ψ(n) w.h.p. when conditions hold.

Theorem 2: With n legitimate nodes randomly distributed
in B, the achievable per-node secrecy throughput under the
existence of independent eavesdroppers is Ω( 1√

n
).

Proof: As is shown in the routing scheme, the maximum
distance between source and relay on the highway is no larger
than κ logm + 2c in the first step. Applying Theorem 1, we
obtain that one node in the cell can transmit securely at rate
Ω(log−α−4 n) to the relay. Since there may be multiple nodes
inside the cell, they should share the transmission chances. The
number of nodes inside each cell can be bounded as O(log n)
according to Lemma 3. Hence, the achievable secrecy capacity
is Ω(log−α−5 n) in the draining phase. Note that since the
delivery phase is a reverse process of the draining phase, the
secrecy capacity of the delivery phase is the same as that of
draining phase.

In the highway phase, the transmission range between T-R
pairs is at most 2

√
2c. Hence each node on the highway can

transmit securely at rate Ω(1) to the next relay by applying

Theorem 1. According to the routing scheme, each source
in the i-th slice transmit packets to the i-th highway in the
same rectangle. Since the density of legitimate nodes is 1 and
the size of each slice is w

√
n, which satisfy the conditions

given by Lemma 4, we obtain that the maximum number of
legitimate nodes inside each slice is no larger than 2w

√
n.

Hence, the traffic load on each relay node in the highway is
at most 2w

√
n nodes. Therefore, the secrecy capacity of the

highway phase is Ω( 1√
n
).

Based on the results above, we conclude that per-node
secrecy capacity is Ω( 1√

n
).

C. The Optimality of Our Scheme

We first consider the case where no eavesdropper exists in
the network. Due to the broadcast nature of wireless channel,
every concurrent transmission will incure interference to other
transmissions. The following lemma shows that there is a
constraint on the total network throughput underlying this
fundamental physical model.

Lemma 5: When n nodes are identically and randomly
located in a wireless network and source-destination pairs
are randomly chosen, the per-node throughput λ(n) is upper
bounded by O( 1√

n
).

Proof: Let L be the expected distance between all source-
destination pairs. Hence L = Θ(

√
n) [18]. Denote r and

T (r) as the average transmission range and rate of each hop
respectively. Let l be the average distance that simultaneous
transmissions can occure. Since the expected number of hops
that a packet should travel is L/r, the total traffic load
the network should carry is nλ(n)L/r. And the total traffic
that the network can carry is n

l2T (r). Hence, we obtain
that nλ(n)L/r ≤ n

l2T (r), which means λ(n) ≤ rT (r)
l2
√
n

.
Substituting T (r) into the equation, we have

λ(n) ≤ rT (r)

l2
√
n

=
Pt min(1, r−α)

N0 +



k∈T \{i} Ptl(xk, xj)

r

l2
√
n

where T denotes the set of concurrent transmission nodes and
l(xk, xr) denotes the path loss gain.

It is easily verified that min(r, r1−α) = O(1). Next We
show that (N0 +



k∈T \{i} Ptl(xk, xr))l

2 = Ω(1). If l =
Ω(1), the result is straightforward. If l = o(1), there would be
Θ( 1

l2 ) concurrent transmission nodes inside unit area around
the receiver and the path loss gain between these nodes and
the intended receiver is Θ(1). Therefore, the result holds.

Since the per-node throughput without the secrecy constraint
is O( 1√

n
), the per-node secrecy capacity can also be bounded

by O( 1√
n
) which indicates the optimality of our scheme.

IV. COLLUDING EAVESDROPPERS

In previous section, the maximum SINR received by an
independent eavesdropper can be suppressed by artificial noise
generation. And it has already been shown that the per-node
throughput does not entail lost, regardless of how many eaves-
droppers are present in the network. However, if eavesdroppers
are equipped with multiple antennas or multiple eavesdroppers
can collude to decode the messages, is it still possible to
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ensure secrecy transmission and what is the network secrecy
performance? We will focus on these problems in this section.

A. Eavesdroppers with Multiple Antennas

We start from the special case where every eavesdropper
is equipped with A(n) antennas but eavesdroppers do not
collaborate with each other.

To get an intuitive insight, we assume that the eavesdrop-
per can employ maximum ratio combining to maximize the
SINR which means that the correlation across the antennas is
ignored.

Theorem 3: If eavesdroppers are equipped with A(n) an-
tennas, the per-node secrecy capacity λs(n) is Ω( 1√

n
A(n)−

2
α ).

Proof: Since eavesdroppers are equipped with A(n)
antennas, following the same argument of Lemma 1, the
maximum rate that eavesdroppers can get is bounded as
Re ≤ c3A(n) Pt

Pr
(1 + drt)

α. Because eavesdroppers don’t
transmit any noise, the rate that legitimate receivers can get
remains the same as the following

R(d) ≥ c2Pt(c(d+ 1))−α. (8)

Because of Rs(d) = R(d) − Re, it is obvious that there
exists a constant c

′
3, such that when Pr equals to c

′
3A(n)d

2α,
Rs(d) can be greater than 1

2R(d). Hence the secrecy rate is
Ω(d−α). To hold equation (6), k should be in the order of
Θ(Pr

1
α ) which is equal to (A(n)

1
α d2). So the secrecy rate in

each cell should be Ω(d−α−4A(n)−
2
α ). When the transmission

is on the highway phase, the per-node secrecy capacity is
Ω( 1√

n
A(n)−

2
α ). When the transmission is on the delivery

phase, the per-node secrecy capacity is Ω(log−α−5 nA(n)−
2
α ).

Hence, the per-node secrecy capacity is Ω( 1√
n
A(n)−

2
α ). From

this result, we can see that there is a tradeoff between the
number of a eavesdropper’ antennas and the capacity of
legitimate nodes.

��

��

��

��

�
�

Fig. 2: An illustration of network partition to bound the upper
bound of SINR received by eavesdroppers.

B. Secrecy Capacity for Colluding Eavesdroppers

To get a fundamental insight on how the colluding eaves-
droppers will affect the secrecy transmission, we assume that
all eavesdroppers in the network can collaborate to decode
the messages and maximum ratio combining is adopted to
maximize the SINR eavesdroppers obtained. Hence we can
regard all eavesdroppers as a super-eavesdropper.

Assume that eavesdroppers are poisson distributed with
parameter ψe(n) in the network. For a given transmitter-
receiver pair, we partition the network into disjoint rings with a
same size of f(n). The transmitter is at the center of all these
rings. Let ri be the external diameter of the ith ring. Since
f(n) = πr21 = π(r2i −r2i−1) for any i > 1, we have ri =

√
ir1

for any i ≥ 1. Denote Φei as the set of eavesdroppers located
inside the i-th ring. Hence the number of eavesdropper Nei in
Φei is a poisson variable with parameter ψe(n)f(n). Recalling
Lemma 4, we have

P (
1

2
f(n)ψe(n) ≤ Nei ≤ 2f(n)ψe(n), ∀i) = 1,

when f(n)ψe(n) ≥ log4/e n and f(n) = Ω(1).
Notice that the distance between the transmitter and eaves-

droppers is at least ri−1, the signal power received by eaves-
droppers in the i-th ring is at most Ptr

−α
i−1 for any i ≥ 2. For

each ψe(n), we choose f(n) such that f(n)ψe(n) ≥ log4/e n
and f(n) = Ω(1). Denote SINRei as the SINR received by
eavesdroppers in the i-th ring. Taking the summation of the
SINR received by the eavesdroppers in all the rings up, we
have

SINRe ≤
�
i

SINRei

=
�

j∈Φe1

SINR1j +
+∞�
i=2

�
j∈Φei

SINRij

≤ 2f(n)ψe(n)SINRe1 +
+∞�
i=2

2f(n)ψe(n)SINRei

≤ 2f(n)ψe(n)
Pt

Pr
(1 + drt)

α +
+∞�
i=2

2f(n)ψe(n)
Ptr

−α
i−1

N0

= 2πψe(n)

�
r21

Pt

Pr
(1 + drt)

α +
Pt

N0
r2−α
1

+∞�
i=1

i−
α
2

�
,

(9)

where the third row of this inequality follows from Lemma 1
and note that

�+∞
i=1 i−

α
2 converges since α > 2.

Case 1: When the transmission is on the highway phase
which means drt = Θ(1), substituted into Equation (8),
it is obvious that there is a constant c4 satisfying Re ≤
c4ψe(n)(r

2
1/Pr + r2−α

1 ). As is shown in Lemma 2, the rate
R(d) received by the intended receiver can be Θ(1). Note
that there are two constraints in the derivation of Equation
(9), i.e., f(n)ψe(n) ≥ log4/e n and f(n) = Ω(1). With

r1 = max (Ω(1),Θ(ψe(n)
1

α−2 )) and Pr = Θ(ψe(n)r
2
1), the

secure transmission can be guaranteed and secure rate each
node in the highway can transmit is Ω( 1

k2 ) where k = Θ(P
1
α
r )

is the concurrent transmission range.
Hence if ψe(n) = Ω(log

α−2
α n), Pr = ψe(n)r

2
1 =
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Θ(ψe(n)
α

α−2 ). The secure rate each node in the highway can
transmit is Ω(ψe(n)

− 2
α−2 ). Since the traffic load at each node

in the highway is at most O(
√
n), the per-node through-

put should be Ω( 1√
n
ψe(n)

− 2
α−2 ). If ψe(n) = O(log

α−2
α n),

with similar argument, the noise generation power can be
Θ(log n) and we can obtain per-node secrecy capacity of
Ω( 1√

n
log−

2
α n).

Case 2: When the transmission is on the draining and
delivery phases where drt = Θ(log n), there exists a constant
c5 such that SINRe ≤ c5ψe(n)(r

2
1 log

α n/Pr + r2−α
1 ). The

rate that a legitimate receiver can obtained is log−α n. Similar
to case 1, choosing r1 = max (Ω(1),Θ(ψe(n)

1
α−2 log

α
α−2 n))

and Pr = Θ(ψe(n)r
2
1 log

2α n), the secure transmission
could be guaranteed and secure rate Rs allocated at
each cell is Ω( 1

k2 logα n ), where k = Θ(P
1
α
r ). When

ψe(n) = Ω(1), Pr = Θ(ψe(n)
α

α−2 log
2α2

α−2 n) and Rs =

Ω(ψe(n)
− 2

α−2 log−α n log−
4α

α−2 n). Since there are at most
log n legitimate nodes inside a cell, the per-node secrecy
capacity is bounded by Ω(ψe(n)

− 2
α−2 log−α−1 n log−

4α
α−2 n).

When ψe(n) = O(1), using similar technique, we can obtain
that the per-node secrecy capacity is at least a polylog(n)
factor. Therefore, the bottleneck lies in the highway phase.

Combining these two cases, we present the following the-
orem which demonstrates the tradeoff between the secrecy
capacity and the tolerable eavesdroppers’ density.

Theorem 4: Consider the wireless network B where le-
gitimate nodes and eavesdroppers are independent poisson
distributed with parameter 1 and ψe(n) respectively, the per-
node secrecy capacity is

λs(n) =

��
�

Ω( 1√
n
ψe(n)

− 2
α−2 ), ψe(n) = Ω(log

α−2
α n)

Ω( 1√
n
log−

2
α n), ψe(n) = O(log

α−2
α n)

.

(10)

Intuitively, when ψe(n) = o(n−1), the number of eaves-
droppers will be at most 1 w.h.p. according to the weak
law of large numbers. Hence, the secrecy capacity will be
Ω( 1√

n
) with Theorem 2 which is much higher than the

results in Theorem 3. The main reason is that the inequality
f(n)ψe(n) ≥ log4/e n should be satisfied throughout the proof
of Theorem 3. Therefore, the noise generation power should
be Θ(log n) which will degrade the throughput performance.
We re-investigate this problem from another perspective in the
following context.

Lemma 6: When the intensity of the eavesdroppers is
ψe(n) = O(n−β) for any constant β > 0, partitioning the
network into disjoint regions with constant size h and denoting
by Nei the number of nodes inside region i, we have

P (Nei ≤ v, ∀i) = 1,

where v = � 1
β 	+ 1.

Proof: Let Ne be the maximum number of Nei and ψ be
the expected number of Nei. Hence ψ = hψe(n) and we can

further get

P (Nei ≥ v) =
∞�
i=v

ψie−ψ

i!

≤ ψve−ψ

v!
(1 + ψ + ψ2 + ψ3 + ...)

≤ ψke−ψ

v!

1

1− ψ/(v + 1)
→ 0.

(11)

Using the union bound, we have

P (Ne ≥ v) ≤ n

h

ψve−ψ

v!

1

1− ψ/(v + 1)

≤ n1−vβ

h

hve−ψ

v!

1

1− ψ/(v + 1)
→ 0

(12)

as n goes to infinity.

Theorem 5: If eavesdroppers are poisson-distributed in the
network with intensity ψe(n) = O(n−β) for any constant β >
0, the per-node secrecy capacity is Ω( 1√

n
).

Proof: To compute the SINR of the eavesdropper system,
we divide the network into two parts. One is the circle which
is at most r1 distance from the transmitter, the other is the rest
of the network. There are at most vπr21 eavesdroppers in the
circle where v is a constant as is shown in Lemma 5 and the
SINR received by each eavesdropper is upper bounded by the
results in Lemma 1. Thus, the cumulative SINR received by
eavesdroppers can be calculated as

SINRe ≤ vπr21
Pt
Pr

(1 + drt)
α +

� ∞

r1

Ptr
−α

N0
2πrvdr

= vπr21
Pt
Pr

(1 + drt)
α +

Pt2πvr
2−α
1

N0(α− 2)
.

(13)

When packets are delivered along the highway, where the
distance between T-R pairs is drt = Θ(1) and the rate R(d)
is a positive constant, there exists constants c6 and c7 such
that Re ≤ SINRe ≤ 1

2R(d) when r1 = c6 and Pr = c7r
2
1 . As

shown in Equation (6), the concurrent transmission range k is
Θ(P

1
α
r ) and hence is Θ(1). So the secrecy rate each node on

the highway can transmit is Θ(1). Since the node should relay
at most Θ(

√
n) nodes’ traffic, the per-node secrecy capacity

is Ω( 1√
n
).

When the transmission is on the draining and deliv-
ery cases where drt = Θ(log n), the rate each cell can
transmit is Θ(log−α n) as shown in Lemma 2. By choos-
ing r1 = c8 log

α
α−2 n and Pr = c9r

2
1 log

2α n where
c8 and c9 are both constants, we can obtain SINRe ≤
1
2R(d). The concurrent transmission range k is Θ(P

1
α
r ) =

Θ(log
2α−2
α−2 n). Hence the secrecy throughput each cell can

transmit is Θ(log−
4α−4
α−2 n log−α n). Since there are at most

Θ(log n) nodes in the cell, the per-node secrecy capacity is
Ω(log−

4α−4
α−2 n log−α−1 n).

Combining the results above, we conclude this theorem.

With Theorem 4 and Theorem 5, the per-node secrecy
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Fig. 3: An illustration of both upper bound and lower bound
of secrecy capacity in large-scale networks. The scales of the
axes are in terms of the orders in n.

capacity can be summarized as follows.

λs(n) =

���
��

Ω( 1√
n
ψe(n)

− 2
α−2 ) ψe(n) = Ω(log

α−2
α n)

Ω( 1√
n
log−

2
α n) ψe(n) = [Ω(n−β), O(log

α−2
α n)]

Ω( 1√
n
) ψe(n) = O(n−β)

(14)
for any constant β > 0.

C. The Optimality of Our Scheme

In previous subsection, we have derived the lower bounds of
the network secrecy capacity in collaborating case. However,
the upper bound of the network secrecy capacity still remains
unknown. We will focus on the upper bound in this subsection.

It is also assumed that legitimate nodes do not cooperate to
generate artificial noise here while the cooperative mode will
be discussed in the next subsection.

Theorem 6: Consider the wireless network B where le-
gitimate nodes and eavesdroppers are independent poisson
distributed with parameter 1 and ψe(n) respectively, the per-
node secrecy capacity is

λs(n) =

�
O( 1√

n
ψe(n)

− 2
α−2 ) ψe(n) = Ω(1)

O( 1√
n
) ψe(n) = O(1)

. (15)

Proof: When the transmission is on the highway, we as-
sume that the concurrent transmission range is k and partition
the network into disjoint subsquares with size k × k. Denote
the two squares with length 3k

4 and length k
4 whose centers

are both at node i as A1i and A2i respectively. Let the region
A1i−A2i be Ai . Denote the number of eavesdroppers located
in Ai as Nei where i ranges from 1 to n

k2 . Since the expectation
of the number of eavesdroppers located in all the regions Ai

is n
2ψe(n), there are at least n

4ψe(n) eavesdroppers in all the
regions Ai when ψe(n) ≥ log4/e n

n according to Lemma 4.
Hence there exists a i such that Nei will be greater than
k2

4 ψe(n).
Consider a specific eavesdropper j in region Ai. Since

the minimum distance between eavesdropper j and the eight
closest concurrent transmission is at least k

4 and the next

�
�
�� ��

�
� �

Fig. 4: An illustration of network partition to bound the lower
bound of SINR received by eavesdroppers.

sixteen is at least 5k
4 , the interference eavesdropper j suffers

from can be bounded as follows.

Ij ≤
∞�
c=1

8c(Pt + Pr)(
k

4
+ (c− 1)k)−α

= (Pt + Pr)(k)
−α

∞�
c=1

8c(c− 3

4
)−α

≤ c10Prk
−α

(16)

where c10 is a constant.
As is shown in Theorem 1, k should be Ω(P

1
α
r ). Therefore,

the interference eavesdropper j suffers from can be bounded
by a constant. The maximum distance between eavesdropper
j and the closest transmitter is at most 3k

4 . Hence, the SINR
received by all the eavesdroppers in region Ai can be lower
bounded by

SINRe ≥
�
j

Sj

N0 + Ij

≥ Nei

( 3k4 )−α

N0 + Ij

≥ c11ψe(n)k
2−α,

(17)

when c11 is a constant.
Since the rate at which each T-R pair can transmit is Θ(1),

we should choose k = Ω(ψe(n)
1

α−2 ) to ensure the secrecy of
transmission. Note that there are k2 cells in each subsquare
taking turn to transmit and each node in the highway should
carry the traffic load of Θ(

√
n) nodes. Hence the per-node

secrecy capacity is at most O( 1
k2

√
n
) = O( 1√

n
ψe(n)

− 2
α−2 ).

Note that according to Theorem 3, the per-node secrecy
capacity is at most O( 1√

n
). Therefore, the upper bound of

secrecy capacity is min(O( 1√
n
), O( 1√

n
ψe(n)

− 2
α−2 )).

From the above analysis, we can obtain some intuitive
insight on the main constraint of secrecy capacity. While the
legitimate receivers can generate artificial noise to affect the
near-by eavesdroppers’ channels, eavesdroppers which lie in
the middle of two concurrent transmission T-R pairs may not
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be affected in order sense by the generated noise. Therefore,
there is a clear tradeoff between the density of eavesdroppers
and the concurrent transmission opportunities.

Compared with Theorem 4, our scheme achieves optimal
secrecy capacity when ψe(n) = Ω(log

α−2
α n) and ψe(n) =

O(n−β) for any constant β > 0. And when ψe(n) =

O(log
α−2
α n), our scheme is close to the optimal one. A more

clear picture of such optimality is illustrated in Fig. 3. And
we leave it as our future work to further close this gap.

D. Discussion on the Upper Bound
Since the overhead to coordinate the generation of artificial

noise between legitimate nodes maybe too large, we don’t
consider the scenario when legitimate nodes cooperate to
generate artificial noise to enhance the secret transmission
throughout this paper. The scheme proposed in previous Part
B and Part C has also shown its great potential to improve
secrecy capacity. However, it is still of great interest to
see what is the secrecy capacity when legitimate nodes can
cooperate and how to achieve it. Therefore, we consider the
cooperative mode here and only present the key analysis in
this part to avoid redundancy with previous sections.

Theorem 7: Consider the wireless network B where le-
gitimate nodes and eavesdroppers are independent poisson
distributed with parameter 1 and ψe(n) respectively, the per-
node secrecy capacity is

λs(n) =

�
O( 1√

n
ψe(n)

− 2
α1 ) ψe(n) = Ω(1)

O( 1√
n
) ψe(n) = O(1)

(18)

when legitimate nodes can cooperate to generate artificial
noise and α1 = α− α

α−1 .
Proof: Artificial noise is helpful only when the eavesdrop-

pers’ SINR is decreased more than the legitimate receivers’.
Assume that a legitimate node which is d = Ω(1) distance
away from legitimate receivers can generate artificial noise
with power Pd. Since there are Θ(d2) legitimate nodes which
are Θ(d) distance away from legitimate receivers, the noise
that the legitimate receiver will suffer is Θ(d2·Pd·d−α). There-
fore, when Pd is larger than Θ(dα−2), the SINR legitimate
receiver obtained will suffer a same loss with eavesdroppers’.

Divide the network into rings according to the distance(di =
2i) to the legitimate receiver. Therefore, in the i-th ring,
there are about Θ(ψe(n)d

2
i ) eavesdroppers. The noise each

eavesdropper suffer is at most Θ(dα−2
i + Prd

−α
i ) where Pr

is at most Θ(kα) similar to previous subsection. Hence, the
SINR received by all eavesdroppers can be lower bounded by

SINRe ≥ c12
�
di

ψe(n)d
2
i d

−α
i

kαd−α
i + dα−2

i

≥ c12
2

�
di≤k1

ψe(n)d
2−α
i

kαd−α
i

+
c12
2

�
di>k1

ψe(n)d
2−α
i

dα−2
i

≥ c12
2

ψe(n)k
α

α−1−α,

(19)
when c12 is a constant and k1 = k

α
2α−2 . Following similar

argument in Part C, we conclude this theorem.

According to the main idea of the upper bound, we can
design a corresponding scheme to achieve the upper bound
except a polylog(n) factor.

Since the network is divided into rings with di = 2i,
there are at most Θ(log n) rings in the network. Therefore,
the cumulative noise suffered by the intended receiver is at
most Θ(log n). To ensure the rate that legitimate receiver
can obtain is larger than that of eavesdroppers’, there are
two possible solutions. The artificial noise generated by the
cooperative nodes can be scaled down by a Θ(log n) factor.
On the other hand, we may also increase the Pr to further
decrease the eavesdroppers’ signals. After delicate compu-
tation, it can be shown that the first solution has a better
performance and therefore we only present the proof of the
first solution in the following. Since we adopt the first solution,
Pd = dα−2 log−1 n and the rate that the legitimate T-R pair
can transmit remains as a constant. Divide the network into k2

disjoint subsquares. The cumulative SINR that eavesdroppers
can obtain inside the intended legitimate receiver’s subsquare
can be bounded by

SINRe1 ≤ c13
�
di

ψe(n)d
2−α
i

kαd−α
i + dα−2

i log−1 n log−α n

≤ c13
�

di≤k2

ψe(n)d
2−α
i

kαd−α
i

+ c13
�

di>k2

ψe(n)d
2−α
i

dα−2
i log−α−1 n

≤ 4c13ψe(n) log
α+1
α−1 n · k α

α−1−α,
(20)

when c13 is a constant and k2 = k
α

2α−2 (log n)
α+1
2α−2 . Note

that the main difference between Equation (19) and (20) is
a logα n parameter. This is a path loss gain because the
maximum distance between an eavesdropper and a legitimate
node generating noise is log n. It can also be shown that the
cumulative SINR that eavesdroppers can obtain inside other
subsquares is smaller than SINRe1. Therefore, using similar
approach in Part B, the secrecy capacity is

λs(n) = Ω
� 1√

n
ψe(n)

− 2
α1 log

−2(α+1)
α1(α−1) n

�
(21)

when ψe(n)k
2
2 = Ω(log n).

V. SECRECY CAPACITY IN DENSE NETWORKS AND
RANDOM NETWORKS

A. Secrecy Capacity in Dense Networks

In previous section, we have considered secrecy trans-
missions in extended networks. Now we will extend it to
dense networks where nodes are poisson distributed in a unit
square. On surface, the difference seems to be only a scale
factor of

√
n and all the results can be applied to the dense

networks directly. However, we note that this is not the case
because the path loss gain in extended networks is bounded
while it is unbounded in dense networks. Consider that an
eavesdropper is quite close to the transmitter, the SINR at
the eavesdropper will be quite large. Hence we should first
consider the minimum distance between eavesdroppers and
the transmitters which is denoted by b. Let Ne be the number
of eavesdroppers in the dense network. When nπb2Ne = o(1),
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the region inside the circles centered at transmitters with
diameter b will be empty of eavesdroppers.

Conducting similar derivation in Theorem 1, we can obtain
that SINRe ≤ c1

Pt

Pr
( 1
b
√
n
)α and SINRl ≥ c2Pt(

√
n)α when

the concurrent transmission range k is greater than P
1
α
r . To

assure the transmission is secret, we choose Pr = Θ(( 1
bn )

α).
Hence, the concurrent transmission range is Θ( 1

bn ) and the
per-node secrecy capacity is Ω( 1√

n
( bn√

n
)2) = Ω( 1√

nNe
).

Compared with the results in extended networks, the secrecy
concern has a much larger impact on dense networks. There-
fore, it is a tempting future work to study how to improve
secrecy capacity in dense networks, e.g., mobility may help.

B. Secrecy Capacity in Random Networks

The difference between Poisson distributed network and
the random network lies in that with network divided into
multiple regions, the numbers of nodes inside a specific region
in the former one are mutually independent poisson variables
whereas it is not the case in the latter one. Hence it is often
computable in poisson networks due to this independence
property. In contrast, this does not necessarily hold in random
networks since the total number of nodes in the network is
given. Thus, the number of nodes inside a given region may
affect the distribution probability of that in other regions.
However, it is shown in [29] that random networks will
converge to Poisson scenarios as n goes to infinity which is
also proved in the following from another perspective. We note
that while the following result is straight forward at the first
glance although it is not, the lemma given below has its own
value and the proof here is different from that in [29]. Hence,
our results still hold when applied to random networks.

Lemma 7: Partition the network into disjoint cells with
equal size 1, if there are k nodes randomly distributed in the
network, then the probability each cell has i nodes is

Ci
k(

1

n
)i(1− 1

n
)k−i. (22)

Proof: Denote the number of cells that has i nodes in it
as T

′
k(i) and the expectation of T

′
k(i) as Tk(i). Consider there

are k nodes in the network and a new node joins in. If the new
node joins in a cell with i nodes, T

′
k+1(i) should be T

′
k(i)−1

and T
′
k+1(i+ 1) should be T

′
k(i+ 1) + 1. Hence, we have

T
′
k+1(0) =

��
�

T
′
k(0)

n−T
′
k(0)
n

T
′
k(0)− 1

T
′
k(0)
n

(23)

T
′
k+1(i) =

����
���

T
′
k(i)− 1

T
′
k(i)
n

T
′
k(i)

n−T
′
k(i)−T

′
k(i−1)

n

T
′
k(i) + 1

T
′
k(i−1)

n

(24)

for all i ≥ 2 and i ≤ k, where the latter part of the equations
is the probability of given event.

T
′
k+1(k + 1) =

��
�

0
n−T

′
k(k)
n

1
T

′
k(k)
n

. (25)

Taking expectation of both sides, we have��
�

Tk+1(0) = Tk(0)(1− 1
n )

Tk+1(i) = (1− 1
n )Tk(i) +

1
nTk(i− 1)

Tk+1(k + 1) = 1
nTk(k)

. (26)

Note that T0(0) = n, T1(0) = n− 1 and T1(1) = 1, using
mathematical induction, we have

Tk(i) = nCi
k(

1

n
)i(1− 1

n
)k−i.

Since n cells are the same, we conclude this lemma. When
n and k both goes to infinity, the probability converges to a
poisson variable with parameter k

n .

VI. SECRECY CAPACITY UNDER ACTIVE ATTACKS

We now consider the static ad hoc networks under jamming
attacks in which jammers keep sending out radio waves to
interrupt the legitimate nodes. This will cause additional inter-
ference and hence may degrade the performance of legitimate
nodes. For simplicity, we assume the power utilized by all the
jammers is the same, denoted by Pm and Pm = Θ(1).

Assume that jammers are poisson distributed with parameter
ψm(n) in the network and the set of jammers is denoted by
Φm. For a given transmitter-receiver pair, we partition the
network into disjoint rings with a same size of f(n). The
receiver is at the center of all these rings. Let ri be the external
diameter of the ith ring. Since f(n) = πr21 = π(r2i − r2i−1)

for any i > 1, we have ri =
√
ir1 for any i ≥ 1. Denote Φmi

as the sets of eavesdroppers located inside ith ring. Hence the
number of eavesdropper Nmi in Φmi is a poisson variable
with parameter ψm(n)f(n). Recalling Lemma 4, we have

P (
1

2
f(n)ψm(n) ≤ Nm ≤ 2f(n)ψm(n), ∀i) = 1,

when f(n)ψm(n) ≥ log4/e n and f(n) = Ω(1).
Notice that the distance between the receiver and jammers is

at least ri−1, the interference at the receiver caused by jammers
in the i-th ring is at most Pmr−α

i−1 for any i ≥ 2. For each
ψm(n), we choose f(n) such that f(n)ψm(n) ≥ log4/e n
and f(n) = Ω(1). Denote Imi as the interference caused by
jammers in the i-th ring. Taking the summation of interference
caused by jammers in all the rings up, we have

Im ≤
�
i

Imi

=
�

j∈Φm1

I1j +
+∞�
i=2

�
j∈Φmi

Iij

≤2f(n)ψm(n)Im1 +
+∞�
i=2

2f(n)ψm(n)Imi

≤2f(n)ψm(n)Pm +
+∞�
i=2

2f(n)ψm(n)Pmr−α
i−1

=2Pmf(n)ψm(n)

�
1 +

+∞�
i=1

r−α
i

�

≤c14Pmf(n)ψm(n),

(27)

where c14 is a constant.
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Similar to Section III, the highway system is adopted to
transmit the messages across the network. Different from
Section III, the scheduling scheme will not vary with the
density of jammers. Choose the concurrent transmission range
k as 2d + 1 where d is the distance between legitimate T-R
pairs. According to Lemma 2, the interference I(d) caused by
other concurrent transmissions can be bounded as a constant.
Hence, the rate that a receiver can obtain is

R(d) =Θ
� Ptd

−α

N0 + I(d) + Im

�
≥c15

Ptd
−α

f(n)ψm(n)
,

(28)

where c15 is a constant.
Case 1: When ψm(n) ≤ log n, choosing f(n) to sat-

isfy the conditions in Lemma 4, it is obvious to see that
R(d) = Ω( d−α

logn ). When the transmission is on the highway
phases which means d = Θ(1), R(d) = Ω( 1

logn ). Since
the node on the highway should carry the load of at most√
n nodes according to Lemma 4, the per-node capacity is

Ω( 1√
n logn

). When the transmission is on the draining and
delivery phases where d = Θ(log n), R(d) = Ω(log−α−1 n).
Since the concurrent transmission range is Θ(log n) and this
rate should be shared by at most log n nodes according to
Lemma 3, the per-node capacity is Ω(log−α−4 n). Combing
the results above, the per-node capacity is Ω( 1√

n logn
).

Case 2: When ψm(n) ≥ logn, choosing f(n) = Θ(1), we
can see that R(d) = Ω( d−α

ψm(n) ) from Equation (28). Similar
to the derivation in case 1, the per-node capacity can be
obtained which is Ω( 1√

nψm(n)
) on the highway phase while it

is Ω( log
−α−3 n

ψm(n) ) on the draining and delivery phase. Hence, the
per-node throughput is Ω( 1√

nψm(n)
) when ψm(n) ≥ log n.

Combining these two cases, we present the following the-
orem which demonstrates the achievable capacity jamming
attacks.

Theorem 8: Consider the wireless network B where legit-
imate nodes and jammers are independent poisson distributed
with parameter 1 and ψm(n) respectively, the per-node capac-
ity is

λm(n) =

�
Ω( 1√

nψm(n)
), ψm(n) ≥ log n

Ω( 1√
n logn

), ψm(n) < log n
. (29)

According to Lemma 5, when ψm(n) = o(n−β) for any
constant β ≥ 0, the number of jammers will be upper bounded
by Θ(1) w.h.p.. However, in previous lemma, the upper bound
of the number of jammers is still Ω(log n) and hence the result
is not tight. Therefore, we re-investigate this problem in the
following context.

Theorem 9: If jammers are poisson-distributed in the net-
work with intensity ψm(n) = O(n−β) for any constant β > 0,
the per-node capacity is Ω( 1√

n
).

Proof: To compute the interference at the receiver, we
divide the network into two parts. One is the circle which is
at most r1 distance from the receiver, the other is the rest of the
network. There are at most vπr21 jammers in the circle where
v = � 1

β 	+1 is a constant as is shown in Lemma 5. Thus, the

cumulative interference at the receiver can be calculated as

Im ≤ vπr21Pm +

� ∞

r1

Pmr
−α2πrvdr

= vπr21Pm +
Pm2πvr2−α1

α− 2
.

(30)

Hence, choosing r1 = Θ(1), Im can be bounded as a con-
stant. According to Equation (28), R(d) = Θ( Ptd

−α

N0+I(d)+Im
) =

Ω(d−α). After similar derivation in the proof of Theorem 8,
we conclude this theorem.

Now, we can summarize the per-node capacity as follows.

λm(n) =

��
�

Ω( 1√
nψm(n)

), ψm(n) = Ω(log n)

Ω( 1√
n logn

), ψm(n) = [Ω(n−β), O(log n)]

Ω( 1√
n
) ψm(n) = O(n−β)

(31)
for any constant β > 0.

Similar to the proof in Part C, Section IV, we can also prove
the upper bound of capacity under the presence of jammers.

Theorem 10: Consider the wireless network B where legit-
imate nodes and jammers are independent poisson distributed
with parameter 1 and ψm(n) respectively, the per-node capac-
ity is

λm(n) =

�
O( 1√

nψm(n)
) ψm(n) = Ω(1)

O( 1√
n
) ψm(n) = O(1)

. (32)

VII. DISCUSSION

A. Details on the Self-interference Cancelation

From the results above, we can see that the secrecy capacity
is greatly improved by the adoption of self-interference can-
celation. And recall that to use this technology, the distances
between the receive antenna of legitimate node and the two
noise generating antennas should differ half the wavelength.
However, if the eavesdroppers can also use self-interference
cancelation and the distances between their antennas and
the two noise generating antennas differ one and half the
wavelength or two and half the wavelength, the eavesdroppers
would also suffer no artificial noise. To deal with this problem,
we propose two methods in the following.

The first method that can be used is quite intuitive and
effective. Just let the legitimate node revolve on its own axis,
then only the position of the reception antenna of its own will
suffer no artificial noise. And all the results in this paper still
hold.

The other method maybe a little more complex and needs
four noise generating antennas in each legitimate node. As
shown in Fig. 5, A1, A2 and B1, B2 are the noise generating
antennas and the reception antenna is located at the origin.
The distances between A1 and A2 to the origin differ half the
wavelength. So do B1 and B2. The noises generated by A
and B are different. Hence, the positions that will suffer no
artificial noise are contained in the shaded area as shown in
Fig. 5. Also notice that the shaded area is located inside the
legitimate node and hence all eavesdroppers will suffer the
artificial noise.
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Fig. 5: An illustration of the legitimate node introduced in the
second method.

B. Relaxation on Some Assumptions

In our model, both CSI and the position information of
eavesdroppers are assumed to be unknown to legitimate n-
odes. It can be seen from Figure 2 that there exists a gap
between the lower bound and the upper bound of per-node
capacity, when the intensity of eavesdroppers is in the range
[Θ(n−β),Θ(log

α−2
α n)]. Thus, it turns out to be a tempting

issue whether the secrecy capacity can be improved if some
of the information is known.

Note that the gap is caused by the randomness in Poison
distribution, since a jump of log n number of nodes per unit
area occurs at the point ψe = 1. Taking the concurrent
transmission range for instance, it has to be set uniform
over the whole network to guarantee the transmission secrecy
for each T-R pairs in the worst case. However, it can be
solved in the case where the information such as the posi-
tions of eavesdroppers are known. Because different artificial
noise generation powers and different concurrent transmission
ranges can be exhibited at different T-R pairs. Hence, it is
possible to narrow this gap, by appropriate adjustments on
the number of concurrent transmission nodes as well as the
corresponding TDMA schemes, which results into capacity
improvement. We leave it as our future work for further
investigation on the problem.

C. Impact of Fading Gain

Since the main purpose of this work is to investigate the
secrecy capacity when both the locations of eavesdroppers and
channel state information are unknown to legitimate nodes, we
assume the fading gain is the same over all nodes in previous
sections. And we note that when the channel state informa-
tion of legitimate receiver is available to the corresponding
transmitter, the main results of this paper still hold.

Intuitively, the reason behind is that the transmitter can
select to transmit when the channel between legitimate T-R
pair is good since the CSI is known. We consider Rayleigh
fading channel here while the result can be applied to other
fading channels readily. Assume the average fading gain is
1. A legitimate transmitter is scheduled to send packets only
when the fading gain between the legitimate T-R pair is greater
than 2. Otherwise, the transmitter will keep silent. Hence, the
channel between legitimate T-R pairs is better than the channel
of transmitter and eavesdroppers in the long run. And we can
use the coding scheme similar to [16] to achieve the secrecy
capacity. Note that the probability that the fading gain between
legitimate T-R pairs is greater than 2 is a constant. Therefore,
the results in our paper may suffer a constant factor and will
not change in order sense.

D. Some Extensions

From the derivations in Section IV, it can be seen that
secrecy capacity is strongly related to both the density of
eavesdroppers and the distance between the T-R pairs. A
larger distance between T-R pairs means that more artificial
noise should be generated to decrease the eavesdroppers’
SINR. Thus, the concurrent transmission range needs to be
enlarged to make sure that legitimate receivers do not interfere
with each other. The model presented captures the secrecy
constraints by the underlying interference and relies weakly on
the specific settings. Hence it can be easily extended to general
networks with multicast traffic pattern or mobile nodes such as
i.i.d. mobility model, one-dimensional mobility model, random
walk mobility model and etc. Under the assumption that the
legitimate nodes’ and eavesdroppers’ distribution are both
Poison-distributed, the optimality of these models is preserved
in secrecy concerned networks. We consider legitimate nodes
do not cooperate to generate artificial noise and eavesdroppers
collude to decode in the following extension. Combined with
the artificial noise generation and TDMA scheduling scheme
proposed in our paper, the following results are straightforward
from [24], [19], [32] and [33].

Denote function f(ψe(n)) as

f(ψe(n)) =

�
��
��

Θ(ψe(n)
− 2

α−2 ) ψe(n) = Ω(log
α−2
α n)

Ω(log−
2
α n) ψe(n) = [Ω(n−β), O(log

α−2
α n)]

Θ(1) ψe(n) = O(n−β)

for any constant β > 0.
Corollary 1. Assume that legitimate nodes and eavesdrop-

pers are independent poisson distributed in B with parameter
1 and ψe(n) respectively. For each legitimate node, k − 1
nodes are randomly chosen as its destinations. For indepen-
dent eavesdroppers case, the aggregated multicast secrecy
capacity is Θ(

�
n

k logn · log−α−4 n) when k = O( n
logn )

and is Θ(log−α−4 n) when k = Ω( n
logn ). For colluding

eavesdroppers case, the aggregated multicast secrecy capacity
is Θ(f(ψe(n))

�
n

k logn · log−α−4 n) when k = O( n
logn ) and

is Θ(f(ψe(n)) log
−α−4 n) when k = Ω( n

logn ).
Corollary 2. Consider a cell-partitioned network under the

two-hop relay algorithm proposed in [19], and assume that
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nodes change cells i.i.d. and uniformly over each cell every
timeslot. For independent eavesdroppers case, the per-node
secrecy capacity is Θ(1) and the corresponding delay is
Θ(n). For colluding case, the per-node secrecy capacity is
Θ(f(ψe(n)) and the corresponding delay is Θ( n

f(ψe(n))
).

Corollary 3. Under random walk mobility model, nodes can
only move to adjacent cells every timeslot. For independent
eavesdroppers case, the per-node secrecy capacity is Θ(1)
and the corresponding delay is Θ(n log n). For colluding
case, the per-node secrecy capacity is Θ(f(ψe(n)) and the
corresponding delay is Θ( n logn

f(ψe(n))
).

Corollary 4. Since it is shown by J. Mammen and D. Shah
[33] that the capacity and delay under one-dimensional random
walk mobility model are the same as that without the 1-D
mobility constraint which is also the case in our model. Hence,
the secrecy capacity and correspondence delay are the same
as that in Corollary 3.

And we note that since self-interference cancelation may be
not readily applied in mobile networks, our results in mobile
networks is of theoretical interest and may provide some kind
of guideline. It is an interesting future work to seek more
practical solutions in mobile networks.

E. Comparison with Previous Work

It is shown in [13] that the per-node secrecy throughput is
Θ( 1√

n
) which means there is no secrecy capacity loss when

ψe

ψ = o((log n)−2). This result coincides with part of the
results presented in our paper. In [13], secrecy guard zone
assumed to contain no eavesdroppers existing in a region
around the legitimate nodes is adopted to enhance secrecy
transmission under the attack of independent eavesdroppers.
However, they do not discuss in their paper how to estab-
lish a guard zone and what is the secrecy capacity when
ψe

ψ = Ω((log n)−2) .
Zhang et al. [22] show that the per-node secrecy capacity

is Θ( 1√
n logn

) when pf = Ω( 1
logn ) and Θ(

�
pf

n ) when

pf =
�
Ω( logn

n ), O( 1
logn )

�
. Here pf represents the probability

that neighboring nodes have a common key used to establish
security association and is independent with the density of
eavesdroppers. To guarantee the connectivity of authenticated
nodes, the concurrent transmission range varies as pf changes.
Hence, the relationship between our result and theirs is the
underlying concurrent transmission chances, since we focus
on the interference model whereas they rely on cryptographic
techniques.

Liang et al. [16] show that the per-node secrecy capacity
in mobile ad hoc network is Θ(

�
D
n ) when ψe = o(

�
D
n )

and Θ( 1
nψe

) when ψe = Ω(
�

D
n polylog(n)), with D being

the delay constraint. Note that there will be chances that the
closest node to the transmitter is the intended receiver when
the delay is sufficiently large. Hence, the secrecy is guaranteed
by the mobility of legitimate nodes while ours focus on static
networks.

To make use of the channel fading gain, it can be seen that
the concurrent transmission region in [12] is much larger than
that in our paper. Hence more throughput has to be sacrificed

to ensure the security. Furthermore, the secrecy capacity is
not studied in their paper when the density of eavesdroppers
is larger than 1 while we make such investigation in our work.

VIII. CONCLUSION AND FUTURE WORK

Secrecy of message delivery is a major concern in a lot of
real applications. This paper studies the asymptotic behavior of
secrecy capacity in an ad hoc network where both the channel
state information and locations of eavesdroppers are unknown.
With interference cancelation, we propose a novel construction
which enhances network security greatly. Relationships of
secrecy capacity and the density of eavesdroppers are in-
vestigated for both independent eavesdroppers and colluding
case. Extensions to dense networks and the effect of other
eavesdropping models and mobility models are also discussed.
Jamming as a different kind of network attacking is also
investigated. The most interesting insight in our paper perhaps
is the shift on the pattern how legitimate nodes generate noises
which may shed insight into the future design of wireless
networks.

The secrecy issue in large-scale networks are strongly
correlated with the node distributions of both legitimate n-
odes and eavesdroppers, also depends on how the packets is
delivered across the network. Hence, it is an interesting future
work to study the relationship between the secrecy capacity
and the heterogeneity distributions of nodes. Also, when the
network range changes or the number of legitimate nodes
and eavesdroppers varies, the corresponding change in secrecy
capacity is of interest. Finally, as the social network is more
and more important in our daily life, how to ensure the secrecy
transmission in social networks is also of great interest.
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