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ABSTRACT
Hybrid systems with CPU and GPU have become the new
standard in high performance computing. Workloads are
split into two parts and distributed to different devices to
utilize both CPU and GPU for data parallelism in hybrid
systems. But it is challenging for users to manually balance
workload between CPU and GPU since GPU is sensitive
to the scale of the problem. Therefore, current dynamic
schedulers balance workload between CPU and GPU peri-
odically and dynamically. The periodical balance operation
causes frequent synchronizations between CPU and GPU
and the synchronizations often degrade the overall perfor-
mance. To solve the problem, we propose a Co-Scheduling
Strategy Based on Asymptotic Profiling (CAP). CAP dy-
namically splits one task’s workload to CPU and GPU and
adopts the profiling technique to predict the workload in
next partition. CAP is optimized for GPU’s performance
characteristics to balance workload between CPU and GPU
with only a few synchronizations. We examine our proof-
of-concept system with four benchmarks and results show
that CAP produces up to 45.1% performance improvement
compared with the state-of-art co-scheduling strategy.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM’2013 February 23, 2013, Shenzhen [Guangdong, China]
Copyright c⃝ 2013 ACM 978-1-4503-1908-9/13/02 ...$15.00.

Keywords
GPU, Hybrid System, Scheduling, Data-Parallelism

1. INTRODUCTION
Multicore processor is still dominating the general-purpose

processor market, but many-core architectures like GPU are
popular in the high performance computing area. GPU
provides the ability of highly parallel processing and over-
whelms multi-core processor with both parallel computing
power and energy efficiency if the algorithm can be par-
allelized and modified to fit the architecture of the GPU.
Otherwise, the performance of GPU is poor [17]. Thus, sys-
tems with multi-core processor and GPU are becoming the
trend in system design to fit different situations. Although
hybrid systems with CPU and GPU are widely used, pro-
grammers may not utilize them efficiently since it is hard for
programmers to balance workload between CPU and GPU.

Task-parallelism and data-parallelism are two kinds of
parallelism in hybrid systems. Task-parallelism assumes that
many tasks are to be executed and the scheduler distributes
the tasks to different devices and maintaining dependency
of tasks. Data-parallelism assumes that the CPU and GPU
are processing a single task whose data can be computed in
parallel so the scheduler partitions the data (workload) to
different devices.

Many scheduling strategies, either static or dynamic, have
been proposed to balance workload between CPU and GPU
for data-parallelism. In a static strategy, workloads are dis-
tributed to CPU and GPU statically. Static strategies often
cause unbalanced workload because it is hard to predict the
performance of GPU for a particular application without
knowing the details of the runtime. The GPU is highly sen-
sitive to scale of problem and the performance of GPU is
affected by memory access pattern, depth of branches and
concurrent level of the algorithm.

On the other hand, in a dynamic strategy, the partition
of workload is adjusted at runtime based on the execution
time of workloads on the CPU and GPU at runtime. A small
portion of the workload can be sampled and the workload
is split according to the sampling results. Another method
uses frequently synchronizations to balance workload step
by step. The former is not as accurate as it is on the CPU
and causes imbalance in partition while the latter introduces
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more overhead and degrades the overall performance.
In summary, load-balance is a primary factor that affects

the performance of programs on hybrid systems and existing
strategies do not handle it well.
We propose CAP, a novel runtime scheduler to automat-

ically balance workload among different devices. CAP uses
a dynamic strategy and it is optimized for GPU with the
performance characteristics of GPU in mind. CAP needs
only several synchronizations to accurately predict the per-
formance of GPU and CPU. CAP combines the advantages
of two dynamic strategies and avoiding their disadvantages.
These features are handled by the runtime system without
programmer’s effort. Our work focus on data-parallelism
scheduling for one task but the method can be extended to
task-parallelism.
We implement our scheduler with CUDA and pthread as

an external library to evaluate our strategy. The evaluation
results show that CAP achieves up to 45.1% performance
improvement compared with the state-of-art co-scheduling
strategy.
We make the following contributions in this paper:

• We analyze the performance characteristics of GPU
and current dynamic co-scheduling strategy.

• We propose a dynamic scheduling strategy based on
profiling for distributing workloads across CPU and
GPU with only a few synchronizations between CPU
and GPU.

• Evaluation results show that benchmarks achieve up to
45.1% performance improvement with CAP compared
to the best of current co-scheduling strategies.

The rest of the paper is arranged as follows. Section 2
presents the performance characteristics of the GPU, anal-
ysis of current strategy and the design of CAP. Section 3
describes the implementation of CAP. Section 4 shows the
evaluation environment, evaluation results and discusses is-
sues about CAP. Section 5 provides the background and re-
lated work. Section 6 draws conclusions and discusses pos-
sible future work.

2. CO-SCHEDULING BASED ON ASYMP-
TOTIC PROFILING

This section introduces the background knowledge about
GPU, analyses current scheduling strategies and presents
the design of CAP.

2.1 Performance characteristics of GPU
GPU is a kind of many-core architecture processor which

is vastly different from CPU both in programming interface
and performance characteristics. The current generation of
dedicated GPU has GDDR5 memory and separate memory
space. GDDR5 is much faster than DDR3 that the CPU
has and GPU has its own memory controller to schedule
accesses to the memory. GPU also has compute engines to
issue program to its compute units. Thus, computing and
memory access in GPU are independent of CPU and can be
done in parallel. The CPU can synchronize with GPU via
GPU driver of operating system but this operation takes
much time and should be avoided or using techniques to
hide [28].
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Figure 1: GPU performance curve of conjugate gra-
dient with different workloads

GPU is famous for its number of cores and the ability to
switch threads without the overhead due to large register
files. If the algorithm requires little to none communication
between threads or these communications have good space
locality, the GPU can offer a significant speedup compared
with CPU. The GPU is not good at executing programs with
many branches and communications, some unoptimized al-
gorithm may even be slower on the GPU than the CPU. The
performance of GPU varies even for the same algorithm be-
cause different scales of the problem may affect the pattern
of execution and memory access. So the performance of
GPU is not as stable as a CPU.

Figure 1 shows the normalized performance (compared
with CPU) curve of the Conjugate Gradient benchmark with
different percent of workloads launched to the GPU. The
evaluation environment is described in Section 4. The x-
axis indicates the percent of workloads that launched to the
GPU and the y-axis is the normalized performance of the
GPU in the corresponding workloads. The figure shows that
the performance increases as the workload increases. The
performance increases rapidly in the beginning of the curve
but goes stable at the end of the curve. So it is better to
launch a large amount of computation to GPU one time
instead of splitting it into many small parts.

In conclusion, GPU’s computation, data transfer between
CPU and GPU and CPU’s computation are controlled by
separated controller and can be done in parallel but the
overhead of synchronization cannot be ignored. And the
performance of GPU is related to the amount of computa-
tion that launched to it. Our scheduler takes this feature
into account thus makes full use of CPU and GPU.

2.2 Current Scheduling Strategies
This subsection discusses three current scheduling strate-

gies for CPU+GPU co-scheduling and Figure 2 shows the
overview of these strategies.

2.2.1 Static Scheduling
The traditional scheduling strategy is static scheduling.

It sets the ratio of performance between the CPU and GPU
statically and partitions workload according to it at the be-
ginning of the program.

This strategy does not work well for co-scheduling because
the performance of GPU varies for different algorithms, scales
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Figure 2: Strategies Overview

of the problem and implementations. Compilers can use
performance models to calculate the performance ratio for
a specific program and a specific GPU. The scheduler also
can record the execution time of the previous execution in
disk and calculate the performance ratio offline [19] but this
method is not helpful on the first execution. Moreover, if the
program is executed on other hardware environments, the
result of offline analysis is no longer accurate. This strat-
egy does not need synchronization and has little overhead
in scheduling but the load-balance may not be good and
degrade the performance of program in result.

2.2.2 Sampling Scheduling
Sampling scheduling strategy schedules the program in

two phases to avoid the disadvantages of static scheduling
strategy. In the first phase, it executes a small portion of the
workload using static strategy. Then it collects the execution
times of GPU and CPU to calculate the performance ratio
of GPU and CPU. In the second phase, it executes the rest
of the workload and partitions the workload with the ratio
it calculates in the first phase.
This strategy can adjust the scheduling decision accord-

ing to runtime information but the ratio it calculates may
not be accurate. The performance of GPU changes when
the workload changes and GPU may perform differently in
the first phase and in the second phase. The size of sam-
pling can be increased to get a more accurate result but it
degrades the performance because the partition in the first
phase is usually imbalance and the optimal size of sampling
changes case by case. This strategy does not introduce much
overhead and has a more accurate partition thus it usually
gets better result compared with static scheduling.

2.2.3 Splitting Scheduling
Splitting Scheduling tries to get an accurate performance

ratio of GPU and CPU. It splits the workload into several
equally sized parts and synchronizes at the end of execution
of each part. It calculates the performance ratio and parti-
tions the next part according to the ratio in last execution.
This strategy gets best load-balance in the three strate-

gies we discuss in this subsection. But it introduces much
overhead since it needs to synchronize frequently. Splitting
the workload into small parts also degrades the performance
of GPU since GPU performs poorly if only a small amount
of workload is launched to the GPU.
In conclusion, current strategies for data-parallelism are

not good for co-scheduling of GPU and CPU. Thus we pro-

pose a novel strategy, Co-Scheduling Based on Asymptotic
Profiling (CAP) to solve this problem.

2.3 Design of CAP
Figure 2 shows the overview of CAP. CAP breaks the

whole execution into several phases. In the first phase, it
uses static partition to execute a small portion of the work-
load and collects the execution times as sampling scheduling
does. Instead of executing the rest of the workload and par-
titioning them with the ratio calculates in the first phase,
CAP executes the next part which has doubled in size com-
pared with the first part and further samples the perfor-
mance of GPU and CPU. CAP continues sampling and every
part has doubled in size compared with the previous part.
If the variance of current partition and previous partition
is smaller than the threshold, CAP will stop sampling and
executes the rest of the workload.

For example, a task that has 65536 iterations which can
be executed in parallel needs to be split for one CPU and
one GPU co-scheduling. CAP first takes 1/128 (this param-
eter can be set statically) of iterations which is 512. Then
CAP splits these iterations equally and assigns 256 iterations
to the CPU and 256 iterations to the GPU. The CAP also
transfers the needed data in these iterations to the GPU.
After CPU and GPU finish their work, CAP synchronizes,
transfers result from GPU and collects the execution times.
Then it calculates the performance ratio by calculating the
iterations of each device completes per unit time (second,
for example). In the next phase, CAP compares the parti-
tion it calculated with the partition it used in the previous
phase and calculates the variance of these two partitions.
If the variance is small enough, CAP will think this par-
tition is stable and reliable so it partitions the rest of the
workload (65024 iterations) according it. If not, it will use
the performance ratio it calculated in the previous phase to
partition 1024 (2∗512) iterations and doing the same job as
previous phases until the next phase takes more than 1/2 of
remaining iterations. If the next phase takes more than 1/2
of remaining iterations, CAP will simply execute the rest of
the workload using current partition because it may not be
possible for CAP to find a stable partition and CAP tries to
maximize the performance of the GPU by executing a large
amount of workload.

We profile the performance of GPU in an asymptotic way
that CAP tries to find the stable point of the GPU’s per-
formance curve. In sampling scheduling, scheduler assumes
that the performance of a processor is a constant but the
performance of GPU is not a constant, so CAP tries to find
a good estimate of performance by keep sampling until it
is stable. In every phase, CAP adjusts the partition to get
closer to the best partition. When it thinks the stable point
is found, it stops profiling and partitions the remaining work-
load according to the best partition it can get.

Figure 1 shows that the inaccurate of sampling scheduling
comes from the rapid change in the beginning of the curve
and sampling scheduling samples the changing part of the
curve rather than the stable part. It is risky to blindly ex-
ecute a large portion of workload since the initial partition
is inaccurate and imbalance. CAP increases the sampling
part exponentially to find the stable point of the curve and
adjusts the partition according to the execution time. Once
the partition is stable, CAP can safely execute the rest of
the workload and get good load-balance.
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Table 1: Evaluation environment
Name Description
CPU Intel Xeon E5620 @ 2.4GHz
GPU Nvidia Telsa M2090 @ 1.3GHz

CPU code compiler GCC 4.6.3
GPU code compiler NVCC 5.0
Operating System Debian Wheezy (Linux Kernel 3.2)

Table 2: Benchmarks in the evaluation
Name Description Size
cg Conjugate Gradient method 16Kx16K matrix

jacobi Jacobi method 16Kx16K matrix
nbody N-Body Simulation 16K bodies
mm Matrix Multiplication Two 1Kx1K ma-

trix

CAP synchronizes only a few times since the sampling size
of the workload is increased exponentially. The number of
synchronizations of splitting scheduling is linear to smallest
sampling size while CAP’s number of synchronizations is
only logarithmic to smallest sampling size. CAP also does
not degrade the performance of GPU because CAP increase
the amount of computation launched to GPU in each phase
and it uses fixed partition only when the performance of
GPU goes stable.

3. IMPLEMENTATION
We implement CAP in the form of an external library with

CUDA and pthread as our proof-of-concept system. Algo-
rithm 1 shows the algorithm we used in our implementation.
For the ease of programming, we first generate threads us-

ing pthread to handle all the devices we can use and assign
devices to these threads. We initialize the devices before en-
tering the accelerated region because it takes more time on
initialization than computation on M2090 and this overhead
makes scheduling inaccurate. The scheduling part is a criti-
cal section that only one thread can execute this segment of
code while other threads waiting for the scheduling thread
to finish its work. We use the main thread of the program as
the scheduling thread. We schedule the task using the strat-
egy described in Section 2 and the scheduler distributes the
workloads to each thread then threads can do their work. If
a GPU-assigned thread receives a work needs partial data
when doing partial computation, it will just transfer the
needed data and the overhead of data movement is included
in profiling. Otherwise, it loads all data into GPU memory
before the first execution. We use this technique to reduce
the data transfer time between GPU and CPU. After all
work is done, threads exit and synchronize at the exit point.

4. EVALUATION
This section evaluates our strategy. The evaluation envi-

ronment is listed in Table 1.
We use four benchmarks, which are listed in Table 2, to

measure our strategy.
Conjugate Gradient, Jacobi and Matrix Multiplication are

classic matrix algorithms and N-body benchmark is a classic
physics problem.
All benchmarks are implemented in three versions: CPU

Algorithm 1 Co-Scheduling Based on Asymptotic Profiling

Input: Input data set I1, I2, · · · , In, number of devices d
Output: Expected output data set O1, O2, · · · , On

1: Initialize all the devices and allocate necessary memory
space on CPU and GPU.

2: Initialize the scheduler.
3: Generate d threads to handle each device. In each

thread, we do the following work:
4: if This is ith thread then
5: Assign ith device to this thread.
6: loop
7: Record the time of this point as the end time of

previous execution.
8: Wait until all threads reach this point.
9: if This thread is the scheduling thread then
10: if This is the first phase then
11: Take a small portion of workload and partition

it statically.
12: Record the size of the portion as s
13: else if There are remaining workload then
14: Calculate the performance ratio of previous ex-

ecution.
15: Calculate the partition of current execution ac-

cording to the performance ratio.
16: Calculate the variance of previous and current

partition.
17: if The variance is small enough or s∗2 is larger

than 1/2 of remaining workload then
18: Partition the remaining workload
19: else
20: s← s ∗ 2
21: Partition s
22: end if
23: end if
24: Distribute workloads to threads.
25: end if
26: Wait until scheduler gives workload to this thread.
27: if All work has been done then
28: Jump out of the loop.
29: end if
30: Record the time of this point as the start time of

this execution.
31: if The device assigned to this thread is not CPU

then
32: Copy the required input data into device mem-

ory.
33: end if
34: Execute the workload it receives.
35: end loop
36: end if
37: Wait all threads to exit.
38: Aggregate the results of each device and put the final

result into designated place.
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Figure 3: Speedup of CAP

Table 4: Difference in execution time between GPU
and CPU of CAP (smaller is better)

Benchmark Sampling Scheduling CAP
cg 97.23% 1.95%

jacobi 90.43% 3.68%
mm 2.94% 1.17%

nbody 97.23% 5.83%

only (single thread), GPU only (using CUDA), and the hy-
brid version. The hybrid version has two scheduling strate-
gies which are sampling scheduling and CAP. These versions
are implemented in a simple way and are not fully-optimized.
We do not optimize the GPU code to maximize the per-
formance of the GPU. If the GPU code is fully optimized,
The GPU can easily overwhelm CPU in performance and
make co-scheduling meaningless. If the GPU is 100X faster
than CPU, even if the efficiency of scheduler is 100%, co-
scheduling only can get 1% performance improvement. Our
purpose is to evaluate the efficiency of the scheduling strat-
egy rather than the performance of the benchmark.
We only measure the execution time of accelerated region

including kernel launching overhead, data transferring time,
scheduling overhead and computation time. The initializa-
tion and data preparation time is excluded.
We use the Non-Parametric Test introduced in [9] to mea-

sure the speedup. This method calculates the speedup be-
tween two strategies/ algorithms/ configurations with 95%
probability and it is more accurate than average execution
time. Thus we use relative time (speedup) instead of abso-
lute time (seconds) in our results.
We compare the performance of CAP with CPU, GPU

and Sampling Scheduling implementation. The results are
shown in Figure 3 and the numbers are listed in Table 3. The
figure shows that CAP is significantly faster than Sampling
Scheduling in cg, jacobi and nbody benchmark and achieves
up to 45.1% performance improvement.
We measure the load-balance of execution by calculating

the difference in execution time with the following expres-
sion:

|timeCPU − timeGPU |
min{timeCPU , timeGPU}

Good performance of CAP comes from load-balance. As
Table 4 shows, the differences in execution time between

jacobi
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Figure 4: Performance curve of jacobi, mm and
nbody with different workloads

GPU and CPU are huge for cg, jacobi and nbody bench-
marks in sampling scheduling. This means that for cg, jacobi
and nbody, the faster processor only needs half of the time to
finish its work compared with the slower one because of in-
efficient co-scheduling. This reflects the fact that small sam-
pling part is not enough to estimate the performance of the
GPU. CAP balances workload well and the differences for
all benchmarks are below 5%. For mm benchmark, sampling
scheduling can balance workload well and the workload dif-
ference between sampling scheduling and CAP is only 1.77%
so the performance improvement is also small (1.1%).

CAP adjusts the percent of profiling dynamically. If the
program needs more profiling, it will profile more. Other-
wise, it profiles fewer times to achieve better performance.
The Table 3 shows that for cg, jacobi and nbody, CAP pro-
files 1/4 to 1/3 of the workload but for mm, it only pro-
files 1/50 of the workload. CAP only profiles when needed
rather than profiling the 100% of workload like splitting
scheduling. The percentage of profiling is related to the
threshold of stopping profiling. If the threshold is high,
the percentage will be lower, but the load-balance will be
worse. If the threshold is low, the percentage will be higher
but still below 50% in CAP. The optimal value of thresh-
old has not been deeply studied and it is a possible future
work. The execution phase still dominates the performance
and the synchronization cost in profiling phases will not af-
fect the performance much. The total computation sizes for
each benchmark are different and mm benchmark has signif-
icantly larger computation. A small portion of the workload
already reaches the stable point of the performance curve
for mm. This makes the sampling scheduling quite efficient,
but CAP is more efficient by ensuring the performance ratio
in an extra profiling phase.

Figure 4 shows the normalized performance curve of ja-
cobi, mm and nbody. Cg’s normalized performance curve
has been shown in Figure 1. The figure shows that the
performance curves of cg, jacobi and nbody are similar to
logistic function and mm’s performance curve is a straight
line. This explains why sampling scheduling performs well
for mm because the performance of GPU for mm is stable
across different workloads and the first profiling is already
close to the best partition. But for cg, jacobi and nbody, the
first profiling underestimates the performance of GPU and
causes imbalance in workload partition.
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Table 3: Speedup of CAP
Benchmark CPU GPU Sampling Scheduling CAP Improvement Average Percentage of Profiling

cg 1 1.726 2.019 2.558 26.3% 33.4%
jacobi 1 2.546 2.113 3.121 45.1% 26.0%
mm 1 4.911 5.628 5.701 1.1% 0.02%

nbody 1 1.540 1.491 2.237 37.7% 24.2%
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Figure 5: Partition variance of CAP in each profiling
phase

Figure 5 shows the partition variances of CAP in differ-
ent profiling phases. Partition variance is the variance of
one profiling phase and the previous profiling phase. The
number shows the changes of performance of the GPU. If
the change is small, the variance will be smaller because the
performance of CPU is stable and small variance means the
performance of GPU is stable too. Otherwise the variance
will be larger. We only show the numbers from second profil-
ing phase because the static partition is usually inaccurate.
We set the threshold to 5∗10−5 but other values can be used
to find a balance point that keeps load-balance while using
only a few synchronizations. If the variance is smaller than
the threshold, CAP will stop profiling. The figure shows
that the first profiling of mm is quite accurate that CAP
only needs one more profiling phase to ensure the partition
is right. Others converge to the threshold quickly and five
profiling is usually enough for good partition.
In conclusion, CAP significantly improves performance

compared with sampling scheduling when a small portion
of the workload is not enough to profile the performance of
the GPU. CAP is optimized for the performance character-
istics of GPU and can estimate the performance of GPU
accurately without too much synchronization overhead.

5. RELATED WORK
GPU programming is becoming an important issue in the

parallel programming area. Some programming language
extensions like CUDA [22], Brook+ [6] and OpenCL [21] are
published to utilize the hardware’s raw performance. But
the performances of these extensions are not portable be-

tween devices because they are close to the hardware. They
can get good performance but programmers need to have a
good understanding of the hardware to efficiently use both
CPU and GPU.

Because GPU has its own memory, it introduces over-
head when CPU transfers data and launches program on
the GPU. One way to reduce it is utilizing the asynchronous
property of GPU to make the computation hide the over-
head of data transfer and synchronization [27]. This op-
timizations increase performance significantly and are not
application-specific. Our work takes data movement into
consideration and can benefit from the optimizations of data
movement

GPU’s performance characteristics have been deeply stud-
ied. [25] explored the optimizations of GPU and shows that a
fully optimized GPU program is much faster than an unopti-
mized GPU program. [29] and [14] used performance models
and analyzed the instructions that generated by NVCC to
predict the performance of the GPU statically. [2] made a
tool that does the analysis automatically. [15] extended [14]
by integrating a power model into their performance model
to get more detailed analysis. These models can be used in
static analysis of the performance of the GPU but it is not
useful at runtime because it introduces much overhead.

Scheduling is a well-studied problem in multi-core or dis-
tributed computing context. In the shared-memory envi-
ronment, OpenMP [10] works well as a language extension
for C/C++ and Fortran. WATS [8] is a workload-aware
scheduling algorithm which improves the performance in
asymmetric multi-core architecture. In distributed comput-
ing, Mapreduce [11] offered a simple yet powerful program-
ming paradigm to easily write parallel programs if the al-
gorithm does not have data dependency. Many works of
scheduling in Mapreduce have been done to deal with the
heterogeneous property of cloud environment. CellMR [24]
is a Mapreduce framework for asymmetric Cell-based clus-
ters. MOON [18] extended Hadoop [5] to make it work in
grid computing which is highly heterogeneous.

GPU+CPU co-scheduling is also getting attention with
the increasing usage of GPU in high performance computing.
Several platforms are designed and implemented to combine
the processing power of CPU and GPU. Mars [12], StarPU
[1], Qilin [19] and Scout [20] offered different methods to map
tasks to the CPU and GPU. OmpSS [7] extended OpenMP
to provide co-scheduling ability. These platforms require the
programmer to rewrite their code using a new programming
language in the case of StarPU or Scout or using specific
APIs in Mars and Qilin. Our work can be integrated into
these platforms as an optional scheduling strategy.

Many works exist for the load-balance strategy in hetero-
geneous systems. [3], [23] and [16] focused on task-parallelism
but we focus on data-parallelism scheduling. [13] proposed
scheduling strategies based on profiling and used a perfor-
mance model and SVM as a classifier to partition workload
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into preset classes, it cannot get the best result since the
best partition may not fall into the preset classes.

[26] is the state-of-art work to automatically schedule
data-parallelism task between GPU and CPU based on Ac-
celerated OpenMP [4]. We introduce the scheduling strate-
gies used by [26] in Section 2 and have a detailed discus-
sion about them. These strategies have their drawbacks
and these drawbacks have been shown in the K-Means and
Helmholtz benchmark results of [26].

6. CONCLUSION
Heterogeneous systems with CPU and GPU are becoming

popular. It is important to use all the processors to solve
a single task by taking advantages of data-parallelism. Ex-
isting profiling-based data-parallelism scheduling strategies
do not take advantages of GPU’s performance characteris-
tics thus either it introduces too much overhead or it is not
accurate enough.
We propose CAP, a novel profiling-based scheduling strat-

egy to solve the problem by optimizing for the performance
characteristics of the GPU. Our evaluation results show that
comparing with the existing strategies, CAP can achieve up
to 45.1% performance improvement by accurately estimat-
ing the performance of the GPU.
Although we describe our strategy in data-parallelism,

this strategy can be extended to task-parallelism by record-
ing the execution time and problem size of each task. It is
more complex and it is a potential future work. Another po-
tential future work is to explore the optimal settings of the
parameters of CAP. CAP has several parameters affecting
performance like how much the profiling size increases, when
to stop profiling and so on. We only evaluate a set of good
settings but it may not be the best settings and the best set-
tings may be related to the application and hardware. We
also use fixed static ratio for the the first partition. This is
not efficient because analysis based on performance model
can get a good static estimate to avoid huge imbalance in
the first partition. It also gets a good start point for pro-
filing. Compilers can give hints to the scheduler that how
much work should be assigned to the GPU. Power-saving is a
promising research work too. CAP does not take power con-
sumption into account and balance workload only accord-
ing to performance. The program runs faster but consumes
more power. It is more energy-efficient to use the suitable
processor rather than using all processors. The scheduler
may schedule according to the power consumption and per-
formance to get better performance-power ratio.
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