
EEWA: Energy-Efficient Workload-Aware Task Scheduling in Multi-core
Architectures

Quan Chen∗, Long Zheng∗†, Minyi Guo∗, Zhiyi Huang‡
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

†University of Aizu, Japan
‡Department of Computer Science, University of Otago, New Zealand

chen-quan@sjtu.edu.cn, longzheng@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn, zhuang@cs.otago.ac.nz

Abstract—Modern multi-core architectures offer Dynamic
Voltage and Frequency Scaling (DVFS) that can dynamically
adjust the operating frequency of each core for energy saving.
However, current parallel programming environments and
schedulers for task-based programs do not utilize DVFS and
thus suffer from energy inefficiency in multi-core processors.
To reduce energy consumption while keeping high perfor-
mance, this paper proposes an Energy-Efficient Workload-
Aware (EEWA) task scheduler that is comprised of a workload-
aware frequency adjuster and a preference-based task-stealing
scheduler. Using DVFS, the workload-aware frequency adjuster
can properly tune the frequencies of the cores according to
the workload information of the tasks collected with online
profiling. The preference-based task-stealing scheduler can
then effectively balance the workloads among cores by stealing
tasks according to a preference list. Experimental results show
that EEWA can reduce energy consumption of task-based
programs up to 29.8% with a slight performance degradation
compared with existing task schedulers.

Keywords-Online Profiling; DVFS; Task Scheduling

I. INTRODUCTION

Many studies [17], [15] have shown that Asymmetric

Multi-Core (AMC) architectures, where cores have different

individual frequencies, are more energy-efficient. In AMC

architectures, fast and complex cores (aka. big cores) can

be used to execute the serial code sections, while slow

and simple cores (aka. little cores) can be used to crunch

numbers in parallel. If an application can use the big/little

cores properly, energy consumption is found to be reduced.

However, it is challenging for an AMC architecture to

achieve the best performance for all applications while

consuming the lowest energy. To achieve optimal energy ef-

ficiency, different applications may need different number of

big/little cores according their computational and memory-

access patterns, an requirement that an asymmetric multi-

core architecture with fixed big/little cores cannot meet.

Fortunately, many modern multi-core chips offer Dynamic
Voltage and Frequency Scaling (DVFS) [24] which can

dynamically adjust the operating frequency of each core at

*Minyi Guo is the correspondence author of this paper.

runtime. With DVFS, any core can be adjusted dynamically

to run at the frequency required by an application.

Despite the effort on energy saving at the hardware

level, current parallel programming environments and task

scheduling algorithms [5], [9] cannot utilize DVFS effec-

tively since they assume all cores run at fixed frequencies

or the same frequencies during the execution of applications.

Most parallel programming environments adopt either

task-sharing or task-stealing (aka. work-stealing) policies for

task scheduling. For example, Cilk++ [19], TBB [27], and

X10 [18] adopt task-stealing, while OpenMP [2] uses task-

sharing. Task-stealing is increasingly popular due to its good

scalability and high performance [4].

Both task-stealing and task-sharing work well in terms of

performance on multi-core processors with cores operating

at fixed frequencies. If the performance of an application

is improved, the energy consumption is reduced due to

the shorter execution time. Therefore, the current parallel

programming environments are reasonably energy-efficient.

However, with DVFS support, we can further increase

energy-efficiency for parallel applications. For example,

suppose a parallel application only has parallel tasks γ1
and γ2 which are scheduled to cores c1 and c2 respectively.

Assuming γ1 and γ2 need time t1 and t2 (t1 < t2) to run on

the fastest core with the highest frequency, the application

can finish in t2 if both c1 and c2 are running at the highest

frequency. However, if we can scale down c1’s frequency

so that c1 finishes executing γ1 in t2 as well, then the

energy consumption of the application is reduced while its

performance is not sacrificed at all. These situations are not

taken into account by the current task scheduling algorithms.

Based on this observation, this paper proposes an Energy-
Efficient Workload-Aware (EEWA) task scheduling to reduce

energy consumption without degrading performance con-

spicuously. EEWA consists of two parts: a workload-aware
frequency adjuster and a preference-based task-stealing
scheduler. The workload-aware frequency adjuster tunes

the frequencies of all the cores according to the workload

information of tasks that is collected through online profiling

for iteration-based parallel applications.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.75

642

The preference-based task-stealing scheduler is then

adopted to balance workloads dynamically. Since the fre-

quency adjuster can reduce energy consumption by scaling

down the frequency of cores and the preference-based task-

stealing scheduler can schedule tasks to the proper cores,

EEWA can significantly reduce the energy consumption

while only slightly degrading the overall performance.

The contributions of this paper are as follows.

We propose a workload-aware frequency adjuster using

online profiling information to dynamically search the

proper configuration of the cores’ frequencies that can

reduce the energy consumption of the parallel applica-

tion with little impact on the performance.

We adopt a preference-based task-stealing scheduler to

balance workloads among cores dynamically so that

the performance of the parallel application will not

degrade seriously even if the tasks are mis-allocated

occasionally by the frequency adjuster.

The rest of this paper is organized as follows. Section II

describes the problem and the solution of EEWA. Section III

presents EEWA. Section IV evaluates EEWA and gives the

experimental results. Section V discusses the related work.

Section VI draws conclusions.

II. PROBLEM AND SOLUTION

We use a small example to illustrate the situations where

energy can be saved without affecting performance. Fig. 1

shows four possible schedules of tasks γ0 and γ1 of a parallel

application on a dual-core processor with DVFS support.

Suppose the cores may run at frequencies f0 and 0.5f0
with power p0 and p1 (p0 > p1) respectively. Suppose γ0
and γ1 take times 2t and t on the core with frequency

f0 respectively. Assuming the tasks are CPU-bound, it is

reasonable to deduce that γ0 and γ1 would take 4t and 2t
on the core with frequency 0.5f0.

c� c�

�� ��

c� c�

����

c� c�

�� ��

����	
���������
������������� ��������������
�������������

����	
����������������������

c� c�

��

��������������������������

��

Figure 1. Four possible schedules of γ0 and γ1 on a dual-core processor
with DVFS support.

In Fig. 1(a), both cores run at the highest frequency f0.

In Fig. 1(b) and Fig. 1(c), the frequency of c1 is scaled

down to 0.5f0 using DVFS. In Fig. 1(d), the frequencies

of both cores are scaled down to 0.5f0. Then, the execution

time and the energy consumed by the application in the four

schedules are calculated as follows.

Fig. 1(a) shows the traditional way of task scheduling. In

traditional task scheduling, such as task-sharing and task-

stealing, the frequency of c1 will not be scaled down after

c1 finishes γ1 since c1 will be actively trying to get or steal

new tasks until the application terminates. Therefore, the

overall execution time of the application is max{2t, t} = 2t

and the energy consumption is 2× p0 × 2t = 4tp0.

In Fig. 1(b), the execution time is max{2t, 2t} = 2t and the

energy consumption is p0×2t+p1×2t = 2t(p0+p1). Since

(p0 + p1) < 2p0, compared with the traditional scheduling

in Fig. 1(a), the schedule in Fig. 1(b) reduces the energy

consumption without degrading the performance. This is an

optimal situation where EEWA aims to take advantage of.

In Fig. 1(c), the execution time is max{4t, t} = 4t and the

energy consumption is p0×4t+p1×4t = 4t(p0+p1). This

schedule seriously degrades the overall performance and

increases the power consumption. Compared with Fig. 1(b),

this is an unfortunate situation task schedulers should avoid.

In EEWA, this situation is avoided by the preference-based

task-stealing scheduler.

In Fig. 1(d), the execution time is max{4t, 2t} = 4t and the

energy consumption is 2×p1×4t = 8tp1. This schedule also

seriously degrades the overall performance and increases the

power consumption.

In summary, Fig. 1(b) is the most energy efficient sched-

ule. For the traditional scheduling algorithms such as task-

stealing, energy is wasted as in Fig. 1(a) where workloads of

the tasks are not the same. For example, in the task-stealing

algorithm, the idle cores have to be busily trying to steal

new tasks until all cores finish their tasks. If we can scale

down the frequencies of the cores executing small tasks so

that all tasks complete at the same time, as in Fig. 1(b),

energy will be surely saved.

To achieve the optimal schedule in Fig. 1(b), two chal-

lenging issues have to be addressed. First, to reduce energy, a

proper configuration of the cores’ frequencies should be ex-

plored. For example, if an improper configuration is adopted

as in Fig. 1(d), the performance of the application will

be seriously degraded. To find out a proper configuration,

information of task workloads have to be known. Second,

to maintain the high performance, an efficient task scheduler

is required to balance the workloads among cores. Fig. 1(c)

is an example of inappropriate scheduling. Although the

frequencies of the cores are adjusted the same as in Fig. 1(b),

the performance is seriously degraded and the energy is

wasted in Fig. 1(c) due to the poor scheduling scheme.

Based on the example in Fig. 1, the problem can be

summarized as a task scheduling problem: without complex
offline analysis, how to schedule a set of parallel tasks with
different workloads in an energy efficient manner at runtime
on a multi-core architecture with DVFS support?

643

A. The proposed solution

We propose the Energy-Efficient Workload-Aware
(EEWA) task scheduling to solve the problem for iteration-

based applications where parallel tasks are executed

in batches through iterations. EEWA is based on the

assumption that the task workloads of different iterations

have similar patterns. Based on this assumption, if a

configuration of the cores’ frequencies is optimal for one

iteration, it is very likely to be optimal for other iterations.

Therefore, when tasks in one iteration complete, with the

online profiling information collected, EEWA can calculate

the proper configuration of the cores’ frequencies for the

execution of the following iteration.

EEWA adopts a workload-aware frequency adjuster to

find out the proper configuration of the cores’ frequencies.

Take a parallel application running on a multi-core processor

with m cores as an example. Suppose each core has r
different frequencies. When an iteration Id of the application

completes, the adjuster collects the number of tasks and their

workloads during Id. The tasks are then grouped into task
classes according to their function names. With the workload

information of the task classes, an r-row k-column Core
Count (CC) table can be built, where k is the number of task

classes. The element CCji, represents the required number of

cores for the task class i to be executed by the cores with the

frequency j. With the CC matrix, the frequency adjuster can

find out an optimal configuration of the cores’ frequencies

for the iteration Id using a backtracking algorithm. The

configuration will be used for setting the cores’ frequencies

for the following iteration. Based on the configuration,

the cores are organized into c-groups according to their

frequencies and the task classes from the following iteration

are allocated to the proper c-groups according to the CC

matrix. Note that a c-group is a set of cores with the same

operating frequency.

However, we should admit that the workloads of tasks

may change slightly in different iterations. In such a case, the

allocation by the frequency adjuster may not balance work-

loads among cores very well. To further balance workloads,

EEWA adopts the preference-based task-stealing scheduler

to balance workloads dynamically. The scheduler gives each

core a preference list of c-groups. An idle core steals a task

according to the order of its preference list.

Execute
tasks

Execute
tasks

Execute
tasks

Iteration Id-1 Iteration Id Iteration Id+1

Adjust
Freq.

Adjust
Freq.

Adjust
Freq.

Preference-based task-
stealing scheduler

Workload-aware
frequency adjuster

Figure 2. The processing flow of a parallel program in EEWA.

Fig. 2 illustrates the processing flow of an iteration-

based parallel application in EEWA. As shown in the figure,

once EEWA completes tasks in iteration Id, the workload-

aware frequency adjuster is launched. Based on the collected

workload information of tasks in iteration Id, EEWA can find

out the proper configuration of the cores’ frequencies and

adjust the frequencies of all the cores for iteration Id+1.

III. ENERGY EFFICIENT WORKLOAD-AWARE TASK

SCHEDULING

We present the workload-aware frequency adjuster and

the preference-based task-stealing scheduler in EEWA as

follows. In this section, we suppose that EEWA operates on

a multi-core processor with m cores with r operating fre-

quencies, in which F0, ..., Fr−1 represent the r frequencies

in descending order (i.e., Fi > Fj if i < j).

A. Workload-aware frequency adjuster

For an iterative parallel application, at the end of each

iteration, EEWA uses the workload-aware frequency adjuster

to find out a proper configuration of the cores’ frequencies

for the next iteration in the three steps: collect workload

information, build CC table and search for the solution.

1) Collect workload information: In this step, the adjuster

collects the number of tasks and their workloads. The

workload of a task is measured with its execution time and

normalized against the fastest core with frequency F0. For

a CPU-bound task, its execution time is largely decided by

the computational capacity (i.e., the frequency) of the core

executing the task. Suppose a CPU-bound task γ is executed

by a core of frequency Fi and the execution time is t. Its

normalized workload (denoted by wγ) is calculated with

Eq. 1.

wγ = t× Fi

F0
(1)

As mentioned before, the completed tasks in the iteration

Id are organized as task classes according to their function

names. We use TC(f, n, w) to represent a task class, where

f is the function name, n is the number of tasks in the task

class and w is the average workload of the tasks.

Once a task γ with a function name f completes, its

task class TC(f, n, w) is updated. Suppose γ’s workload

is wγ . Its task class is updated to TC(f, n+1,
n×w+wγ

n+1). If

there is no task class for function f yet, a new task class

TC(f, 1, wγ) is created. When all tasks in Id complete, they

are grouped into a number of task classes.

EEWA does not adjust the frequencies of the cores during

the first iteration of the parallel application, since the work-

load information of tasks are not known yet. Therefore, in

the first iteration, all the cores run at the highest frequency

F0. The execution time of the first iteration is set as the ideal
iteration time which is targeted by the following iterations,

assuming the overall workload of each iteration is similar.

644

Let T represent the execution time of the first iteration. To

keep the same performance, EEWA aims to finish each of

the following iterations in T .

2) Build CC Table: For the iteration Id, suppose k task

classes TC0(f0, n0, w0), ..., TCk−1(fk−1, nk−1, wk−1) are

created, where wi (0 ≤ i ≤ k − 1) is in descending order.

Based on the k task classes and the ideal iteration time T ,

we can build a CC table in Table I. We use CCji to represent

one element of the table at row Fj and column TCi. CCji

is the number of cores operating at frequency Fj that is

needed to finish all the tasks in TCi within T . The adjuster

calculates CCji (0 ≤ j ≤ r − 1, 0 ≤ i ≤ k − 1) as follows.

For TCi (fi, ni, wi), the overall workload of the tasks in

the task class is ni × wi. Therefore, ni×wi

T is the number

of cores required to finish executing the tasks within T ,

if the cores are operating at the highest frequency F0. In

another word, CC0i should be ni×wi

T . Naturally, since the

computation capacity of a core with F0 is F0

Fj
times of the

computation capacity of a core with Fj , CCji should be set

to F0

Fj
× CC0i =

F0

Fj

ni×wi

T .

Table I
THE CC TABLE FOR k TASK CLASSES ON THE MULTI-CORE PROCESSOR

WITH r OPERATING FREQUENCIES

TC0 TC1 ... TCk−1

F0
n0×w0

T
n1×w1

T
...

nk−1×wk−1

T

F1
F0
F1

n0×w0
T

F0
F1

n1×w1
T

... F0
F1

nk−1×wk−1

T

...

Fr−1
F0

Fr−1

n0×w0
T

F0
Fr−1

n1×w1
T

... F0
Fr−1

nk−1×wk−1

T

3) Search for the solution: Finding out a proper con-

figuration of the cores’ frequencies from the CC table is

similar to searching for a solution in a number puzzle. In

this number puzzle, a k-tuple, which consists of k numbers,

should be found based on the CC table.

The k-tuple, denoted by (a0, ..., ai, ..., ak−1), corresponds

to the k columns of the CC table from left to right, where

ai (0 ≤ i ≤ k − 1) means the element CCaii is selected.

One and only one element in each column of the CC table

is selected for the k-tuple. If CCji is selected, tasks in TCi

are supposed to be executed on cores with frequency Fj .

However, it is challenging to find for the number puzzle an

optimal solution that can minimize the energy consumption

while maintaining the high performance. If too many cores

are adjusted to run at high frequencies, the energy consump-

tion cannot be reduced. On the other hand, if too many

cores are adjusted to run at low frequencies, the performance

would be seriously degraded.

To find an optimal solution, the k-tuple and the search

algorithm should satisfy the following three constraints.

First, the sum of the selected elements should be less or

equal to the total number of cores, i.e.,
∑k−1

i=0 CCaii ≤ m
where m is the total number of cores. Otherwise, the

frequencies are adjusted too low and the performance will be

degraded. Second, the search should start from the bottom

of the CC table. Since we are trying to minimize the energy

consumption, we should search for the solution with the

lowest frequencies that can satisfy the first constraint. Third,

the k-tuple should meet the condition ai ≤ aj if i < j. Since

tasks in TCi have heavier workload than those in TCj when

i < j, execute heavier tasks on faster cores can better utilize

the computational capacity of the faster cores.

Algorithm 1: Backtracking algorithm for the k-tuple

Input: CC table CC[r][k] (k task class, r freq.)

Input: N (the total number of cores)

Output: a[k] (the k-tuple)

1 int c n = 0 ; // Required num. of cores
Func.: Select(i, j)

2 if CC[j][i] + c n ≤N then
3 a[i] = j; c n += CC[j][i] ;

4 return true ;

5 end if
6 return false ;

Func.: SearchTuple(i)
7 if i>=k then
8 return true ;

9 else
10 for (int j=r-1;j>=a[i-1];j−−) do
11 if Select(i,j) then
12 if SearchTuple(i+1) then
13 return true ;

14 else
15 c n −=CC[a[i]][i]

16 end if
17 end if
18 end for
19 return false ;

20 end if

Algorithm 1 is a backtracking algorithm that can find

the k-tuple satisfying the three constraints. The workload-

aware frequency adjuster invokes SearchTuple(0) to search

for an optimal k-tuple. The reason we choose this back-

tracking algorithm is that it can give a near-optimal solution

with reasonable overhead. The worst-case complexity of

this algorithm is O(kr2). Although other algorithms (such

as exhaustive search) may be used to find more optimal

solutions, they are either too complex to implement or have

large overhead.
Fig. 3 shows an example of the k-tuple. In the example,

there are 4 task classes (TC0, ..., TC3) and each core can

run at 4 different frequencies(F0, F1, F2 and F3). Suppose

there are 16 cores in total. Based on the CC table in Fig. 3,

Algorithm 1 selects the shaded elements that correspond to

the k-tuple (1, 1, 2, 2). According to the k-tuple and the

CC table in Fig. 3, 10 cores should run at frequency F1,

645

and 6 cores should run at frequency F2. Moreover, TC0 and

TC1 should run on the fast cores, and TC2 and TC3 should

run on the slow cores. Other solutions either cannot execute

all the tasks in the ideal iteration time with the 16 cores or

consume more energy due to the faster cores selected.

TC0 TC1 TC2 TC3

F0 2 3 1 1
F1 4 6 2 2
F2 6 9 3 3
F3 8 12 4 4

�������	�
������������������������
���
��

�������	�
�
��
�

���	���������

Figure 3. An example of the k-tuple for a parallel program with 4 task
classes on a 16-core processor with 4 frequencies.

Careful readers may observe that, from Fig. 3, the sum

of core counts (7) in the first row is much smaller than

the total number of cores (16). The reason is the workload

imbalance causes the underutilization of the computational

capacity of the cores, though the gap should not be so large

in practice. This is why, by scaling down the frequencies of

some cores, EEWA can better balance the workloads among

the cores and reduce energy consumption while keeping the

high performance.

Once Algorithm 1 returns the k-tuple, the adjuster tunes

the frequencies of the cores accordingly using DVFS. After

DVFS, the cores are organized into c-groups according to

their frequencies. EEWA then allocates task classes to these

c-groups accordingly. Assuming ai (0 ≤ i ≤ k − 1) is an

element in the k-tuple, task class TCi is then allocated to

the c-group of cores operating at frequency Fai .

It is worth noting that the overhead of our backtracking

algorithm is not large since the CC table is usually small.

This is because cores in modern multi-core processors can

only run at a few fixed frequencies (e.g. 4 different fre-

quencies) and there are not many task classes in our parallel

applications. As the backtracking algorithm does not use the

number of cores but use the number of available frequencies,

it is scalable. Our experimental results in Section IV show

that the overhead of the backtracking algorithm is negligible

for the applications on our multi-core machine.

B. Preference-based task-stealing scheduler

After adjusting core frequencies, EEWA adopts the

preference-based task-stealing scheduler to schedule tasks

in the next iteration in an energy-efficient manner.

As described before, the frequency adjuster allocates task

classes to c-groups. Each c-group has a task pool to store the

tasks allocated to it. Though using a centralized task pool

is easy to implement, its serious lock contention can de-

grade the system performance. Therefore, we have adopted

distributed task pools with the task-stealing policy, where a

task pool is a double-ended queue which is convenient for

task stealing.

Task-stealing relieves the lock contention of the task pools

by using an individual task pool for each core. Most often a

core obtains tasks from its local task pool without locking.

Only when its local task pool is empty, it tries to steal tasks

from other cores using locking. Since there are multiple task

pools for stealing, the lock contention is usually low.

...

r task pools

...

r task pools

...

r task pools

Multi-core System

c0 c1 cN-1

P0 P1 Pr-1 P0 P1 Pr-1 P0 P1 Pr-1

Figure 4. The runtime architecture of EEWA. Each core has r task pools
corresponding to the r c-groups.

Fig. 4 shows the runtime architecture of EEWA on a

multi-core architecture with N cores that can run at r
different frequencies. As shown in the figure, each core has

r task pools corresponding to the r c-groups.

However, not all the task pools have to be used during

execution since not all the frequencies will be selected by

the adjuster. If u of the r available frequencies (u ≤ r)

are used, the N cores will be grouped into u c-groups, and

therefore only u task pools will be used for core. For the

convenience of description, we use G0, ..., Gu−1 to represent

the u c-groups and TP0, ..., TPu−1 to represent the u task

pools at each core.

When core c generates a new task γ, it checks which task

class γ belongs to. If γ belongs to task class TCγ and TCγ is

allocated to c-group Gj (0 ≤ j ≤ u− 1), then γ is pushed

into ci’s local task pool for Gj . However, if there is no

existing task class for γ, it will be pushed in ci’s task pool

of the fastest c-group. This policy can avoid the possible

performance degradation that comes from the execution of

γ on slow cores when γ has a heavy workload.

A core from c-group Gi usually obtains tasks locally from

its task pool TPi which stores tasks allocated to its c-group.

If its task pool TPi is empty, it randomly steals from the TPi

pools of other cores, which is the same as the traditional

task-stealing algorithm. However, when all TPi pools are

empty, which means all tasks allocated to the c-group Gi

are completed, we should allow the c-group to execute tasks

allocated to other c-groups in order to balance the workloads

among the c-groups. The complexity arises when deciding

which pool of tasks to choose in this situation. The following

preference-based task-stealing policy shows our solution.

In the preference-based task-stealing scheduler, each core

is given a preference list of the currently available c-groups,

as shown in Fig. 5.

646

G0 Gi-1 Gi Gi+1 Gu-1... ...

c
First

Second

P0 Pi Pr-1

G0 Gi Gu-1

Create preference lists

Select the used u c-groups

Figure 5. The preference list of core c in c-group Gi.

For a core in the c-group Gi, its preference list is created

as {Gi, Gi+1, ..., Gu−1, Gi−1, ..., G0}. The preference list

is generated based on the rob-the-weaker-first principle that

has been shown to be efficient for asymmetric multi-core

system in our previous work [9], [10]. For each batch, EEWA

creates preference lists for all the cores based on the u c-

groups decided by the workload-aware frequency adjuster.

Because different batches may use different c-groups, EEWA

needs to renew the preference lists for each batch. Nev-

ertheless, our experiment shows that the preference-based

task-stealing scheduler in EEWA can effectively balance

workloads among different c-groups.

IV. EVALUATION

We use a server that has four AMD Quad-core Opteron

8380 processors to evaluate the performance and the energy

efficiency of EEWA. In the processor, each core can run at

four frequencies: 2.5GHz, 1.8GHz, 1.3GHz and 0.8GHz.

We implement EEWA by modifying the compiler and the

task scheduler in MIT Cilk, which is one of the earliest

parallel programming environments that implement work-

stealing policy [13]. Because EEWA is proposed to reduce

the energy consumption of CPU-bound applications, all the

applications in Table II are CPU-bound. The source code of

benchmarks is from their official websites but adapted to run

on MIT Cilk. In the applications, to achieve basic load bal-

ancing in EEWA, the program launches many parallel tasks

(e.g., 128 tasks) in each batch as suggested by Cilk++ [19].

When tasks in one batch complete, the program launches

another batch of tasks.

Table II
BENCHMARKS USED IN THE EXPERIMENT

Name Description

BWC Burrows Wheeler Transforming Compression
Bzip-2 Bzip2 file compression algorithm
DMC Dynamic Markov Coding
JE JPEG Encoding Algorithm
LZW Lempel-Ziv-Welch data compression
MD5 Message Digest Algorithm
SHA-1 SHA-1 cryptographic hash function

Since the used CPU chips are not based on Sandy-bridge

and Ivy-bridge, they do not have on-processor power meters.

Therefore, we run each benchmark continuously for 100

times (From several minutes to one hour) and measure

the total energy consumption of the whole computer using

power meter. Then, the total energy consumption divided by

100 is used as the energy consumption of the benchmark.

A. Energy efficiency of EEWA

Fig. 6 shows the performance and energy consumption

of the benchmarks in MIT Cilk (denoted as Cilk for short),

Cilk-D and EEWA. In Cilk-D, if a core finds that there is

no task in all the task pools, the core is scaled down to run

at the lowest frequency. All the 16 cores are used by Cilk,

Cilk-D and EEWA in this experiment.

BWC Bzip-2 DMC JE LZW MD5 SHA-1
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

 Cilk Cilk-D EEWA

(a) Normalized execution time

BWC Bzip-2 DMC JE LZW MD5 SHA-1
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

 Cilk Cilk-D EEWA

(b) Normalized energy consumption

Figure 6. Normalized execution time and energy consumption of bench-
marks in Cilk, Cilk-D and EEWA.

The figure shows that EEWA can significantly reduce

the energy consumption of task-based applications but only

slightly degrades their performance, while the energy con-

sumption reduction ranges from 8.7% to 29.8% and per-

formance degradation ranges from 0.8% to 3.7% compared

to Cilk. In addition, EEWA can also reduce the energy

consumption of benchmarks ranging from 2.3% to 18.4%

compared to Cilk-D. It is worth noting that, for most

applications, the performance degradation is within 2%.

Especially for MD5, EEWA reduces its energy consumption

up to 28.6% but only degrades its performance by 0.9%.

The low energy consumption of the applications in EEWA

results from the appropriately configured core frequencies

and the well balanced workloads. With the workload-aware

647

frequency adjuster, the cores are adjusted to appropriate

frequencies according to the workload information of tasks,

and then the tasks are allocated to the proper c-groups

according to k-tuple. Together with the preference-based

task scheduler, the cores can finish their tasks within the

same time as they run at the fastest speed, but with less

energy due to lower frequencies set for the cores.

The high performance of the applications in EEWA has

been maintained due to the well balanced workloads among

cores. With the preference-based task scheduler, even the

workloads are not balanced as expected due to the variation

of the workloads of the tasks in different batches, EEWA

can adjust the workloads among different cores at runtime.

Compared to Cilk, Cilk-D can also reduce energy con-

sumption of the benchmarks in multi-core systems with

DVFS support. This is because free cores are scaled down to

the lowest frequency if all the task pools are empty in Cilk-

D. As a result, Cilk-D can reduce energy consumption of

benchmarks ranging from 6.7% to 12.8% compared to Cilk.

However, because Cilk-D is not aware of the workloads of

the tasks, the cores cannot finish the tasks at the same time.

In this situation, all the cores need to wait for the last core

to arrive at a barrier. These cores waste extra energy and

therefore the applications consume more energy in Cilk-D

than in EEWA.

WATS [9] is a near-optimal work-stealing scheduler that

proposes the rob-the-weak-first principle for asymmetric

multi-core systems. Fig. 7 shows the performance of bench-

marks in EEWA, WATS and Cilk on asymmetric multi-core

systems in which the frequencies of cores are configured by

EEWA. For each benchmark, the frequencies of cores are

configured as the most often used frequency configurations

in different batches of the benchmark (see Fig. 8 later).

BWC Bzip-2 DMC JE LZW MD5 SHA-1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

 EEWA WATS Cilk

Figure 7. Performance of benchmarks on asymmetric multi-core systems
in which the frequencies of cores are configured by EEWA.

As shown in Fig. 7, Cilk degrades the performance of

benchmarks seriously because the random work-stealing

policy in Cilk may schedule tasks with heavy workloads

to slow cores. The execution times of the benchmarks in

Cilk are about 1.17 to 2.92 times of their execution times in

EEWA while their execution times in WATS are about 1.05

to 1.24 times of their execution times in EEWA.

Compared to Cilk, WATS improves the performance of

benchmarks because WATS schedules tasks with heavy

workloads to fast cores. However, even the frequencies of

cores are configured by EEWA, the performance of WATS

is still worse than the performance of EEWA because WATS

cannot adjust the frequencies of cores to the optimal accord-

ing to the workloads of benchmarks in different batches.

1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

N
um

 o
f C

or
es

 2.5GHz 1.8GHz
 1.3GHz 0.8GHz

Figure 8. Number of cores with four frequencies in the 10 batches of
SHA-1 respectively.

Fig. 8 shows the number of cores operating at each

of the four frequencies in the 10 batches of SHA-1 with

EEWA. During the first batch, all the cores run at the

highest frequency (i.e., 2.5GHz in our platform). Then,

at the end of each batch, the workload-aware frequency

adjuster tunes the frequencies of cores according to the

optimal frequency configuration found by the backtracking

algorithm. As shown in Fig. 8, except the first batch, more

than half of the cores are adjusted to run at the lowest

frequency in most batches. For example, from the 3rd to

the 10th batch, 5 cores run at 2.5GHz but the other 11 cores

run at 0.8GHz.

B. Overhead of EEWA
For all the benchmarks in Table II, Table III gives their ex-

ecution time and the overhead of the backtracking algorithm

for searching appropriate k-tuple (Algorithm 1) in EEWA in

millisecond (ms).
Observing Table III, we can find that the overhead of

EEWA only costs less than 2% of the overall execution time

for all the benchmarks. Therefore, the overhead of EEWA

is negligible for the applications in our experiment.

Table III
THE EXECUTION TIME AND THE OVERHEAD OF EEWA IN MILLISECOND

Benchmarks Execution Time Overhead Percentage of overhead

BWC 16505 40.3 0.24%
Bzip-2 1907 37.5 1.97%
DMC 28413 14.9 0.05%

JE 3469 12.7 0.37%
LZW 4981 48.9 0.98%
MD5 6293 33 0.52%

SHA-1 3334 41.8 1.25%

Note that, the overhead of EEWA does not change dramat-

ically in different applications. They are less than 100ms. To

648

keep the extra overhead low, EEWA favors applications that

run for at least two seconds so that the overhead of EEWA

will be smaller than 5% of the overall execution time.

C. Scalability of EEWA

Fig. 9 shows the scalability of EEWA. It gives the

execution time and the energy consumption of DMC in Cilk,

Cilk-D and EEWA on multi-core architectures with 4 cores,

8 cores, 12 cores and 16 cores. Other benchmarks show

similar results.

4 8 12 16
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

 Cilk Cilk-D EEWA

(a) Performance of DMC

4 8 12 16
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

 Cilk Cilk-D EEWA

(b) Energy consumption of DMC

Figure 9. Normalized execution time and energy consumption of DMC
in Cilk, Cilk-D and EEWA on multi-core systems with different number of
cores.

In the figure, the x-axis represents the number of cores

used by the application. From the figure we can find that

EEWA works very well in different hardware configurations.

When the number of cores is small (e.g., 4 cores), all the

cores are adjusted to run at the highest frequency since there

are many tasks to be executed by the cores in each batch.

In this case, the energy consumption cannot be reduced at

all but the performance only degrades slightly (0.3%) for

DMC. This result further shows that the overhead of EEWA

is negligible. On the other aspect, EEWA can significantly

reduce the energy consumption compared with both Cilk

and Cilk-D if there are many cores (e.g., 16 cores). For

example, when there are 12 cores, EEWA reduces 23.8%

energy consumption but only degrades performance of DMC

by 2.8% compared with Cilk.

From the figure we can also find that EEWA can reduce

more energy consumption when the number of cores in-

creases. When the number of cores is large, in most cases,

the tasks cannot fully utilize all the available computational

capacity. By scaling down the frequencies of some cores,

EEWA can reduce the energy consumption while the hard-

ware can still provide the required performance. Therefore,

we can conclude that EEWA works more effectively with

the increasing of the number of cores. This feature is very

promising for future multi-core processors since hardware

manufacturers keep producing CPU chips with more cores.

D. Discussion

EEWA aims at reducing the energy consumption of task-

based CPU-bound applications. For memory-bound applica-

tions, because their execution time does not have a sim-

ple model related to CPU frequencies according to our

experiment, currently EEWA cannot build the CC table

for memory-bound applications within a reasonable time.

Therefore, EEWA has to decide at runtime if an application

is CPU-bound or memory-bound based on profiled infor-

mation. When EEWA collects the execution time of every

task in the first batch, it also collects the cache misses

and the number of retired instructions of the task through

performance monitoring counter. If the cache miss intensity
(i.e., cache misses per instruction) of a task is larger than

a given threshold, the task is labelled as memory-bound. If

most tasks of an application are memory-bound, the appli-

cation is regarded as memory-bound by EEWA. Currently,

for memory-bound applications, EEWA simply adopts the

traditional work-stealing for the rest of the batches. As

a future work, we will extend EEWA for memory-bound

applications using machine learning techniques. By analyz-

ing the execution time of memory-bound tasks on cores of

different frequencies through machine learning, it is possible

for EEWA to create a correct CC table for memory-bound

applications. Once the CC table is built, EEWA can reduce

energy consumption for memory-bound applications with

slight performance loss. Techniques in [11], [12] can also

be integrated into EEWA to improve the performance of

memory-bound applications in future.

The general ideas of EEWA can also be adapted to reduce

energy consumption of parallel applications that do not

launch tasks in batches, although we propose EEWA for

batch-based applications. For a parallel application that does

not launch tasks in batches, we can collect the workload

information of the tasks by profiling the application offline.

Once the information is collected, we can use the workload-

aware frequency adjuster and the preference-based task

scheduler to improve the energy efficiency of the application

in the later executions.

V. RELATED WORK

Due to energy crisis and global warming, energy effi-

ciency has become a popular research topic. Existing studies

on energy efficiency generally have two important directions.

One is how to maximize performance with a given energy

budget. The other is how to reduce energy consumption

without degrading performance conspicuously.

The first research direction is rooted in the heat dissipation

problem in multi-core processors where more and more

cores are integrated into a single CPU chip. A solution to

the heat dissipation problem is to set an energy budget to the

CPU chip [16]. With a given energy budget, many researches

have been done to maximize performance of parallel appli-

cations [26], [28], [8]. In [28], a hierarchical and a gradient

ascent-based technique is proposed for decentralized peak

power management while other techniques use centralized

decision making that cannot prevent instantaneous power

from exceeding the peak power budget. The technique

prevents power from exceeding the peak power budget.

649

In [8], to save energy, low-confident speculative instruc-

tions that consume a lot of energy in the instruction pipeline

(about 30% of the overall energy [25]) are reduced and

the non-critical instructions that are in cycles exceeding the

energy budget are delayed. With a given energy budget,

Power Token Balancing (PTB) [1] improves the overall

performance of a parallel program by using the to-be-

saved energy from non-critical threads for speeding the

critical threads (i.e., threads that decide the timespan of

the program). In this way, PTB can reduce the execution

time of critical threads and hence can improve the overall

performance. In [23], a scalable power control solution

is proposed to maximize the performance of many-core

processors with a given energy budget.

The second research direction attempts to save energy

without degrading the performance. EEWA follows this re-

search direction. Currently, most of the studies target parallel

programs with threads (similar to the tasks in EEWA) that

run the same code and synchronize at the same barrier [20],

[21], [30], [22], [7], [3]. For example, [20] proposes a thrifty
barrier, where threads that arrive at the barrier earlier adjust

their cores to a low power mode to save energy. When the

last thread (aka., critical thread) arrives at the barrier, all

the other threads are woken up from the low power mode.

Apart from the thrifty barrier, many other studies adjust the

frequencies of cores so that all the threads can arrive at the

barrier at the same time [21], [7]. In these studies, the last

thread to arrive at the barrier (aka. critical thread) has to be

identified in advance. Once the critical thread is identified,

the cores that execute non-critical threads are adjusted to

run at lower frequencies accordingly. Many studies have

proposed algorithms identifying the critical thread from the

threads that synchronize at the same barrier. In [21], a

history-based method is proposed. In [7], a meeting point is

proposed based on an extra counter. It also proposes thread
delaying to adjust the frequencies of cores once the identified

thread is identified. In [3], a thread criticality predictor
(TCP) is proposed at the hardware level.

The aforementioned techniques assume that each core

can only execute one thread at the same time. However,

in modern multi-core processors with simultaneous multi-

threading (SMT) support, each core can execute multiple

threads at the same time. On these multi-core processors,

if multiple threads on the same core require the core to

adjust to different frequencies at the same time, all the

previous techniques would not work. To solve the problem,

thread shuffling [6] migrates threads that suggest similar

frequencies to the same core.

Different from the above assumption that threads should

execute the same code, EEWA allows tasks that synchro-

nize at the same barrier to run different code sets and

to have different workloads. All the existing techniques

cannot handle this situation since they cannot identify the

critical tasks running different code sets. To the best of our

knowledge, EEWA is the first task scheduler that targets

parallel programs with tasks have different workloads.

The central issue in scheduling a parallel program in

energy-efficient manner is how to find the optimal frequency

configuration for the hardware platform so that the program

can save energy but keeps the same performance. To address

this issue, in [29], in so-energy-efficiency model has been

proposed to predict energy consumption when a parallel

system scales up. In [14], several distributed Dynamic

Voltage Scaling (DVS) scheduling schemes are implemented

and applied to power-aware clusters. While these studies

mainly focus on the complex, theoretical performance-

energy models, our workload-aware frequency adjuster in

EEWA uses a simple backtracking algorithm to search for

the optimal/near-optimal frequency configuration at runtime.

The rob-the-weaker-first principle is also used in

WATS [9], [10] that is proposed to improve the performance

of parallel applications with different workloads on asym-

metric multi-core architectures. In WATS, the preference

lists of cores do not change since the frequencies of all

the cores do not change at all. However, the preference

lists of cores in our preference-based task-stealing scheduler

may change in different iterations because EEWA may

use different task pools in different iterations. Therefore,

compared with WATS, EEWA uses the rob-the-weaker-first
principle in a more complex context.

VI. CONCLUSIONS AND FUTURE WORKS

Current parallel programming environments and task

schedulers do not consider DVFS that can be used to reduce

energy consumption in modern multi-core architectures. To

reduce energy consumption without degrading performance

for parallel applications, we have smartly used DVFS and

online profiling in the energy-efficient EEWA task scheduler.

EEWA uses a workload-aware frequency adjuster to tune

the frequencies of the cores according to the workload

information of tasks collected with online profiling. Besides

the frequency adjuster, EEWA adopts a preference-based

task-stealing algorithm to balance workloads among cores

dynamically for high performance. Experimental results

demonstrate that EEWA can reduce energy consumption up

to 29.8% with a slight performance degradation for CPU-

bound applications.

ACKNOWLEDGMENT

This work was partially supported by Shanghai Excel-

lent Academic Leaders Plan (No. 11XD1402900), Program

for Changjiang Scholars and Innovative Research Team in

University (IRT1158, PCSIRT) China, NSFC (Grant No.

61272099, 61261160502) and Scientific Innovation Act of

STCSM (No.13511504200). This work was also partially

supported by JSPS Research Fellowships for Young Scien-

tists Program.

650

REFERENCES

[1] J. Aragón, S. Kaxiras, et al. Power token balancing: Adapting
CMPs to power constraints for parallel multithreaded work-
loads. In IPDPS, pages 431–442. IEEE, 2011.

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The
design of openmp tasks. IEEE Transactions on Parallel and
Distributed Systems, 20(3):404–418, 2009.

[3] A. Bhattacharjee and M. Martonosi. Thread criticality pre-
dictors for dynamic performance, power, and resource man-
agement in chip multiprocessors. ACM SIGARCH Computer
Architecture News, 37(3):290–301, 2009.

[4] R. Blumofe and C. Leiserson. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM, 46(5):720–
748, 1999.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. The Journal of Parallel and Distributed
Computing, 37(1):55–69, Aug. 1996.

[6] Q. Cai, J. González, G. Magklis, P. Chaparro, and
A. González. Thread shuffling: Combining dvfs and thread
migration to reduce energy consumptions for multi-core sys-
tems. In International Symposium on Low Power Electronics
and Design, pages 379–384. IEEE, 2011.

[7] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González. Meeting points: using thread criticality to adapt
multicore hardware to parallel regions. In PACT, pages 240–
249. ACM, 2008.

[8] J. Cebrián, J. Aragón, J. Garcı́a, P. Petoumenos, and S. Kaxi-
ras. Efficient microarchitecture policies for accurately adapt-
ing to power constraints. In IPDPS, pages 1–12. IEEE, 2009.

[9] Q. Chen, Y. Chen, Z. Huang, and M. Guo. WATS: Workload-
Aware Task Scheduling in asymmetric multi-core architec-
tures. In IPDPS, pages 249–260. IEEE, 2012.

[10] Q. Chen and M. Guo. Adaptive workload aware task schedul-
ing for single-ISA multi-core architectures. ACM Transac-
tions on Architecture and Code Optimization (to appear),
2014.

[11] Q. Chen, M. Guo, and Z. Huang. CATS: Cache Aware Task-
Stealing based on Online Profiling in Multi-socket Multi-core
Architectures. In ICS, pages 163–172. IEEE, 2012.

[12] Q. Chen, M. Guo, and Z. Huang. Adaptive cache aware
bi-tier work-stealing in multi-socket multi-core architectures.
IEEE Transactions on Parallel and Distributed System,
24(12):2334–2343, 2013.

[13] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. ACM Sigplan
Notices, 33(5):212–223, 1998.

[14] R. Ge, X. Feng, and K. Cameron. Performance-constrained
distributed DVS scheduling for scientific applications on
power-aware clusters. In SC, pages 34–44. IEEE, 2005.

[15] M. Hill and M. Marty. Amdahl’s law in the multicore era.
Computer, 41(7):33–38, 2008.

[16] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global
power management policies: maximizing performance for a
given power budget. In MICRO, pages 347–358. IEEE, 2006.

[17] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi,
and K. I. Farkas. Single-ISA heterogeneous multi-core
architectures for multithreaded workload performance. In
ISCA. IEEE, 2004.

[18] J. Lee and J. Palsberg. Featherweight X10: a core calculus
for async-finish parallelism. In PPoPP, pages 25–36. ACM,
2010.

[19] C. E. Leiserson. The cilk++ concurrency platform. The
Journal of Supercomputing, 51(3):244–257, 2010.

[20] J. Li, J. Martinez, and M. Huang. The thrifty barrier: energy-
aware synchronization in shared-memory multiprocessors. In
HPCA, pages 14–23. IEEE, 2004.

[21] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. Irwin.
Exploiting barriers to optimize power consumption of CMPs.
In IPDPS, pages 5a–5a. IEEE, 2005.

[22] Y. Luo, V. Packirisamy, W. Hsu, and A. Zhai. Energy efficient
speculative threads: dynamic thread allocation in Same-ISA
heterogeneous multicore systems. In PACT, pages 453–464.
ACM, 2010.

[23] K. Ma, X. Li, M. Chen, and X. Wang. Scalable power
control for many-core architectures running multi-threaded
applications. In ISCA, pages 449–460. ACM, 2011.

[24] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey.
A voltage reduction technique for digital systems. In Inter-
national Solid-State Circuits Conference, Digest of Technical
Papers, pages 238–239. IEEE, 1990.

[25] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
speculation control for energy reduction. ACM SIGARCH
Computer Architecture News, 26(3):132–141, 1998.

[26] K. Meng, R. Joseph, R. Dick, and L. Shang. Multi-
optimization power management for chip multiprocessors. In
PACT, pages 177–186. ACM, 2008.

[27] J. Reinders. Intel threading building blocks. O’Reilly, 2007.

[28] J. Sartori and R. Kumar. Distributed peak power management
for many-core architectures. In Design, Automation and Test
in Europe, pages 1556–1559. IEEE, 2009.

[29] S. Song, C. Su, R. Ge, A. Vishnu, and K. Cameron. Iso-
energy-efficiency: an approach to power-constrained parallel
computation. In IPDPS, pages 128–139. IEEE, 2011.

[30] C. Yu and P. Petrov. Low-cost and energy-efficient dis-
tributed synchronization for embedded multiprocessors. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
18(8):1257–1261, 2010.

651

