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Abstract— This paper is concerned with information extraction
from top-k web pages, which are web pages that describe top
k instances of a topic which is of general interest. Examples
include “the 10 tallest buildings in the world”, “the 50 hits of
2010 you don’t want to miss”, etc. Compared to other structured
information on the web (including web tables), information in
top-k lists is larger and richer, of higher quality, and generally
more interesting. Therefore top-k lists are highly valuable. For
example, it can help enrich open-domain knowledge bases (to
support applications such as search or fact answering). In this
paper, we present an efficient method that extracts top-k lists
from web pages with high performance. Specifically, we extract
more than 1.7 million top-k lists from a web corpus of 1.6 billion
pages with 92.0% precision and 72.3% recall.

I. I NTRODUCTION

The world wide web is currently the largest source of
information. However, most information on the web is unstruc-
tured text in natural languages, and extracting knowledge from
natural language text is very difficult. Still, some information
on the web exists in structured or semi-structured forms, for
example, as lists or web tables coded with specific tags such
as<ul>, <li>, and<table> on html pages. As a result, a
lot of recent work has focused on acquiring knowledge from
structured information on the web, in particular, from web
tables [2], [3], [4], [5], [6], [7].

However, it is questionable how much valuable knowledge
we can extract from lists and web tables. It is true that the
total number of web tables is huge in the entire corpus,
but only a very small percentage of them contains useful
information. An even smaller percentage of them contains
information interpretable without context. Specifically,based
on our experience, more than 90% of the tables are used for
content layout on the web. Furthermore, a majority of the
remaining tables are not “relational.” (We are only interested
in relational tables because they are interpretable, with rows
representing entities, and columns representing attributes of
those entities.) According to [3], among the 1.1% of all
web tables are relational, a lot of them are meaningless
without context. For example, suppose we extracted a table
that contains 5 rows and 2 columns, with the 2 columns labeled
“Companies” and “Revenue” respectively. It is still unclear
why these 5 companies are grouped together (e.g., are they the
most profitable, most innovative, or most employee friendly
companies of a particular industry in a particular region),and

how should we interpret their revenues (e.g., in which year or
even in what currency). In other words, we do not know in
what circumstances will people find the extracted information
interesting or useful.

It is clear thatunderstanding the contextis extremely im-
portant in information extraction. Unfortunately, in mostcases,
context is expressed in unstructured text that machines cannot
interpret. In this paper, instead of focusing on structureddata
(such as tables) and ignoring context, we focus on context that
we can understand, and then we use the context to interpret
less structured or almost free-text information, and guidetheir
extraction.

Specifically, we focus on a rich and valuable source of
information on the web, which we call top-k web pages. A
top-k web page describesk items of a particular interest. In
most cases, the description is in natural language text which
is not directly machine interpretable, although the description
has the same format or style for different items. But most
importantly, the title of a top-k page often clearly discloses the
context, which makes the page interpretable and extractable.
Some typical titles are:

• 20 Most Influential Scientists Alive Today
• Twelve Most Interesting Children’s Books in USA
• 10 Hollywood Classics You Shouldn’t Miss
• .net Awards 2011: top 10 podcasts
The title of a top-k page contains at least three pieces

of important information: i) A numberk, for example,20,
Twelve, and 10 in the above example, which indicates how
many items are described in the page; ii) A topic or concept
the items belong to, for example,Scientists, Children’s Books,
Hollywood Classicsand podcasts; iii) A ranking criterion,
for example,Influential, Interesting, and You Shouldn’t Miss
(which is equivalent toBestor Top). Sometimes the ranking
criterion is given implicitly, in which case we make it equiva-
lent to the “Bestk”. Besides these 3 components, some top-k
titles contain two optional pieces of information: time and
location. For example,2011andUSA in the above example.

In this paper, we develop a system that extracts top-k lists
from a web corpus that contains billions of pages. As an
example, Figure 1 is a typical top-k page [1], and Table I
shows the result extracted by our system from the page. A top-
k page has some interesting features. Figure 1(a) is a snapshot
of the entire page and Figure 1(b-e) are some of its noteworthy



Fig. 1. Snapshot of a Typical Top-k Page [1] and its segments

segments. The title, which is shown in Figure 1(b), contains
k, the size of the list (10), the topic (podcasts) to which the
described entities belong, a ranking criterion (top) and time
information(2011). Figure 1(c) shows the description of one
item in the top-k list, which contains the podcast’s name (The
Big Web Show) as well as some additional information, such
as who (Zeldman et al.), when (since April 29, 2010), where
(New York City and Austin, Texas), how (weekly, live, audio,
sometimes video, about an hour) and a picture , which can be
treated as the attributes of the item. Furthermore, note that the
top k page may contain unwanted lists such as those shown
in Figure 1(d-e), which poses a challenge to the information
extraction algorithm.

Top-k lists contain rich and valuable information. In par-
ticular, compared with web tables, top-k lists contain a larger
amount of data, and the data is of higher quality. Furthermore,
top-k lists have more meaningful and more interesting context,
and are more likely to be useful in search, Q/A, and other
interactive systems. In summary, we target top-k pages for
information extraction for the following reasons.

1) Top-k data on the web islarge and rich. We extracted
1.7 million top-k lists from a web corpus that contains
1.6 billion web pages. We estimated that the total num-
ber of top-k lists in those pages is around 2.23 million,
so our system has a recall of 72.3% (Section VI-D). The
scale of this data is much larger than any manually or
automatically extracted lists in the past. The top-k data
is also rich in terms of the content acquired for each
item in the list. For example, as shown in Table I, each
item is described by at least 8 attributes (including the

ranking, which is an important piece of information),
while the majority of web tables extracted contain only
two columns (basically each row is a key/value pair).

2) Top-k data is ofhigh quality, or in other words, it is
generally cleaner than other forms of data on the web.
As we know, most of the data on the web is in free
text, and free text is hard to interpret. Web tables are
structured, but only a very small percentage of them
contain meaningful and useful information. In contrast,
top-k data is much cleaner. All top-k pages have a
common style: the page title contains the number and the
concept of items in the list. Each item can be considered
as an instance of the page title, and the number of items
should be equal to the number mentioned in the title. As
a result, we can correctly identify the content of more
than 90% of the top-k lists (Section VI-D), compared
with 41% of web tables[3].

3) Top-k data isranked. Unlike web tables, which contain
a set of items, items in a top-k list is usually ranked
according to a criterion described by the title of the top-
k page. Ranking is extremely important in information
retrieval. Knowing that a term ranks 1st or among the
top 3 based on a certain criterion is useful in search,
advertisement, and general purpose Q/A systems. Based
on our observation(Section VI-E.3), more than 60% of
top-k lists include explicit ranks or indexes (e.g., the first
column in Table I), while for the indexes of the other
top-k lists can be easily inferred from the layouts.

4) Top-k data hasinteresting semantics. One of the reasons
why top-k data is valuable is because each list has a



TABLE I

SAMPLE EXTRACTION OUTPUT OF“. NET AWARDS 2011:TOP 10 PODCASTS” [1]

Index Name Image Url Hosted by Recorded in Running since Format ...
1 The Big Web Show [image] [link] Zeldman et al. NYC & Austin, TX April 29, 2010 Weekly, live... ...
2 Boagworld [image] [link] Boag et al. a barn in Hampshire August 2005 Weekly, audio... ...
3 Creative Coding [image] [link] Lee-Delisle et al. Brighton, Truro... January 2011 Every two... ...
... ... ... ... ... ... ... ... ...
10 Unmatched Style [image] [link] Crawford et al. Columbia, SC 2009 Weekly, pre-recorded... ...

context we can interpret, and the context is usually an
interesting one. Top-k lists are often manually composed
by domain experts for the general public, because people
find such information interesting and useful. What’s
more, people are always fascinated about the rankings
of things. Information of this sort is likely to find a
large audience. Furthermore, many top-k lists contain
spatial and temporal information (e.g., top 10 vacation
destinations inNorth Americaof 2012), which means
the information is trendy and applicable. According
to statistics(Section VI-B.2), more than 13% of the
extracted top-k lists contains either spatial or temporal
information.

5) Top-k data acquisition is an important step in our
bigger effort of automatically constructing a universal
knowledge base that includes a large number of known
concepts and their instances. To that end, we have
already built one of the largest open-domain taxonomy
called Probase [8] which consists of 2.8 million concepts
and many more instances. The top-k lists we extracted
from the web can be an important information source
for Probase. We are building a Q/A system using the
top-k data to answer queries such as “tallest persons in
the world”, or “What are best-selling books in 2010”
directly.

In terms how top-k extraction works, on a high level, our
system performs three tasks:

1) Recognize top-k pages: We identify top-k pages from a
billion-page web corpus by parsing and analyzing their
titles. Furthermore, we convert each top-k title into a
5-tuple: 〈k, concept, ranking criterion, time, location〉
where time and location are optional.

2) Extract top-k lists: From each top-k page, we extract a
list of k items. Note that the page is usually in natural
language text, and is not formatted using tags such
as <ul>, <li>, and <table>. We will show that
knowing k and using a general purpose knowledgebase
(Probase [8]) are important to the successful extraction
of the k items from the text.

3) Understand list content: Each item in the top-k list might
be described by a rich set of attributes. Our goal is to
extract the information, and find the meta-information,
that is, its schema. For example, from a list of top-k
books, we may first detect and extract information such
as “J. K. Rowling”, “Stephen King”, etc. We then find
out that the information actually denotes the authors of
the books.

The rest of the paper is organized as follows. Section III
introduces some background information about the the knowl-
edge base we use. Section IV discusses in detail the framework
of our system. Sections V discuss a few implementation details
while VI presents the evaluation of our system. Section VII
describes some state-of-the-art techniques of information ex-
traction on the web. Finally, we make a conclusion.

II. PROBLEM DEFINITION

In this section, we formally define the problem of extracting
top-k lists from the web.

Let a web page be a pair (t, d) where t is the page title,
andd is the HTML body of the page. A page (t, d) is a top-k
page if:

1) from title t we can extract a 5-tuple (k, c, m, t, l)
wherek is a natural number,c is a noun-phrase concept
defined in a knowledge base such as the one described
in Section III, m is a ranking criterion,t is temporal
information, l is location information. Note thatk and
c are mandatory, whilem, t, and l are optional.

2) from the page bodyd we can extractk and onlyk items
such that:

a) each item represents an entity that is an instance
of the conceptc in an is-a taxonomy;

b) the pairwise syntactic similarity of thek items is
greater than a threshold.

Here, the syntactic similarity is a function that measures the
syntactic (defined for example as entity’s position in the DOM
tree of the page) closeness between two terms.

For example, supposet is “Twelve Most Interesting Chil-
drens Books in USA”, we can extractk = 1, c = “children’s
books”, m = “interesting”, t = null and l = “USA”. If the
body of the page contains exactly 12 similar elements such
as “Harry Potter” and “Alice in Wonderland”, then we can
conclude this is a top-k page.

The top-k extraction problem can then be defined as three
sub-problems (in terms of three functions):

1) Title recognitiontr : (t, d)→ (k, c,m, t, l)
2) List extractor le : (k, c, d) → I whereI is the set of

terms which are instances ofc and |I| = k
3) Content extractorcr : (c, d, I)→ (T , S) whereT is a

table of attribute values for the elements inI andS is
its schema.

III. T HE KNOWLEDGE BASE

To be able to understand the title of and the items in a
top-k page, we need external, open-domain knowledge. In our



work, we use Probase [8]. In this section, we briefly introduce
Probase and how we use it to understand or “conceptualize”
a short piece of text.

Probase is a probabilistic knowledge base containing a large
number of concepts about worldly facts, which it acquires
from billions of web pages and years worth of search logs.
In Probase, aconcept, also knows as a category, which may
contain multipleinstances, and aninstancemay also belong
to multiple concepts. For example, “fruit” is a concept while
“apple” and “orange” are its instances. Compared to other
traditional knowledge bases, Probase is distinctive in two
aspects. First, Probase has an extremely large concept space.
Currently it contains about 2.7 million concepts and 30 million
instances. Second, Probase is probabilistic in the sense that
for each relation, Probase providestypicality and other scores.
For example, Probase scores how typical a “robin” and a
“penguin” as instances of the “bird” concept. Such scores are
extremely important in text understanding.

We use Probase to understand a short piece of text through
the mechanism of “conceptualization”. Given a set of words
or a short text, the task is to derive one or multiple concepts
that best match the topic of the short text. For example,
given a word list {“India”,“China”}, we may conceptual-
ize it as “Asian countries”; then if we expand the list to
{“India”,“China”,“Brazil” }, the best match becomes “BRIC
countries”. Song et al. [9] proposed a method of conceptu-
alizing short text based on Probase using Naive Bayes. To
evaluate their method, they conduct a series of experiments
with thousands of tweets data, the result shows that their
system outperforms all other existing approaches[10], [11],
[12].

IV. OUR APPROACH

Fig. 2. System Overview

Figure 2 shows the block diagram of our system. The system
consists of the following components: (1) Title Classifier,
which attempts to recognize the page title of the input web
page; (2) Candidate Picker, which extracts all potential top-k
lists from the page body as candidate lists; (3) Top-K Ranker,
which scores each candidate list and picks the best one; (4)
Content Processor, which postprocesses the extracted listto
further produce attribute values, etc.. Next we discuss each
component in detail.

A. Title Classifier

The title of a web page (string enclosed in<title> tag)
helps us identify a top-k page. There are several reasons for

Fig. 3. A Sample Top-K Title

us to utilize the page title to recognized a top-k page. First,
for most cases, page titles serve to introduce the topic of the
main body. Second, while the page body may have varied
and complex formats, top-k page titles have relatively similar
structure. Also, title analysis is lightweight and efficient. If
title analysis indicates that a page is not a top-k page, we
chose to skip this page. This is important if the system has to
scale to billions of web pages.

In general, a top-k title represents the topic of a top-k
list. Figure 3 shows a typical top-k title. Note that the title
may contain multiple segments, and usually only one segment
describes the topic or concept of the list. In addition to the
value of k (e.g, 10) and the head concept (e.g, “podcasts”),
a top-k title may include some other elements, such as the
ranking criteria (e.g, “top”, “most memorable”, etc) and other
modifiers (e.g, “.net Awards” and “2011”).

Note that a web page with a top-k title may not contain
a top-k list. A typical case is shown in Figure 4. Here the
top-k list is divided into multiple interlinked pages, instead
of being on a single page. Extracting such lists requires that
all relevant pages are in the corpus and are properly indexed
which increases the cost of the solution significantly. Baseon
our observations, such multi-page top-k lists account for about
5% of the total number of top-k lists on the web, we therefore
choose to ignore this type of pages in this paper.

We build a classifier to recognize top-k titles. Specifically,
we train a Conditional Random Field (CRF) [13] model from
a labeled dataset of both positive titles and negative titles
(negative titles also contain a number). We use lexical features
such asword, lemma, and POS tag[14] to form the basic
feature set. The classifier also returns additional information
such as the list sizek and a set of concepts (recorded by a
knowledge base such as Probase) which are mentioned in the
title. We prefer to optimize the classifier for higher recall
rather than precision at this step, because some false positives
pages, which cannot be recognized through titles alone, canbe
easily filtered out by validating against other properties during
the List Extraction phase.

1) The CRF model:We convert the problem of recognizing
top-k titles to the problem of recognizing the numberk in a
top-k context. For example, in Figure 3, “10” is thek in the
top-k context, while “2010” is not ak even though it is also
a number.

We consider the “k recognition task” as a sequence labeling
problem: Each word in the title is considered a token in a
sequence, and isk or not k. CRF is well suited to such se-
quence analysis tasks. The main idea of CRF is to calculate the
conditional probability of the whole label sequence given the



Fig. 4. A Slide-show Page Snapshot[15]

observation sequence. We defineX = (X1, X2, X3, ..., Xn)
as a word sequence of lengthn, andY = (Y1, Y2, Y3, ..., Yn)
as a label sequence, whereYi ∈ {TRUE,FALSE}. The
CRF model calculates the conditional distributionP (Y |X),
and then selects theY that maximizes the probability.

We use the linear chain as the undirected statistical graphical
model, which is based on the assumption that each labelYi

only depends on its immediate neighbors (Yi+1 andYi−1). For
linear chain CRF, the conditional probability can be calculated
as:

P (Y |X) =
1

Z(x)
exp(

n∑

i=1

m∑

j=1

λjfj(yi−1, yi, x, i)) (1)

where Z(x) is a normalization factor,fj is one of them
functions that describes a feature, andλj is the feature weight
to be trained. To build an effective CRF model, we need
to collect training data and design a feature set, which is
discussed below.

2) Creating a training dataset:Creating a large, high
quality training dataset is costly. The challenge mainly lies in
collecting positive cases, as top-k pages are sparse on the web
(approx. 1.4‰ of total web pages, see Section VI). Filtering
out pages without a number in the title narrows our candidates
down, but the number of candidates is still massive. In our
approach, we first parse the titles to add POS tags, and then we
adopt the following simple rules to identify or create positive
training samples.

• “top CD” : If a title contains the word “top” followed
by a number, it is likely to be top-k title. For example,
“top 10 NBA players who could be successful general
managers”.

• “top CD” without “top” : A title which satisfies the “top
CD” rule is still a top-k title with the word “top” removed.

TABLE II

FEATURE EXTRACTION FROM A WINDOW OF SIZE9. (VACANCIES ARE

FILLED WITH THE NULL TOKEN .)

word lemma POS concept tag
.net net JJ 1 FALSE
awards award NNS 1 FALSE
2011 2011 CD 0 FALSE
top top JJ 1 FALSE
10 10 CD 0 TRUE
podcasts podcast NNS 1 FALSE
NULL NULL NULL NULL FALSE
NULL NULL NULL NULL FALSE
NULL NULL NULL NULL FALSE

• “CD JJS” : “JJS” stands for superlative adjectives. If
a title contains a number followed by a superlative
adjective, it is likely to be a top-k title. For example,
“20 tallest buildings in China”.

• “CD RBS JJ” : “RBS” and “JJ” stand for superlative
adverbs and adjectives, respectively. If a title contains a
number, followed by a superlative adverb, and followed
by an adjective, it is likely to be a top-k title. For example,
“5 most expensive watches in the world”.

3) Extracting features:We now discuss how we extract
features from a title. As we see in Figure 3, a title may contain
multiple segments, which are separated by separators like “-”
or “|”. Among these segments, only the main segment (e.g,
Segment 1 in Figure 3) gives us the topic of the page, while
other segments show additional information such as the name
of the site, which is not of interest. We therefore split the title
and retain only segments that contain a number.

Instead of extracting features from a title as a whole, we
focus on a fixed-size window centered around the numberk in
the title. We argue that the numberk serves as an anchor to a
phrase that represents a top-k concept or topic. For a window
of large enough sizen, the n-gram is sufficient to make a
correct judgement. With this observation, we transform the
original task into the task of recognizing the numberk with
a proper context, which is much easier and more suitable for
CRF learning.

Table II shows an example of feature extraction with a
window sizen = 9. If there are not enough words before or
after the centered number, we just fill up the vacancies with
the null token. We select four features:word, lemma, POS tag
andconcept. The lemmafeature gives the original form of the
word. For example, the lemma for “podcasts” is “podcast”.
The POS tagfeature indicates the part-of-speech of a word.
Theconceptfeature indicates whether the word forms a string
suffix of a concept in a knowledge base. Theith bit of the
concept feature value is set to 1 if thei-gram that ends with the
word is a concept. In Table II, the concept value for “podcasts”
is 1, which means “podcast” is a concept. While for a phase
“Asia companies”, the concept value for “companies” is 3,
because both “companies” and “Asia companies” are concepts
from the knowledge base.

4) Using the classifier:Figure 5 shows how we use the
classifier. (1) The preprocessor generates features. (2) The



Fig. 5. The Flow Chart of the Title Classifier

classifier labels then-gram pattern asTRUE or FALSE. (3)
If it is identified as a top-k title, the postprocessor extracts
additional information from the title, which includes the value
of k, the ranking criterion, and the concepts mentioned in
the title. For example, in this case, the concepts include
{“.net′′, “awards′′, “podcasts′′}. These information is used
in the subsequent list extraction process. In addition, for
extraction of optional information like time and location,we
put it in Content Processor and will discuss it later.

B. Candidate Picker

This step extracts one or more list structures which appear
to be top-k lists from a given page. A top-k candidate should
first and for most be a list ofk items, Visually, it should
be rendered ask vertically or horizontally aligned regular
patterns. While structurally, it is presented as a list of HTML
nodes with identicaltag path. A tag pathis the path from the
root node to a certain tag node, which can be presented as a
sequence of tag names. Figure 6 shows the relation between
list nodes and tag paths.

Based on these observations, the system employs two basic
rules for selecting candidate lists:

• K items: A candidate list must contain exactlyk items.
• Identical tag path: The tag path of each item node in a

candidate list must be the same.

The Tag Path Clustering Method, shown in Algorithm 1,
process the input page according to the two basic rules.
Inspired by Miao et al.[5], the algorithm recursively computes
the tag path for each node (Line 2), and groups text nodes with
an identical tag path into one node list. When this procedure
complete, we get a set of node lists, those of which with
preciselyk nodes are selected into the candidate set.

While the above method harvests most top-k lists (with
high recall), it also produces many false positives. We thus
introduce three additional pattern-based rules to furtherfilter
the candidate lists:

1) Index: There exists an integer number in front of every
list item, serving as a rank or index: e.g., “1.”, “2.”, “3.”,
etc. Moreover, the numbers are in sequence and within
the range of[1, k] (e.g., Figure 7).

Fig. 6. List Nodes and Their Tag Paths

2) Highlighting Tag : The tag path of the candidate list
contains at least one tag among<b>,<strong>,<h1-
h6> for highlighting purposes (e.g., Figure 8).

3) Table: The candidate list is shown in a table format(e.g.,
Figure 9).

Fig. 7. A Sample List of Index Pattern[16]

Only those lists that satisfy at least one of additional rules
gets to stay in the candidate set. For example the top-k list in
Figure 1 satisfies rules Index and Highlighting Tag.

C. Top-K Ranker

Top-K Ranker ranks the candidate set and picks the top-
ranked list as the top-k list by a scoring function which is a
weighted sum of two feature scores below:

• P -Score: P -Score measures the correlation between the
list and title. In Section IV-A, we extract a set of concepts
from the title, and one of them is the central concept
of the top-k list. Our key idea is that one or more
items from the main list should be instances of that
central concept from the title. For example, if the title



TABLE III

MAIN FEATURESUSED IN THE MODEL

Name Type Description Positives Negatives
Word Boolean Existence of a certain word in the list text Indexes (e.g., “25.”, “12.”) “Contact Us”, “Privacy Policy”

Tag Name Boolean The tag name of the list nodes <h2>, <strong>, ... <input>,<iframe>
Attribute Boolean Existence of a attribute token in the list nodes “articleBody”, “main” “comment”, “breadcrumb”

Word Count Integer The average word count of the list items / /
Length Variance Float The standard variance of the lengths of the list items / /

Algorithm 1 Tag Path Clustering Method
1: procedure TAGPATHCLUSTERING(n,table)
2: n.TagPath ← n.Parent.TagPath + Splitter +

n.TagName;
3: if n is a text nodethen
4: if table contains the keyn.TagPath then
5: list← table[n.TagPath];
6: else
7: list← new empty lists;
8: table[n.TagPath]← list
9: end if

10: Insertn into list;
11: return ;
12: end if
13: for each nodei ∈ n.Children do
14: TagPathClustering(i, table);
15: end for
16: return ;
17: end procedure

Fig. 8. A Sample List of Highlight Pattern[17]

contains the concept “scientist”, then the items of the
main list should beinstancesof the “scientist” concept.
The Probase taxonomy provides large number of concepts
and their instances which were extracted from the web
corpus. For instance, the “scientist” concept has 2054
instances in Probase.
We calculate theP -Score of each candidate listL by:

P -Score =
1

k

∑

n∈L

LMI(n)

Len(n)
;

whereLMI(n) is the word count of the longest matched

Fig. 9. A Sample List of Table Pattern[18]

instance in the text of noden, while Len(n) means the
word count of the whole text in noden.
We divideLMI(n) by Len(n) to normalize the P-Score
to [0, 1], and the contribution of each node will be no
more than1/k, which make sure that one single node’s
effect doesn’t dominate the whole score. In addition, we
want P -Score to prefer lists with fewer words, since
nodes with many words(e.g., a description paragraph) are
more likely to have a higherLMI.

• V -Score: V -Score calculates the visual area occupied by
a list, since the main list of the page tends to be larger
and more prominent than other minor lists. TheV -Score
of a list is the sum of the visual area of each node and
is computed by:

Area(L) =
∑

n∈L

(TextLength(n)× FontSize(n)2).

The above described approach, known asrule-basedranker
is fairly simple and performs reasonable well. Its main draw-
back is that it is based on only two features and lacks flexibility
and extensibility. We hence propose alearning-basedranker as
a major improvement. In this new approach, a Bayesian model
is learned from a large training set of candidate lists, where
top-k lists are labeled. The set of features we use in the model
are included in Table III, all of which can be automatically
extracted from the given list. And we use discretization method
to handle numerical feature types (e.g. word count). For a
candidate list, the model generates all the features and gives
the likelihood of positive (top-k) and negative lists with the
following equation.

P (C|F ) =
P (F |C)P (C)

P (F )
∝ p(C)

n∏

i=1

p(fi|C).

in which, C ∈ {positive, negative}, F = {f1, ..., fn} is
the set of observed feature values for the given candidate
andp(C) andp(fi|C) are estimated with relative frequencies
from the training set. We then normalizeP (positive|F )



andP (negative|F ) into one value and therefore choose the
candidate list that attains the highest probability.

Compared to the rule-based method, this framework is more
flexible as new features can be added any time. One just need
to provide a function for extracting the new feature values
from a list and update the model. The learning-based ranker
can also useP -Score andV -Score as features, so it is strictly
more general than the rule-based approach.

D. Content Processor

After getting top-k list, we extract attribute/value pairs for
each item from the description of the item in the list. The goal
is to obtain structured information for each item as shown in
Table I. As another example, Table IV shows a fragment of a
top-k list “Top 100 newspapers in the united states for 2010”.
Content Processor transforms it into Table V. Furthermore,
by analyzing the title, we obtain valuable information likethe
location is “the united states” and the date is “2010”. We
describe three major steps in the content processor.

TABLE IV

THE RAW RESULT OF A TOP-k LIST FRAGMENT[19]

USA Today (Arlington, Va.)
Wall Street Journal (New York, N.Y.)
Times (New York, N.Y.)
Times (Los Angeles)
Post (Washington, DC)
Tribune (Chicago)
Daily News (New York, N.Y.)
Inquirer (Philadelphia)
Post/Rocky Mountain News (Denver)

TABLE V

THE PROCESSED RESULT OF A TOP-k LIST FRAGMENT[19]

Newspaper American city
USA Today Arlington, Va.
Wall Street Journal New York, N.Y.
Times New York, N.Y.
Times Los Angeles
Post Washington, DC
Tribune Chicago
Daily News New York, N.Y.
Inquirer Philadelphia
Post/Rocky Mountain News Denver

1) Infer the structure of text nodes:In many cases, the text
node that describes each item may have some inner structure,
or is semi-structured. For example, the inner structure of every
list item in Table IV is “XXX(YYY)”. This structure means
the text actually contains multiple pieces (and often types) of
information.

We infer the inner structure of the text by constructing
the frequency distribution for each potential separator tokens
such as “By”, “:” and “,” from all the items of the top-k
list [20]. If we identify a sharp spike in the distribution for
a particular token, which means the number of occurrences
for that token is identical among all the list nodes, then we
find a separator, which can be used to separate the text into
multiple fields. Each field is often an attribute or property of
the entity described by the list item. The frequency distribution

of various tokens and their occurrences with a list element in
Table IV is shown in Figure 10 and clearly indicates that the
bracket token is a good candidate for separator.
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Fig. 10. The frequency distribution of various tokens in thelist of Table IV

2) Conceptualize the list attributes:Once the list items
are broken down into attribute values, it is useful to infer a
schemafor these attributes. For example, in Table V, we want
to infer “newspaper”, and “city” as column names from the
column content. In our system, we utilize three methods to
conceptualize list attributes:

• Table head: If the list is shown in a table format, i.e,
satisfies RuleTable and the table itself contains a head,
we can use the table head to conceptualize the table
directly. Generally, we can find the table heads by the
<th> tags.

• Attribute/value pair : In some cases, the list may contain
explicit attribute/value pairs. For example, in Figure 1,
“Hosted by” is an attribute of the list item “The Big
Web Show”, and its value is “Jeffrey Zeldman and Dan
Benjamin”. Generally, if every element of a column
contains the same text and ends with a colon, we will
consider that column as the attribute column and the
column to the right as the value column. Then we can
use the attribute name to conceptualize the corresponding
values.

• Column content: If neither table heads nor at-
tribute/value pairs are available, the default method is to
conceptualize the extracted column contents by a method
proposed by Song et al. [9], using Probase and a Bayesian
model. For each text column, we use the longest known
Probase instance in the text to represent the text node
and thus obtain an instance set of sizek: E = {ei, i ∈
1, ..., k}. We then need to find a concept that best describe
the instance set. The probability of concepts given the
instance setE can be estimated by a Naive Bayesian
Model.

P (ck|E) =
P (E|ck)P (ck)

P (E)
∝ P (ck)

M∏

i=1

P (ei|ck). (2)



In Equation 2,P (ei|ck) is the conditional probability
of the instanceei given the conceptck; while P (ck)
is the prior probability of conceptck. All probabilities
can be estimated using frequency of concept or instance
occurrences in Probase. The conceptck with the max
posterior probability will be selected to represent the
column. In addition, for special columns like indexes,
pictures and long paragraphs, we apply special rules to
conceptualize them.

3) Detect when and where:Time and location are impor-
tant semantic information about the extracted top-k lists. We
investigated into extracting this information from the page
title. We attempt to solve this as a named-entity recognition
(NER) problem by applying state-of-art NER tools[21]. The
preliminary results indicate that both “when” and “where” can
be detected with high recall.

However, the precision for locations is relatively low, as
many location entities are not related to the main topic of the
title. For example, some locations appear as part of the title
of the web site, such as “New York Times”. Thus, we apply
two additional rules below effectively filter irrelevant location
entities without causing too much harm to the coverage.

• The main segment: The location entity must be in the
main segment of the title.

• Proper preceding word: The previous word of the
location entity must be a proper preposition such as “in”,
“at”, “of”, etc.

Furthermore, for date entities, we want to discover their
temporal relations, such as “during”, “before” and “after”.
We can do this by looking for certain key words before the
entity, which is similar to the second rule above. For example,
a proper preposition for the relation “after” can be “after”,
“since” or “from”.

V. I MPLEMENTATION DETAILS

To build the CRF model of Title Classifier, we used a
training data set with 4000 positive and 2000 negative samples.
In this data set, all negative and 50% of positive samples are
real web page titles from a fragment of Bing snapshotT1,
while the remaining samples are synthesized (see IV-A.2). To
generate POS tags and lemma features, we used theStanford
Part-Of-Speech Tagger[22], which is a maximum-entropy
tagger for English.

The HTML Parser we use is the Winista HtmlParser [23].
It is a popular HTML parser written in C#, and provides very
high accuracy and efficiency. To filter unwanted lists, we keep
a black list of tags, including<head>, <link>, <style>,
<form>, <iframe> ,<input>.

For the Top-K Ranker, we propose two approaches, which
are labeled asrule-basedand learning-based, respectively in
Section VI. For thelearning-basedranker, we build a training
set as follows. First, we use the original system with therule-
basedranker to process web pages from Bing fragmentT1.
From the result set, we select 1000 top-k pages from which
top-k lists can be correctly extracted. Then the extracted lists

TABLE VI

BENCHMARKS DETAILS

Name Type Size Label Types # of Labels
Title-1 web titles 5000 top-k titles 118
Title-2 top-k titles 5000 when/where info 403/389
Page-1 top-k pages 1000 top-k list content 1000
Page-2 web pages 1.6B top-k list content 2.24M

are labeled as positive cases, while other unlabeled candidate
lists become negative ones, as our basic assumption is that one
top-k page only contains one top-k list. Then training data set
thus contains 1000 positive lists and 2000 negative lists.

As for Content Processor, we use theStanford Named
Entity Recognizer[21] to detect date and location entities. The
recognizer uses a CRF sequence model, together with well-
engineered features for Named Entity Recognition in English.
Both Stanford Named Entity Recognizerand Stanford Part-
Of-Speech Taggerare components ofStanford CoreNLP, a
state-of-art toolkit for general NLP tasks.

VI. EVALUATION

Our experiment is divided into three parts. The first part
tests the accuracy of each of the three main components of
the top-k list extraction system. The second part evaluates the
time performance of the system. The third part gives the end-
to-end system accuracy. The first two parts target a smaller
dataset which is described below. And these experiments were
conducted on a PC with 4GB RAM and 2.70GHz Dual-Core
Intel CPU. The third part evaluates our system at a much larger
scale of an entire Bing snapshot onCosmos, a large distributed
system at Microsoft.

The top-k extraction is a brand new topic in web mining.
Although there have been many previous attempts [2], [3],
[4], [5], [6], [7] to extract general lists and tables from the
web, none of them target on top-k lists and are able to solve
this specific problem. Therefore, we cannot set up any direct
comparison with those methods. Instead, we compare several
versions of our system, to show the significant improvement
against the previous system [24].

In the remainder of the section, we first describe the
benchmark datasets and the knowledge bases that we used in
our evaluation. Then we present the results for the three-part
experiment, before showing some interesting properties about
the extracted top-k lists.

A. Datasets and Knowledge Bases

We created several benchmark datasets to test the various
functional modules of the system. In general, the benchmarks
are pages or titles randomly sampled from the Bing snapshot,
and we created several different types of ground-truth labels
for different evaluation purposes (Table VII)..

We have two title benchmarks and two page benchmarks.
Title-1 and Title-2 are both sampled from a Bing fragment
called T2, different from T1 mentioned in Section V.Title-
1 are general titles which contains at least a number form.
Title-2 are top-k titles sampled from true positives output by



TABLE VII

RESULTS FORDATE AND LOCATION DETECTION

Type Precision Recall F-measure
Date 83.3% 94.4% 88.3%

Location 85.8% 82.5% 84.1%

the Title Classifier.Page-1is a set of randomly sampled top-
k pages whose titles are inTitle-2 and whose list content is
labeled.Page-2is a set of high-frequency web pages from a
Bing snapshot, 1.6 billion in total.

In addition, to evaluate the impact of the knowledge base
on our system, we prepare several subsets of Probase concept-
instance pairs and also the complete set of 25,229 hypernym-
hyponym pairs from WordNet [11]. The subsets of Probase
data is sampled by two methods:Randomwhich is randomly
sample 20%, 40%, 60% and 80% of the total data , and
Thresholdwhich selects Probase pairs whose frequencies are
higher thann: n ∈ {1, 2, 3, 4}. The latter method removes rare
concept-instance pairs in the “long tail”.

B. Component Accuracy

1) Title Recognition:To test the performance of the CRF
model, we run Title Classifier onTitle-1. As a result, the
F-measure of the classifier is around 83.5% with Precision
≈ 76.7% and Recall= 92.4%. The high recall ensures that
most of the real top-k pages can pass through this stage.
Figure 11(a) shows that without any Probase knowledge,
F-measure drops to 74.3% (Precision≈ 69.6%, Recall =
79.7%), which is about 11% lower than the one with full
Probase. Using the full WordNet as the knowledge base,
the accuracy is boosted by less than 2% (the red dashed
line in Figure 11(a)), which indicates that Probase has some
advantage over WordNet at title recognition due its stronger
coverage on multi-word expressions. We also compare the two
subset generating methods, and conclude that thethreshold
method is relatively better, because the knowledge thus created
is of better quality.

2) Date and Location Detection:We test the accuracy
performance of date and location detection function, using
a benchmarkTitle-2 In Title-2, 736 titles are verified with
temporal or spacial information, of which 403 contain date
information and 389 contain location information. The results
of detection are shown in Table VII.

3) List Extraction: Since HTML Parser, Candidate Picker
and Top-K Ranker all contribute to list extraction, we put them
together as one functional unit and test its accuracy. We run
the whole system onPage-1. As the titles of pages inPage-
1 come fromTitle-2, They are guaranteed to be recognized
correctly, thus eliminating the effect of the Title Classifier.

The result is shown in Table VIII, where we compare the
two ranking algorithms. We can see that thelearning-based
ranker generally performs better than therule-basedapproach
in both precision and recall. This advantage becomes more
apparent in the end-to-end experiments on big data.

Also, we evaluate the impact of knowledge base quality
with different Probase subsets as well as the WordNet, shown

TABLE VIII

RESULTS FORL IST EXTRACTION

Algo Precision Recall F-measure
Rule-based 95.5% 71.9% 82.0%

Learning-based 97.5% 78.2% 86.8%

in Figure 11(b). First, subsets produced bythresholdmethods
yield better results thanrandom subsets. Second, without
Probase knowledge, the performance ofrule-based ranker
drops dramatically (from 82.0% to 72.3%), whilelearning-
basedranker is less affected (from 86.8% to 83.5%). This is
because (1)learning-basedranker uses many more features
than therule-basedranker; and (2) the model oflearning-
basedranker is adaptive to the reduced quality of Probase (by
adjusting feature weight).

C. Time Performance

On average, the system takes 109 ms to process on page
on Page-1. Most time is consumed by the HTML parser (67
ms). The main algorithm, including Candidate Picker, Top-K
Ranker and Content Processor, only takes about 1/3 of total
running time (36 ms). In addition, if Title Classifier returns
negative for a non-top-k page, the system immediately returns,
in which case, only 6 ms is needed.

Figure 11(c) plots the average running time of each page
versus the page file size over 10 runs, which indicated near-
linear scalability in file sizes.

D. End-to-end Evaluation

Before we conduct the experiment on Bing snapshot (Page-
2), we estimate the total number of top-k pages to calculate
the system recall. We first use Title Classifier to identify a
subset ofPage-2. which contains 1.6 million pages (1/1000 of
Page-2). The classifier recognizes 5,994 pages from the subset.
2,061 of them are manually verified to be real top-k pages.
Considering there are 7.6% missed by the classifier, the total
number of top-k pages should be about 2,231. Therefore the
expected number of top-k pages inPage-2 is approximately
2,231,000, which is about 1.4‰.

The end-to-end experiment aims to show: 1) the overall
system performance on real web pages; and 2) the total number
of top-k lists that can be extracted from the entire web. To this
end, the system extracted 1,753,124 top-k lists from Page-2.
Random sample of 1000 lists from the extracted result has a
precision of 92.0%. If we project this result up to the whole
of Page-2, we should have extracted 1,612,874 top-k in total,
and the estimated recall is 72.3%.

We compare therule-basedand learning-basedalgorithms
for processing big data in Figure 11(d).Rule-basedalgorithm
attains 90.4% Precision and 57.9% Recall which is outper-
formed by thelearning-basedalgorithms (which are also our
default algorithms) reported above. Learning-based algorithms
have a clear advantage in recall which results in 300,000 more
top-k lists extracted from the whole web.
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Fig. 11. Experimental Results

E. Some Properties of Top-k Lists

In the following experiments, we create a test set of 100,000
randomly sampled lists from the result of the big data exper-
iment.

1) Distribution of K: The first experiment studies the
distribution of the numberk. The system imposes a constraint
of 2 ≤ k ≤ 5000. In our sample, the largestk equals to
4,526. Figure 11(e) shows the distribution for2 ≤ k ≤ 35.
From this figure, multiples of 5 and 10 are more popular than
their neighbors. In particular, 5 and 10 are two most popular
numbers, which make up 65% of all occurrences. For the other
numbers, the frequency generally decreases as thek grows.

2) Distribution in Number of Attributes:Figure 11(f) shows
the distribution of number of attributes (columns) in the
extracted list content (with a cut-off at 20). In the test set,
the largest number of attributes is 62. Most of the top-k
lists contain 2 or 3 attributes. The frequency decreases as the
column number grows.

3) Percentage of Ranked Top-k Lists: By detecting an
indexing pattern, we find 63,212 lists with explicit ranking
information, which indicates 63.2% of top-k lists are ranked.

VII. R ELATED WORK

The top-k list extraction problem, presented in this work,
belongs to the general area of web structured data extraction,
where many techniques have been developed and improved
recently. In general, these techniques can be categorized as
follows: (a) heuristic methods [2], [3]; (b) automatic extraction
rule discovery [25]; (c) similarity-based extraction [4],[5]; and
(d) visual model and features [6], [7].

Google Sets [2] and WebTables [3] extract web lists or
tables based on very specific list-related tags, such as<UL>,
<OL>, <DL>, and<TABLE>. IEPAD [25] identifies repetitive
substrings as list patterns in an encoded document/web page.
MDR [4] is proposed to extract data records of the same type
based on the similarity between DOM trees, which is measured
by edit distance. Miao et al. [5] introduce the visual signal
which is a vector describing tag path occurrence patterns.
Based on a similarity measure between visual signals, they
perform clustering of tag paths and rebuild the structure of
data in the form of sets of tag paths. Ventex [6] uses CSS2
visual box model [26] instead of DOM trees to represent
web pages, and extract web tables based on several rules and
heuristics. HyLiEn [7] is a hybrid list extraction approachas
it not only utilizes the visual alignment of list items but also
takes advantage of structural feature (DOM tree). And it claims
a remarkable improvement compared with Ventex[6].

In general, category (c) and (d) are more practical, as the
(a) and (b) are not very robust against evolving or complicated
web pages. And (d) often has better accuracy since web pages
are rendered for visual presentations, thus the visual models
should be more expressive and intuitive in representing a list
or table. Nevertheless, (c) is often more efficient in time asit
does not need to render the page.

Although our system is inspired by some of approaches
above (e.g, we improve tag path clustering by Miao et al. [5]
and use it in list extraction), it has several major differences:

• Different goals: The goal of previous approaches is to
undiscriminatingly extract all lists or tables from a web
page, while ours is to extract one specific list from a
special kind of page while purging all other lists.



• The use of numberk: Our method takes advantage of
the top-k list sizek, which is inferred from title. This is
important to filter most of noise lists.

• Understanding semantics: We understand each top-k list
as a list of instances with attributes w.r.t. the concept in
the title. This is critical not for identifying the correct list,
but also for the future application of the extracted results.

• Time Efficiency: In average, our system can process a
page in about 0.1 second, which is significantly faster
than the approaches above (Miao[5]:≈ 0.3s; HyLiEn[7]:
4.2s). This is key to scaling up the system to process
billions of pages.

We first introduced the concept of “top-k” list in a demo
paper [24]. In that demo, we proposed the top-k list extraction
problem and designed a prototype system. We presented this
prototype as a web GUI on the project website [27].

One of the potential use of the extracted top-k lists is
to act as background knowledge for a Q/A system[28] to
answer top-k related queries. To prepare for such knowledge,
we need techniques to aggregate a number of similar or
related lists into a more comprehensive one, which is in
the space of top-k query processing. One of the most well-
known algorithms there is TA (threshold algorithm) [29],
[30]. TA utilizes aggregation functions to combine the scores
of objects in different lists and computes the top-k objects
based on the combined score. Later, Chakrabarti et al. [31]
introduced the OF (object finder) query, which ranks top-k
objects in a search query exploring the relationship between
TOs (Target Objects, e.g., authors, products) and SOs (Search
Objects, e.g., papers, reviewers). Bansal et al.[32] utilize a
similar framework but elevate terms at a higher level by
taking advantage of a taxonomy, in order to compute accurate
rankings. Angel et al.[33] considered the EPF (entity package
finder) problem which is concerned with associations, relations
between different type of TOs. Some of these techniques can
serve as the basis for comprehensive integration of top-k lists.

VIII. C ONCLUSION

This paper presents a novel and interesting problem of
extracting top-k lists from the web. Compared to other struc-
tured data, top-k lists are clearer, easier to understand and
more interesting for human consumption, and therefore are an
important source for data mining and knowledge discovery. We
demonstrate a algorithm that automatically extracts over 1.7
million such lists from the a web snapshot and also discovers
the structure of each list. Our evaluation results show thatthe
algorithm achieves 92.0% precision and 72.3% recall.
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