
Efficient Processing of Which-Edge Questions on
Shortest Path Queries?

Petrie Wong1, Duncan Yung1, Ming Hay Luk1, Eric Lo1, Man Lung Yiu1,
Kenny Q. Zhu2

1 Hong Kong Polytechnic University
{cskfwong, cskwyung, csmhluk, ericlo, csmlyiu}@comp.polyu.edu.hk

2 Shanghai Jiao Tong University
kzhu@cs.sjtu.edu.cn

Abstract. In this paper, we formulate a novel problem called Which-Edge ques-
tion on shortest path queries. Specifically, this problem aims to find k edges that
minimize the total distance for a given set of shortest path queries on a graph.
This problem has important applications in logistics, urban planning, and net-
work planning. We show the NP-hardness of the problem, as well as present ef-
ficient algorithms that compute highly accurate results in practice. Experimental
evaluations are carried out on real datasets and results show that our algorithms
are scalable and return high quality solutions.

1 Introduction

Shortest path queries have a wide range of applications in logistics, urban planning, and
network planning. This paper introduces a novel problem called Which-Edge question
on shortest path queries. The objective is to find k edges that minimize the total distance
for a given set Q of shortest path queries on a weighted graph G(V,E,W). Let spd
denote the total distance of queries in Q on the graph. Specifically, there are two forms
of Which-Edge questions.

– Which-k-Edges-Insert question: Given an edge set P s.t. P ∩ E = ∅, which k
edges in P would minimize the spd (if those k edges are inserted into G)?

– Which-k-Edges-Delete question: Given an edge set P ⊆ E, which k edges in P
would minimize the spd (if they are removed from G)?
The potential applications of Which-Edge question could be illustrated using a few

examples. First, consider an express mail company’s delivery network: a graph with
nodes representing locations (e.g., cities, warehouses) and edges representing connec-
tions (e.g., flights between cities). Subject to rapidly changing business environments,
the company may revise its resource allocation policy regularly—with additional re-
sources, the management may want to reduce its overall/average delivery time (in-
creasing its competitive advantage) by establishing a new connection between two indi-
rectly connected locations. In the example above, a Which-Edge question natural arises:
“(Q1): which two locations should be connected by the new connection?”. In this sit-
uation, answers like “among all the possible choices, the maximum reduction
? This work is supported by the Research Grants Council of Hong Kong (GRF PolyU 520413),

and Hong Kong Polytechnic University (ICRG grant A-PL99).

Table 1. Summary of Frequently Used Symbols

Symbol Meaning
G the input graph

zi(ui, vi) a bridge to be added to G to connect nodes ui and vi

‖zi‖ capacity (resp. length) of a bridge/edge for shortest path
G+zi / G−ei the graph G with bridge zi added (with edge ei removed)

P / P̄ the set of candidate bridges to add to G (to remove from G)
K the answer set of a Which-Edge question, containing k bridges/edges

Bzi / Dei the benefit (damage) of adding bridge zi (removing edge ei)
Z an arbitrary set of bridges/edges

spG
(x,y) the shortest path distance from x to y on graph G

in overall delivery time (35%) is achieved if a new connection between X and
Y is established.” will be very helpful in aiding the decision-making process. After
said decision is made operational, a new connection (edge) is added to the delivery
network (graph) reflecting the impact of the decision. Alternatively, during tough eco-
nomic times, the management may ask “(Q2): which k connections, if cut, have the
minimal impact on overall delivery time?” — a decision that is eventually reflected by
some existing connections (edges) being removed from the delivery network (graph).
Applications of Which-Edge questions abound in other domains, too. In urban planning
where the road network is modeled as a graph, one may ask “(Q3): which stretch of
roads (edges) should we expand such that average travel times can be significantly re-
duced?”. In network planning, one may ask “(Q4): which optic fibre, if broken (e.g., due
to a natural disaster), would have the largest negative impact on the average network
communication time?”;

Answering Which-Edge questions on graphs is an interesting yet challenging re-
search issue. First, we have two types of Which-Edge questions, e.g., while Q1 and
Q3 are related to edge insertion, Q2 and Q4 are related to edge deletion. Thus, it is
necessary to develop general solutions that are applicable to both questions. Second,
the evaluation of Which-Edge questions is computationally expensive because the so-
lution space of Which-Edge questions can be very large. For example, in Q2, there
are many possible k-combinations of connections that could be considered. That huge
search space renders straightforward exhaustive algorithms impractical. In this paper,
we make the following contributions:

– Introduce the concept of Which-Edge questions and present its specification.
– Establish the problem hardness of Which-Edge questions.
– Develop evaluation algorithms and efficiency optimizations for answering Which-

Edge questions.
We will investigate the Which-k-Edges-Insert question and the Which-k-Edges-Delete
question in Sections 2 and 3 respectively. In Section 4, we evaluate the solutions’ quality
and efficiency on real graph datasets. We discuss related work in Section 5 and conclude
our paper in Section 6. Table 1 shows a summary of frequently used symbols.

2 Which-k-Edges-Insert Question

In this section, we first formulate the Which-k-Edges-Insert question and establish its
hardness. Then, we propose our heuristic solutions and efficiency optimizations to com-
pute highly accurate results in practice.

2.1 Problem Formulation

Given a weighted graph G = (V,E,W), there are potentially many non-adjacent node-
pairs in G that could be considered to be connected by some new edges. In practice,
however, the number of non-adjacent node-pairs to be considered is usually domain-
specific. For example in Q1, only flight connections offered by airlines should be con-
sidered. Thus, we model the set of non-adjacent node-pairs, P , as an input parameter
(generated by other softwares or prepared manually). Specifically, each non-adjacent
node-pair (ui, vi) in P is associated with an implied bridge zi, which is the edge con-
sidered to be added into G for connecting ui and vi. The bridge zi has a length ‖zi‖,
and a cost czi , which models the real-world cost of connecting ui to vi by zi in G (e.g.,
the cost of a bridge can be a function of the bridge’s length). In what follows, we use
the term “non-adjacent node-pairs” and “bridge” interchangeably.

The Which-k-Edges-Insert question aims to find out which k edges in a given
bridge-set P , if inserted into G, reduces the sum of shortest path distances of a query
workload Q the most (optimization goal). Here we may have a workload Q of shortest-
path queries with different sources and destinations on G. Each query qj(sj , tj) ∈ Q
is a distinct shortest-path query with source sj and destination tj . If the user does not
specify a workload, we consider Q to contain all-pairs shortest-path queries.

Each query qj ∈ Q is associated with an importance factor mqj —using deliver
planning as an example, assuming that only one delivery makes a 100 mile trip from s1

to t1, and 50 deliveries make a 5 mile trip from s2 to t2, we may model them as two
shortest-path queries q1(s1, t1) and q2(s2, t2) and set mq1 = 1 and mq2 = 50. Thus,
query importance can model the number of beneficiaries of a bridge. For instance, a
bridge z1(u1, v1), which reduces the shortest-path distance of q1 from 100 to 40 miles,
is not as beneficial as a bridge z2(u2, v2), which reduces the shortest-path distance of q2

from 5 to 1 mile, because only one delivery makes the trip q1. More precisely, let spGqj
be the shortest-path distance of query qj on the graph G. Then the benefit of connecting
ui and vi by zi on a query qj(sj , tj), or simply the benefit of bridge zi on query qj ,
bziqj , is the reduction in shortest-path distance of qj in G+zi versus G, accounting for the
query’s importance factor mqj :

bziqj = mqj × (spGqj − spG
+zi

qj) (1)

In the example above, the bridge z1, which shortens q1 from 100 to 40 miles, has a
benefit bz1q1 = 1 × (100 − 40) = 60; whereas the bridge z2, which shortens q2 from 5
miles to 1 mile, has a benefit bz2q2 = 50× (5− 1) = 200.

The above definitions can be extended to a subset K of bridges from P . The benefit
of a set K of bridges on query qj is defined as:

bKqj = mqj × (spGqj − spG
+K

qj) (2)

The total benefit of K on a query workload Q is:

BK =
∑
qj∈Q

bKqj (3)

PROBLEM 1 (WHICH-k-EDGES-INSERT QUESTION). Given a graph G, a set P
of non-adjacent node pairs (ui, vi), their associated bridges zi and cost czi , and a
workload of shortest-path queries Q; find a subset K ⊆ P of k bridges so that if they
are added to G, they have the maximum benefit to workload Q, accounting of the cost
CK of adding K to G, i.e., arg maxK⊆P,|K|=k(BK −CK), where CK =

∑
zi∈K czi .

In this formulation, we assume the cost czi of a bridge zi (e.g., 1000 USD) has been
normalized to match the unit of benefit, as in any ranking function in database query
processing. In fact, the relationship between the total benefit BK and the cost CK is
flexible; in some applications we can consider a different formulation, for example,
using another function arg maxK⊆P,|K|=k(BK/CK).

2.2 Problem Hardness

We prove that this problem is NP-hard.

Theorem 1. The Which-k-Edges-Insert problem is NP-hard.

Proof. We present a reduction scheme that converts any given instance of the Set-Cover
problem [1] into an instance 〈k,G(V,E), P,Q〉 of our Which-k-Edges-Insert problem.
Let 〈k,CS = {Si}, U〉 be an instance of Set-Cover, where k is an integer, U is a domain
set of items, CS is a collection of subsets Si ⊆ U . This problem asks whether there
exists a sized-k collection CS′ ⊆ CS such that the size of its subset union |∪Si∈CS′ Si|
equals to |U |. The reduction scheme is as follows:

– for each item j ∈ U , we insert a query qj(sj , tj) into Q, and insert the vertices
sj , tj into V ;

– for each subset Si ∈ CS, we insert a directed bridge zi(ui, vi) with length 0 into
P and insert the vertices ui, vi into V ;

– for each query qj(sj , tj) of Q, we insert a directed edge (sj , tj) with length 1 into
E;

– for each item j ∈ U in a subset Si ∈ CS, we insert directed edges (sj , ui) and
(vi, tj) with length 0 into E.
An example reduction is illustrated in Figure 1. The bridges in P are shown as

dashed lines. Observe that the size of the constructed instance 〈k,G(V,E), P,Q〉 is
polynomial to the size of the given instance 〈k,CS = {Si}, U〉. Also, the construction
process takes polynomial time. The intuition behind this reduction scheme is that, if a
bridge zi is selected in a solution of Which-k-Edges-Insert, then the queries qj benefit
from it correspond to the items j covered by a chosen set Si in a solution of Set-Cover.

Now, we only consider the subclass C of problem instances of Which-k-Edges-Insert
that conform with the conditions in the above reduction scheme, specifically:

– all vertices in P and Q are unique; they are the only vertices in the graph G;
– each bridge zi(ui, vi) ∈ P has length 0;
– for each query qj(sj , tj) ∈ Q, there must be an edge (sj , tj) with length 1 in the

graph;
– in addition, the graph contains only the following edges: an edge (sj , ui) exists if

and only if an edge (vi, tj) exists (for some zi, qj); such edges (if exist) must have
length 0;

U {1, 2, 3, 4}
CS {S1, S2, S3, S4, S5}
S1 {1}
S2 {2}
S3 {1, 2, 3}
S4 {3, 4}
S5 {4}

s
1

s
2

s
3

s
4

u
1

u
2 u

3
u

4
u

5

0 0 0 0 0 0 0 0

t
1

t
2

t
3

t
4

u
1

v
1

1

u
2

v
2

u
3

v
3

u
4

v
4

u
5

v
5

1 1 1

0

0

0 0 0 0

0

0 0 0 0 0 0

Workload Q Bridges P
(s1, t1), (u1, v1):0,
(s2, t2), (u2, v2):0,
(s3, t3), (u3, v3):0,
(s4, t4) (u4, v4):0,

(u5, v5):0

(a) Set-Cover (b) Which-k-Edges-Insert: graph G (c) content of Q and P

Fig. 1. Reduction: Set Cover to Which-k-Edges-Insert

Now, we show that a solution of Set-Cover 〈k,CS = {Si}, U〉 corresponds to a
solution of the C subclass of Which-k-Edges-Insert problem 〈k,G(V,E), P,Q〉 with
benefit equal to |Q|, and vice versa.

Let CS′ be a solution of the Set-Cover. Let K ′ be a solution of the Which-k-Edges-
Insert problem. Let M = |U | = |Q|.

We first convert a given solution CS′ to a corresponding solution K ′ and then de-
rive the benefit value of K ′. Let U ′ = ∪Si∈CS′Si be the union set of items covered by
CS′. Recall that the size of CS′ is k, and the size of U ′ is M . WLOG, we rename CS′

as {Sx1
, Sx2

, · · · , Sxk
} and rename U ′ as {y1, y2, · · · , yM}. We claim that the corre-

sponding solution of the Which-k-Edges-Insert problem is K ′ = {zx1
, zx2

, · · · , zxk
},

and the set of benefited queries is Q′ = {qy1 , qy2 , · · · , qyM
}. Since CS′ is a solution of

the Set-Cover, each item in yj ∈ U ′ must be contained in Sxi for some i. According to
our reduction scheme, the corresponding edges (sj , ui) and (vi, tj) belong to the con-
structed graph. Thus, for each query (sj , tj) ∈ Q′, there exists a path sj , ui, vi, tj with
distance 0, causing its benefit to be 1. Summing the benefit over all queries of Q′, we
obtain the benefit M .

We then convert a given solution K ′ to a corresponding solution CS′ and then
derive the union size of CS′. Since the size of CS′ is k, we rename K ′ as K ′ =
{zx1

, zx2
, · · · , zxk

}. The benefit of each query is either 0 or 1. Since the total ben-
efit of K ′ on all queries is M , there must be a set of M benefited queries, say,
Q′ = {qy1

, qy2
, · · · , qyM

}. We claim that the corresponding solution of the Set-
Cover problem is CS′ = {Sx1 , Sx2 , · · · , Sxk

}, with the union set of items covered
as U ′ = {y1, y2, · · · , yM}. Since K ′ is a solution of the Which-k-Edges-Insert prob-
lem, each query in qyj

∈ Q′ must be benefited by the bridge zxi
for some i. According

to our reduction scheme, the corresponding item in yj ∈ U ′ must be contained in Sxi

for some i. Thus, all items in U ′ are covered by CS′ and the union size is M .
Since the Set-Cover problem is NP-hard [1], the above implies that Which-k-

Edges-Insert problem is also NP-hard. ut

Observe that Set-Cover instances correspond to only
a subclass of problem instances of Which-k-Edges-Insert. Thus, the approxima-
tion algorithms (and their approximation ratio) for Set-Cover cannot be applied to all
problem instances of Which-k-Edges-Insert.

Brute-Force Solution We proceed to describe a brute-force algorithm (BF) for comput-
ing the exact result for the Which-k-Edges-Insert problem. It enumerates every possible

subset K with k bridges from P . For each subset K, it temporarily inserts bridges in
K to the graph G (denote that as G+K) and uses an incremental shortest path algo-
rithm (e.g., [2]) to compute the new shortest path. Finally, the subset K with the highest
benefit BK is reported as the result. Figure 2a shows an example3 with k=2, a source
s, a sink t, and with shortest path distance originally as 1. The running steps of BF
with P = {(b, g), (g, c), (d, h) , (j, d), (i, e)} are illustrated in Figure 2b. There are(|P |

k

)
=
(

5
2

)
subsets to be considered. The subset K = {(b, g), (g, c)} is reported as the

result because the new shortest path distance is 14 after adding them to G, which yields
the highest benefit BK = 19− 14 = 5 among other subsets.

The time complexity of BF is O(
(|P |

k

)
ISP (G)), where ISP (G) denotes the time

complexity of an incremental shortest path algorithm. Note that an incremental shortest
path algorithm [2] takesO(log |V |) time. Furthermore, observe that the time complexity
O(
(|P |

k

)
ISP (G)) is exponential to k. Therefore, the term

(|P |
k

)
renders BF only feasible

for a tiny |P |.

ba c d e
1

f

g h

ij

7

5

5

1 1 2 1

1 3 1 1

1

(a) graph

K spG+K
BK

(b, g), (g, c) 14 5
(b, g), (d, h) 17 2
(b, g), (i, e) 16 3
(b, g), (j, d) 18 1
(d, h), (g, c) 17 2
(d, h), (i, e) 16 3
(d, h), (j, d) 16 3
(g, c), (i, e) 16 3
(g, c), (j, d) 18 2
(i, e), (j, d) 15 4

↙ Optimal answer: K={(b, g), (g, c)}, BK=5

Iteration 1 Iteration 2
zi spzi Bzi spzi Bzi

(b, g) 19 19-19=0 16 16-16=0
(d, h) 17 19-17=2 16 16-16=0
(g, c) 19 19-19=0 16 16-16=0
(i, e) 16 19-16=3 - -
(j, d) 18 19-18=1 15 16-15=1

Greedy answer: K={(i, e), (j, d)}, BK=4
TopK answer: K={(i, e), (d, h)}, BK=3

(b) Brute-Force (c) Greedy and TopK

Fig. 2. Which-k-Edges-Insert Question: Running Steps of Algorithms (k=2)

2.3 Heuristics Solutions

We now present two polynomial-time heuristics algorithms that return a subset K ⊆ P
of k bridges whose benefit is an heuristics of the optimal benefit. Empirical results show
that the algorithms can return high quality solutions using a very reasonable amount of
time.

Both algorithms require a function called CalSPBenefit. Its goal is to compute
the benefit Bzi of every single (note: not combination of) bridge zi ∈ P . A naive
implementation of the function CalSPBenefit can be based on a nested-loop:

3 For ease of illustration, we assume bridge costs being 0 in the example. In fact, our solutions
can deal with arbitrary values of czi .

Algorithm 1 Algorithm SP-NL-Benefit
1: function SP-NL-BENEFIT(G, Q, P) implements CalSPBenefit
2: for each bridge zi of P do . outer loop
3: for each qj ∈ Q do . inner loop
4: IncSP(qj , G

+zi)
5: Calculate the benefit bziqj of zi

6: Bzi =
∑

qj∈Q bziqj . Equation 3

SP-NL-Benefit has a complexity of O(|Q||P |ISP (G)), where ISP (G) is the time
complexity of an incremental shortest path algorithm IncSP (e.g,. O(log |V |) [2]).
So, SP-NL-Benefit is not efficient enough because it invokes IncSP |Q| × |P | times.
In Section 2.4, we will present more efficient implementations for CalSPBenefit.
Now, we present the two heuristics algorithms first.

a) Greedy Algorithm Our first heuristics algorithm is based on greedy heuristics.
Algorithm 2 shows the pseudo-code of our Greedy algorithm. It invokes the function
CalSPBenefit in k iterations. In each iteration, it greedily selects the bridge z∗ ∈ P
with the highest benefit Bz∗ , removes it from P , and then inserts it into G. The time
complexity of Greedy is O(k · CB(G,P)), where CB(G,P)) denotes the time com-
plexity of an implementation of function CalSPBenefit. Even using the (slow) naive
implementation of CalSPBenefit (see Algorithm 1), Greedy is still a polynomial
time algorithm.

Algorithm 2 Heuristics Algorithm (Greedy)
1: function GREEDY(G, s, t, P , k)
2: K = ∅ . result set
3: while |K| < k do
4: CalSPBenefit(G, s, t, P)
5: let z∗ ∈ P be the bridge with the highest benefit Bz∗

6: remove z∗ from P
7: insert z∗ into K . z∗ is one of the selected bridges
8: G = G ∪ z∗ . update G to include z∗ as well
9: return the result set K

The running steps of Greedy on the example in Figure 2a are illustrated in Figure 2c.
For k = 2, Greedy has two iterations. In the first iteration, Greedy first invokes the
function CalSPBenefit to find the best bridge (i, e), which has a benefit of 3. So
it is removed from P and gets inserted into the final result set K and into the graph
G. In the second iteration, function CalSPBenefit is invoked the second time. Note
that the benefit of some bridges (e.g., (d, h)) may change after the graph has become
G+(i,e). Again, the bridge with the highest benefit in the second iteration (i.e., (j, d))
is inserted into the final result set K. Since k = 2, Greedy stops after this iteration.
Greedy finds the optimal result {(i, e), (j, d)} in this example.

b) TopK Algorithm Our second heuristics algorithm, called TopK (Algorithm 3), at-
tempts to further trade the result quality for better efficiency. It simply executes the
function CalSPBenefit once and then returns the top-k most beneficial bridges. Its
time complexity is O(CB(G,P)), i.e., the complexity of function CalSPBenefit.

Algorithm 3 Heuristics Algorithm (TopK)
1: function TOPK(G, s, t, P , k)
2: CalSPBenefit(G, s, t, P)
3: K = the k most beneficial bridges . result set
4: return the result set K

The running steps of TopK on the example in Figure 2a is the same as the first
iteration of Greedy, as illustrated in Figure 2c. However, TopK has only one iteration.
It triggers function CalBenefit once, and returns the top-2 bridges (i, e) and (d, h)
as the result set. The total benefit of (i, e) and (d, h) is 19− 16 = 3.

2.4 Efficiency Optimization

(a) Pruning Candidate Bridges The trick is very simple: if the length ‖zi‖ of a bridge
zi is longer than all queries’ shortest-path distances, such bridge can be pruned right
away because it yields no benefit. Furthermore, we skip a query qj’s IncSP call if
its original shortest-path distance is smaller than the lengths of all the given candidate
bridges.

(b) Input-Adaptive Benefit Calculation The following lemmas enable us to determine
the benefits of all bridges simply by (i) invoking IncSP (using each ui or vi as the
source) |P | times or (ii) invoking IncSP (using each sj and each tj as the sources)
2|Q| times. Therefore, our proposed algorithm, namely, SP-Fast-Benefit, implements
CalSPBenefit, by doing (i) when |P | < 2|Q| or doing (ii) otherwise. Briefly, in
Lemma 1, by executing IncSP from a node ui, we can obtain the shortest-path tree of
ui, which embeds the shortest-path distance of all nodes from ui. For the path sj to tj
via ui to be shorter than spGqj , either the path sj to ui, or the path ui to tj must contain
the node vi and hence the bridge (ui, vi). So, we will have enough distance information
to calculate the updated shortest path distances of all queries in Q.

Lemma 1. Given a bridge zi(ui, vi), a graph G, and a query workload Q, the benefit
Bzi of bridge zi can be obtained by executing IncSP only once, using either ui or vi
as the source, and stops when all nodes in Q are seen.

Proof. Assume zi is inserted to G, so the graph becomes G+zi . If the shortest path
of a query qj(sj , tj) ∈ Q on G+zi is shorter than its original shortest path on G, the
new shortest path of qj on G+zi must pass through zi and its corresponding (new and
shorter) shortest path distance spG

+zi

qj would be:

spG
+zi

qj(sj ,tj) = spG
+zi

(sj ,ui)
+ spG

+zi

(ui,tj) (4)

where spG
+zi

(sj ,ui)
and spG

+zi

(ui,tj) are the shortest path distances from ui to sj and tj , re-
spectively.

Given spG
+zi

qj(sj ,tj), we derive the benefit bziqj of zi on query qj as:

bziqj = mqj × (spGqj −min(spGqj , sp
G+zi

qj(sj ,tj))) (5)

As mqj and spGqj are given, from Equations 4 and 5, we can see that as long as we

have the values of spG
+zi

(sj ,ui)
and spG

+zi

(ui,tj), we are able to compute bziqj . Obviously, given
a graph G+zi with bridge zi(ui, vi) inserted, we can obtain the shortest path distances
from ui to all nodes using one Dijkstra’s execution. After that, shortest path distances
like spG

+zi

(sj ,ui)
and spG

+zi

(ui,tj) are readily available if we make sure the shortest-path execu-
tion stops only when all source nodes sj and destination nodes tj in the workload Q are
seen. By repeatedly applying Equation 5 using the information above, all benefits bziqj
can be obtained and the overall benefit Bzi of bridge zi on workload Q can be derived
using Equation 3. The proof is the same if we use vi as the source instead of ui. ut

Lemma 2. Given a query qj(sj , tj), a graph G, a set of bridges P , the benefit bziqj for
all bridges zi(ui, vi) in P with respect to a query qj in Q can be obtained by executing
IncSP twice, once using sj as the source, once using tj as the source, and stop when
all nodes in P are seen.

Proof. If the shortest path of a query qj(sj , tj) ∈ Q on G+zi is shorter than its original
shortest path on G, the new shortest path of qj on G+zi must pass through zi(ui, vi)

and its corresponding (new and shorter) shortest path distance spG
+zi

qj would be:

spG
+zi

qj(sj ,tj) = min(spG
+zi

(sj ,ui)
+ ||(ui, vi)||+ spG

+zi

(vi,tj),

spG
+zi

(sj ,vi)
+ ||(ui, vi)||+ spG

+zi

(ui,tj)) (6)

where ||(ui, vi)|| denote the length of edge (ui, vi).
Given spG

+zi

qj(sj ,tj), we can derive the benefit bziqj of zi on query qj using Equation 5.
Since ||(ui, vi)||, mqj , and spGqj are given, from Equations 5 and 6, by using the values

of spG
+zi

(sj ,ui)
, spG

+zi

(sj ,vi)
, spG

+zi

(vi,tj), and spG
+zi

(ui,tj), we are able to compute bziqj . Obviously,
given a graph G, we can obtain the shortest path distances from sj and tj to all nodes
using two shortest-path executions. After that, shortest path distances like spG

+zi

(sj ,ui)
,

spG
+zi

(sj ,vi)
, spG

+zi

(vi,tj), and spG
+zi

(ui,tj) are readily available if we make sure the shortest-path
executions stop only when all nodes ui and vi in the P are seen. By repeatedly apply-
ing Equation 6 using the information above, the benefits bziqj of all bridges on a query
qj(sj , tj) can be obtained. ut

3 Which-k-Edges-Delete Question

Next, we formulate the Which-k-Edges-Delete question and establish its hardness.
Then, we adapt our heuristic solutions from the previous section to answer the Which-
k-Edges-Delete question.

3.1 Problem Formulation

This problem aims to find out which k edges in a given set P̄ ⊆ E, if deleted, have the
least impact on the overall shortest-path distances (e.g., Q2). In this case, the “damage”
Dei

qj of deleting an edge ei with respect to a query workload Q can be defined as:

Dei =
∑
qj∈Q

mqj (spG
−ei

qj − spGqj) (7)

where spG
−ei

qj denotes the shortest path of qj on a graph G without edge ei.

3.2 Problem Hardness and Solutions

Observe that an instance 〈k,G, P,Q〉 of the Which-k-Edges-Insert problem is equiva-
lent to an instance 〈|P̄ | − k,G+P̄ , P̄ , Q〉 of the Which-k-Edges-Delete problem, where
P̄ = P . Since the Which-k-Edges-Insert problem is NP-hard, the Which-k-Edges-
Delete problem is also NP-hard.

All our solutions (BF, Greedy, and TopK) are applicable here. First, we can also
have a naive nested-loop implementation method for a function, CalSPDamage, that
calculates the damage of deleting each edge in P̄ (the set of candidate edges to be
removed from G) on the query workload Q by calling a shortest incremental algorithm.
Then for Greedy, we greedily choose the edge e with the least damage, delete e from
G, and repeat k iterations. For TopK, we simply choose the k-lowest damage edges in
the first iteration.

3.3 Efficiency Optimization

The problem of CalSPDamage is: Given a subset P̄ of edges in E, calculate the dam-
age Dei of each edge ei ∈ P̄ with respect to a query workload Q. A nested-loop algo-
rithm, SP-NL-Damage, that invokes IncSP |Q| × |P | times is also applicable here.

To develop a more efficient algorithm. The question is how to obtain the item spG
−ei

qj
for all queries qj ∈ Q in Equation 7 efficiently. Observe that the deletion of an edge ei
from G is equivalent to the insertion of the edges P̄ − {ei} into the graph G−P̄ , i.e.,
G−ei = G−P̄+(P̄−ei). Note that spG

−ei

qj means the shortest path distance of query qj
on the graph G without ei. In other words, it is the shortest path distance of query qj on
the graph G−P̄+(P̄−ei).

Suppose that P̄ = {e1(u1, v1), e2(u2, v2), e3(u3, v3)}. In this example, the graph
without e1, i.e., G−e1 , is the same as the graph without P̄ , but with edges e2 and e3

inserted back, i.e., G−e1 = G−P̄+{e2,e3}. Therefore, if we want to compute the changes
of shortest path values (indirectly, the damage) of deleting e1 from G, we can consider
the changes of shortest path values (indirectly, the benefit) of inserting e2 and e3 to
G−P̄ .

From the discussion above, our idea is to solve the deletion problem as an inser-
tion problem on the graph G−P̄ . Instead of using the entire G−P̄ , we observe that the
following shortest paths on G−P̄ are essential for solving the insertion problem on the
graph G−P̄ . Specifically, the following paths are necessary for computing shortest paths
sp

Gei
qj for any edge ei and query qj .

– for each query qj(sj , tj), the shortest path sj tj ;
– for each combination of edges ei(ui, vi) and eh(uh, vh), the shortest paths ui
uh, ui vh, vi uh, vi vh;

– for each combination of edge ei(ui, vi) and query qj(sj , tj), the shortest paths
ui sj , ui tj , vi sj , vi tj .

Based on the above observation, we develop an efficient algorithm, SP-Fast-Damage,
to create a reduced graph G that contains only nodes and edges involved in the shortest
paths above. The computation is efficient because it works on the concise G.

4 Experiments

In this section, we present experiment results based on real graph data. All experiments
were run on a 2.5 GHz Intel PC running Ubuntu with 8 GB of RAM. We evaluated
the algorithms by running experiments on four real undirected graphs of different sizes
and types (Figure 3). The queries in Q are selected randomly. The bridge set P (for
insertion) and the edge set P̄ (for deletion) are selected randomly. Here, we also present
results of both edge insertion case and edge deletion case only. The default bridge cost
and query importance are 0 and 1, respectively. Experimental results using other values
are largely similar, so we do not present them here.

Undirected Graphs (for shortest-path) node Count Edge Count Avg Degree

Argentina Road Network (ARG) 85,287 88,357 2.07
http://www.maproom.psu.edu/dcw
San Francisco Road Network (SF) 174,956 223,001 2.54
http://www.maproom.psu.edu/dcw

CAIDA Internet Router Topology (LINKS) 190,914 607,609 6.36
http://www.caida.org/tools/measurement/skitter

Fig. 3. Real Graph Data Used in Experiments

4.1 Which-k-Edges-Insert Question

The first row of Figures 4(a)–(c) shows the actual approximation ratio (A.A.R.) of BF,
Greedy, and TopK on four real graphs. In this experiment, we limit the experiment
setting to |P | = |Q| = 25 to let BF compute the optimal solution in a reasonable
time. BF is an exact but exponential algorithm, it always has a ratio of 1. On datasets
SF and LINKS, Greedy returns the optimal solution. On dataset ARG, the A.A.R. of
Greedy degrades a little bit when k = 4, but it still returns 95% of the optimal benefit.
The solutions of TopK are quite data dependent. On ARG, its A.A.R decreases when
k increases. On SF, its A.A.R. is from 0.8 to 1. On LINKS, its A.A.R. drops initially
when k increases but it rises again later.

The second row of Figures 4(a)-(c) shows the running times of BF, Greedy, and
TopK. As a baseline, BF takes up to about a day when k is four on large graphs like SF
and LINKS, even |P | and |Q| are so small (= 25) in this experiment. TopK and Greedy
are orders of magnitude faster than BF and Greedy is about k times slower than TopK.

As the performances of Greedy and TopK mainly depend on the implementations
of the CalSPBenefit, we evaluate the performance of the two implementations of

CalSPBenefit function: SP-NL-Benefit and SP-Fast-Benefit, by varying |P | and
|Q|. Figure 4(d) shows their running times when we vary the size of workload (|Q| = 50
to 5000; default |P | = 500) and the size of bridge sets (|P | = 50 to 5000; default
|Q| = 500) on the ARG dataset. The results on the other three datasets are largely
similar to the results on ARG, so we do not present them here. From the results we can
see that SP-NL-Benefit is about two orders of magnitude slower than SP-Fast-Benefit.
When fixing |P | at 500 and varying |Q| (Figure 4(d); top), the running time of SP-
Fast-Benefit goes flat at |Q| = 500 because it decides to invoke IncSP |P | times at
that point. Similarly, when fixing |Q| at 500 and varying |P | (Figure 4(d); bottom), the
running time of SP-Fast-Benefit goes flat at |P | = 1000 because it decides to invoke
IncSP 2|Q| times at that point.

0

0.2

0.4

0.6

0.8

1

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[ARG] BF

Topk

Greedy

0

0.2

0.4

0.6

0.8

1

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[SF] BF

Topk

Greedy

0

0.2

0.4

0.6

0.8

1

1 2 3 4
A

c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[LINKS] BF

Topk

Greedy

10
0

10
1

10
2

10
3

10
4

10
5

10
6

50 100 500 1000 5000

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Queries

(logscale)

(logscale) SP-NL-Benefit
SP-Fast-Benefit

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [ARG]BF

TopK

Greedy

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [SF]BF

TopK

Greedy

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [LINKS]BF

TopK

Greedy

10
0

10
1

10
2

10
3

10
4

10
5

10
6

50 100 500 1000 5000

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Bridges

(logscale)

(logscale) SP-NL-Benefit
SP-Fast-Benefit

(a) [ARG] vary k (b) [SF] vary k (c) [LINKS] vary k (d) [ARG] vary |Q| and |P |

Fig. 4. Which-k-Edges-Insert Question

4.2 Which-k-Edges-Delete Question

Figures 5(a)–(c) show the A.A.R. and the performance of BF, Greedy, and TopK, for the
case of edge deletion (|P | = |Q| = 25). The 1.0 A.A.R of BF is put there as reference.
Both Greedy and TopK found the same optimal solutions as BF and LINKS. On ARG
and SF, the worst A.A.R of Greedy is 1.2 (meaning the damage of Greedy is 20% more
than the optimal), which is a good result. The worst A.A.R 1.9 of TopK (at SF, k=4)
is also low. TopK runs almost k times faster than Greedy. Both of them are orders of
magnitude faster than BF.

Figure 5(d) shows the running times of SP-NL-Damage and SP-Fast-Damage, two
implementations of CalSPDamage, under different workload size (|Q| = 50 to 5000)
and edge set size (|P | = 50 to 5000), on ARG. The results on the other three datasets are
largely similar to the results here, so we do not present them here. From the results we
can see that both SP-NL-Damage and SP-Fast-Damage scale well but SP-NL-Damage
is an order of magnitude slower than SP-Fast-Damage. We have also plotted a scala-
bility graph showing the running times of SP-NL-Damage and SP-Fast-Damage on the
four real graphs (|Q| = |P | = 500). Results show that they are both scalable to graphs
of different sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[ARG] BF
Topk

Greedy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[SF] BF
Topk

Greedy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[LINKS] BF
Topk

Greedy

10
1

10
2

10
3

10
4

10
5

10
6

50 100 500 1000 5000

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Queries

(logscale)

(logscale) SP-NL-Damage
SP-Fast-Damage

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [ARG]BF

TopK

Greedy

10
1

10
2

10
3

10
4

10
5

1 2 3 4
T

im
e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [SF]BF

TopK

Greedy

10
1

10
2

10
3

10
4

10
5

1 2 3 4

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [LINKS]BF

TopK

Greedy

10
1

10
2

10
3

10
4

10
5

10
6

50 100 500 1000 5000

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Edges

(logscale)

(logscale) SP-NL-Damage
SP-Fast-Damage

(a) [ARG] vary k (b) [SF] vary k (c) [LINKS] vary k (d) [ARG] vary |Q| and |P |

Fig. 5. Which-k-Edges-Delete Question

4.3 Case Study

Here we present the findings of a case study of applying a Which-k-Edges-Insert ques-
tion on the San Francisco Bay area road network. The goal is to determine the best
locations for constructing a new bridge spanning the San Francisco Bay such that travel
distances can be reduced the most (i.e., Q3 in Section 1). In the study, we concerned
only with the construction of new bridges spanning the San Francisco Bay. We identi-
fied a number of possible locations for constructing new bridges, which resulted in 348
possible bridges to consider constructing. For all 348 candidate bridges, we assumed
that their construction costs are directly related to the bridge’s span length; thus, longer
bridges are more costly to construct, but may shorten travel distances more, when com-
pared with shorter bridges. To determine important travel destinations, we used San
Francisco Bay Area commuter statistics supplied by the Metropolitan Transportation
Commission. From the Metropolitan Transportation Commission, we mapped county
to county commuter statistics back onto San Francisco Bay Area road network graph.
After remapping the county to county commuter statistics, we identified 377 queries
to characterize the commuter data supplied from the Metropolitan Transportation Com-
mission. For each of these 377 commuter queries, their relative importance to San Fran-
cisco Bay Area residents were computed from census data4, which were collected by
the Metropolitan Transportation Commission.

Figure 6 shows the original San Francisco Bay Area road network (in black color).
Using Greedy, the four most beneficial bridges to add into the San Francisco Bay Area
road network are shown in Figure 6a (red colors): the single most beneficial bridge
is shown just south of the Dumbarton Bridge (annotated with (1) in the figure). This
bridge would help commuters traveling between the extreme ends of the Silicon Valley
at the southern end of Alameda County and the southern end of San Mateo County.
The second most beneficial bridge to construct is annotated with (2) in the figure. This
bridge connects south San Francisco to the mid southern end of Alameda County. The
third most beneficial bridge (annotated with (3)), connects central San Francisco to
central Alameda County. Finally, the fourth most beneficial bridge (annotated with (4))
to construct connects Alameda County to San Mateo County. Figure 6b shows the four
bridges suggested by TopK. We can see that TopK selects to construct 3 bridges all

4 http://www.mtc.ca.gov/maps and data/datamart/census/county2county/table1coco.html

(a) Greedy (k = 4) (b) TopK (k = 4)

Fig. 6. Case Study [***please view this figure from color PDF file or color print copy***]

south of the Dumbarton Edge in close proximity to each other. The running time of
TopK algorithm is about 10 seconds, where Greedy is about 40 seconds, 4 times slower
than TopK. Both running times are highly reasonable. However, the bridges suggested
by Greedy are more insightful than bridges suggested TopK in this case study.

5 Related Work

Decision support and data mining on graphs (e.g., [3–7]) are related to this work. How-
ever, they have different focuses (e.g., summarizing, OLAP, or mining graphs) with us.

The broad applications of Which-Edge query makes it relevant to a number of other
areas: spatial database, operations research, dynamic graph maintenance, and detection
of high risk network links.

Optimal-location queries [8–10] are a class of spatial decision-support queries
where users look for the best location, l, for a new facility such that the greatest benefit
is obtained. For example, [9] considers the benefit of a location as the total weight of
its reverse nearest neighbors (i.e., the total weight of objects that are closer to l than to
any other data point in the dataset). Optimal-location queries are helpful in finding ideal
locations for a new shop to attract the largest number of customers. However, Which-
Edge queries (e.g., Q1–Q4) that work on graphs are more diverse than optimal-location
queries, which only ask “where to add a new point?”

The reverse optimization problems [11] in operations research are relevant to us.
An inverse optimization problem takes a feasible solution x as input and then tunes the
problem’s parameters, with as low of a cost as possible, such that x becomes the opti-
mal solution. In reverse optimization problems, a target value v is specified, and then
the problem’s parameters are tuned, with as low cost as possible, such that v becomes
either the optimal value or an upper bound of the optimal value for the problem. For
example, in reverse shortest-path problems [11], an input of the desired shortest-path
distance d to a shortest-path query q yields an output of a set of edge weight adjust-
ments that make the shortest-path distance of q shorter than d. These existing opera-
tions research problems require the user to explicitly state the target to be tuned (e.g.,
the desired shortest-path distance d). In contrast, Which-Edge queries tell the user the
target’s identity and its optimized value.

If the set of graph elements that will be changed is explicitly known, then it is re-
lated to the dynamic graph maintenance (e.g., [12, 13, 2]) problems, whose goals are to
efficiently update the graph measures (a.k.a. incremental update). However, those works
do not tell users which set of graph elements is worthwhile to get updated, which is the
objective of this work. Most network maintenance works (e.g., [14]) aim to localize
faulty links after some links break. Which-Edge queries, like Q4, can be used to de-
termine critical links in a network such that effective preventive maintenance measures
can be implemented before any link breaks.

6 Conclusion

In this paper, we formulate a novel Which-Edge question on shortest path queries. It has
important applications in logistics, urban planning, and network planning. We show the
NP-hardness of the problem, as well as present efficient algorithms with optimizations
for computing highly accurate results in practice. In future, we will investigate exten-
sions of Which-Edge question for other graph queries (e.g., reachability queries).

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT
Press (2001)

2. Buriol, L.S., Resende, M.G.C., Thorup, M.: Speeding up dynamic shortest-path algorithms.
INFORMS Journal on Computing 20(2) (2008) 191–204

3. Chen, C., Lin, C.X., Fredrikson, M., Christodorescu, M., Yan, X., Han, J.: Mining graph
patterns efficiently via randomized summaries. PVLDB 2(1) (2009) 742–753

4. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards Online Analytical
Processing on Graphs. In: ICDM. (2008) 103–112

5. Khan, A., Yan, X., Wu, K.L.: Towards proximity pattern mining in large graphs. In: SIG-
MOD. (2010) 867–878

6. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In:
SIGMOD. (2008) 567–580

7. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE. (2010)
880–891

8. Du, Y., Zhang, D., Xia, T.: The optimal-location query. In: SSTD. (2005) 163–180
9. Gao, Y., Zheng, B., Chen, G., Li, Q.: Optimal-location-selection query processing in spatial

databases. TKDE 21 (2009) 1162–1177
10. Xiao, X., Yao, B., Li, F.: Optimal location queries in road network databases. In: ICDE.

(2011) 804–815
11. Zhang, J., Lin, Y.: Computation of reverse shortest-path problem. Journal of Global Opti-

mization 25 (2003) 243–261
12. Demetrescu, C., Italiano, G.F.: Algorithmic techniques for maintaining shortest routes in

dynamic networks. Electron. Notes Theor. Comput. Sci. 171 (April 2007) 3–15
13. Chan, E., Lim, H.: Optimization and evaluation of shortest path queries. The VLDB Journal

16 (2007) 343–369
14. Pal, A., Paul, A., Mukherjee, A., Naskar, M., Nasipuri, M.: Fault detection and localization

scheme for multiple failures in optical network. Distributed Computing and Networking
(2008) 464–470

