

Reduction and Degree Many-One Reduction

Examples

1. *K* is m-reducible to $\{x \mid \phi_x = \mathbf{0}\}, \{x \mid c \in W_x\}$ and $\{x \mid \phi_x \text{ is total}\}.$

$f_{0}(x,y) = \bigg\{$	0 ↓	if $x \in W_x$	$f_{\mathbb{N}}(x,y) = \begin{cases} y \\ \uparrow \end{cases}$	if $x \in W_x$
	, T	If $x \notin W_x$		If $x \notin W_x$

2. Rice Theorem is proved by showing that $K \leq_m \{x \mid \phi_x \in \mathscr{B}\}$.

$$f_g(x,y) = \begin{cases} g(y) & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \qquad \begin{array}{c} x \in W_x \Rightarrow \phi_k(x) = g \in \mathscr{B} \\ x \notin W_x \Rightarrow \phi_k(x) = f_{\varnothing} \notin \mathscr{B} \end{cases}$$

3. $\{x \mid \phi_x \text{ is total}\} \leq_m \{x \mid \phi_x = \mathbf{0}\}.$

 $\phi_{k(x)} = \mathbf{0} \circ \phi_x$

Reduction and Degree Many-One Reduction **Elementary Properties**

- Let A, B, C be sets.
- 1. \leq_m is reflexive: $A \leq_m A$.
 - $f: A \leq_m A$ is the identity function.
- 2. \leq_m transitive: $A \leq_m B, B \leq_m C \Rightarrow A \leq_m C$.

Let $f : A \leq_m B, g : B \leq_m C$, then $g \circ f : A \leq_m C$.

- 3. $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.
 - If $g : A \leq_m B$, then $x \in A \Leftrightarrow f(x) \in B$; so $x \in \overline{A} \Leftrightarrow g(x) \in \overline{B}$. Hence $g: \overline{A} \leq_m \overline{B}$.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 6/64	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 7/64
Reduction and Degree Relative Computability Turing Reducibility Many-One Reduction Degrees m-Complete r.e. Set Elementary Properties (2)	Reduction and Degree Relative Computability Turing Reducibility Many-One Reduction Degrees m-Complete r.e. Set Elementary Properties (3)
 4. If A is recursive and B ≤_m A, then B is recursive. g : B ≤_m A; then c_B(x) = c_A(g(x)). So c_B is computable. 5. If A is recursive and B ≠ Ø, N, then A ≤_m B. Let b ∈ B, c ∉ B, f(x) =	7. (i). $A \leq_m \mathbb{N}$ iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$. (i)." \Leftarrow ": By reflexivity, $\mathbb{N} \leq_m \mathbb{N}$. (i)." \Rightarrow ": Let $f : A \leq_m \mathbb{N}$, then $x \in A \Leftrightarrow f(x) \in \mathbb{N}$. Thus $A = \mathbb{N}$. (ii). $A \leq_m \emptyset \Leftrightarrow \overline{A} \leq_m \mathbb{N} \Leftrightarrow \overline{A} = \mathbb{N} \Leftrightarrow A = \emptyset$. 8. (i). $\mathbb{N} \leq_m A$ iff $A \neq \emptyset$; (ii). $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.
computable. $x \in A \Leftrightarrow f(x) \in B.$ 6. If A is r.e. and $B \leq_m A$, then B is r.e. Let $g : B \leq_m A, A = Dom(h), (h \in \mathcal{C}_1)$; then $B = Dom(h \circ g)$	(i). " \Rightarrow ": Let $f : \mathbb{N} \leq_m A$, then $A = Ran(f)$, so $A \neq \emptyset$ (f is total). (i). " \Leftarrow ": If $A \neq \emptyset$, choose $c \in A$. If $g(x) = c$, we have $g : \mathbb{N} \leq_m A$. (ii). $\emptyset \leq_m A \Leftrightarrow \mathbb{N} \leq_m \overline{A} \Leftrightarrow \overline{A} \neq \emptyset \Leftrightarrow A = \mathbb{N}$.

Let $g: B \leq_m A, A = Dom(h), (h \in \mathcal{C}_1)$; then $B = Dom(h \circ g)$ (B is r.e.)

 Reduction and Degree
 Many-One Reduction

 Relative Computability
 Degrees

 Turing Reducibility
 m-Complete r.e. Set

Corollary

Corollary. Neither $\{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \text{ is not total}\}$ is *m*-reducible to *K*.

Proof. By contradiction, if $\{x \mid \phi_x \text{ is total}\} \leq_m K$, and *K* is r.e., then $\{x \mid \phi_x \text{ is total}\}$ is r.e. (same as $\{x \mid \phi_x \text{ is not total}\}$).

However, by Rice-Shapiro Theorem, Neither $\{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \text{ is not total}\}$ is r.e.

Corollary (2)

Fact. If *A* is r.e. and is not recursive, then $\overline{A} \leq_m A$ and $A \leq_m \overline{A}$.

Proof. " $\overline{A} \not\leq_m A$ ": By contradiction, if $\overline{A} \leq_m A$, then \overline{A} is r.e., then A is recursive!

" $A \not\leq_m \overline{A}$ ": By contradiction, if $A \leq_m \overline{A}$, then $\overline{A} \leq_m A$, then A is recursive!

Notation: It contradicts to our intuition that A and \overline{A} are equally difficult.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 10/64	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 11/64
Reduction and Degree Relative Computability Turing Reducibility Many-One Reduction Degrees m-Complete r.e. Set Theorem Many-One Reduction	Reduction and Degree Relative Computability Turing Reducibility Many-One Reduction Degrees m-Complete r.e. Set Many-One Equivalence Many-One Reduction
Theorem . <i>A</i> is r.e. iff $A \leq_m K$. <i>Proof.</i> " \Leftarrow ". Since $A \leq_m K$, and <i>K</i> is r.e., then <i>A</i> is r.e.	Definition . Two sets <i>A</i> , <i>B</i> are many-one equivalent, notation $A \equiv_m B$ (abbreviated <i>m</i> -equivalent), if $A \leq_m B$ and $B \leq_m A$.
Suppose A is r.e. Let $f(x, y)$ be $f(x, y) = \begin{cases} 1, & \text{if } x \in A, \\ \uparrow, & \text{if } x \notin A. \end{cases}$	Theorem . \equiv_m is an equivalence relation.
By s-m-n Theorem $\exists s(x) : \mathbb{N} \to \mathbb{N}$ such that $f(x, y) = \phi_{s(x)}(y)$.	Proof.
It is clear that $x \in A$ iff $\phi_{s(x)}(s(x))$ is defined iff $s(x) \in K$. Hence $A \leq_m K$.	(1). Reflexivity: $A \leq_m A \Rightarrow A \equiv_m A$. (2). Symmetry: $A \equiv_m B \Rightarrow B \leq_m A$, $A \leq_m B \Rightarrow B \equiv_m A$. (3). Transitivity: $A \equiv_m B$, $B \equiv_m C \Rightarrow A \leq_m C$, $C \leq_m A \Rightarrow A \equiv_m C$.
Notation . <i>K</i> is the most difficult partially decidable problem.	

Reduction and DegreeMany-OnRelative ComputabilityDegreesTuring Reducibilitym-Complete

Examples

- 1. $\{x \mid c \in W_x\} \equiv_m K$. " \Leftarrow ": $f_{\mathbb{N}}(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases} \Rightarrow K \leq_m \{x \mid c \in W_x\}$ " \Rightarrow ": $\{x \mid c \in W_x\}$ is r.e., so $\{x \mid c \in W_x\} \leq_m K$. Thus $\{x \mid c \in W_x\} \equiv_m K$.
- 2. If A is recursive, $A \neq \emptyset$, \mathbb{N} , then $A \equiv_m \overline{A}$.

 $A \neq \emptyset, \mathbb{N} \Rightarrow \overline{A} \neq \emptyset, \mathbb{N}.$ A is recursive, by previous theorem $A \leq_m \overline{A}$. Similarly, $\overline{A} \leq_m A$. Reduction and DegreeMany-OrRelative ComputabilityDegreesTuring Reducibilitym-Comp

Example (2)

3. If *A* is r.e. but not recursive, then $A \not\equiv_m \overline{A}$. *A* is r.e. but not recursive $\Rightarrow A \not\leq_m \overline{A}, \overline{A} \not\leq_m A$.

4.
$$\{x \mid \phi_x = \mathbf{0}\} \equiv_m \{x \mid \phi_x \text{ is total}\}.$$

" \Leftarrow ": $\phi_{k(x)} = \mathbf{0} \circ \phi_x \Rightarrow \{x \mid \phi_x \text{ is total}\} \leq_m \{x \mid \phi_x = \mathbf{0}\}.$
" \Rightarrow ": Let $\phi_{k(x)}(y) = \begin{cases} 0 & \text{if } \phi_x(y) = 0; \\ \uparrow & \text{if } \phi_x(y) \neq 0. \end{cases}$
Then $\phi_x = \mathbf{0} \Leftrightarrow \phi_{k(x)} \text{ is total } \Rightarrow \{x \mid \phi_x = \mathbf{0}\} \leq_m \{x \mid \phi_x \text{ is total}\}.$

C363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 14/64	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 15/64		
Reduction and Degree Many-One Reduction Relative Computability Degrees Turing Reducibility m-Complete r.e. Set	Reduction and Degree Many-One Reduction Relative Computability Degrees Turing Reducibility m-Complete r.e. Set		
n-Degree	Expression		
	Definition . The set of <i>m</i> -degrees is ranged over by $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$		
Definition . Let $d_m(A)$ be $\{B \mid A \equiv_m B\}$.	Definition (Partial Order on <i>m</i>-Degree) . Let a , b be <i>m</i> -degrees.		
Definition . An m-degree is an equivalence class of sets under the	(1). $\mathbf{a} \leq_m \mathbf{b}$ iff $A \leq_m B$ for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$.		
relation \equiv_m . It is any class of sets of the form $d_m(A)$ for some set A.	(2). $\mathbf{a} <_m \mathbf{b}$ iff $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \not\leq_m \mathbf{a}$ ($\mathbf{a} \neq \mathbf{b}$).		
A recursive m-degree is an m-degree that contains a recursive set. An r.e. m-degree is an m-degree that contains an r.e. set.	The relation $<_m$ is a partial order.		
	Notation . From the definition of \equiv_m ,		

 $\mathbf{a} \leq_m \mathbf{b} \Leftrightarrow \forall A \in \mathbf{a}, B \in \mathbf{b}, A \leq_m B.$

Reduction and Degree Relative Computability Turing Reducibility Many-One R Degrees m-Complete

Theorem

Theorem. The relation $<_m$ is a partial ordering of *m*-degrees.

Proof.

(1) By transitivity $\mathbf{a} \leq_m \mathbf{b}, \mathbf{b} \leq_m \mathbf{c}$ implies $\mathbf{a} \leq_m \mathbf{c}$.

If $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \leq_m \mathbf{a}$, we have to prove that $\mathbf{a} = \mathbf{b}$.

(2) Irreflexivity: Let $A \in \mathbf{a}$ and $B \in \mathbf{b}$, then we have $A \leq_m B$ and $B \leq_m A$, so $A \equiv_m B$. Hence $\mathbf{a} = \mathbf{b}$.

Consequently, $<_m$ is partial ordering.

Reduction and Degree Many-One Reduction Relative Computability Degrees Turing Reducibility m-Complete r.e. Set

Some Facts

1. **o** and **n** are respectively the recursive m-degrees $\{\emptyset\}$ and $\{\mathbb{N}\}$.

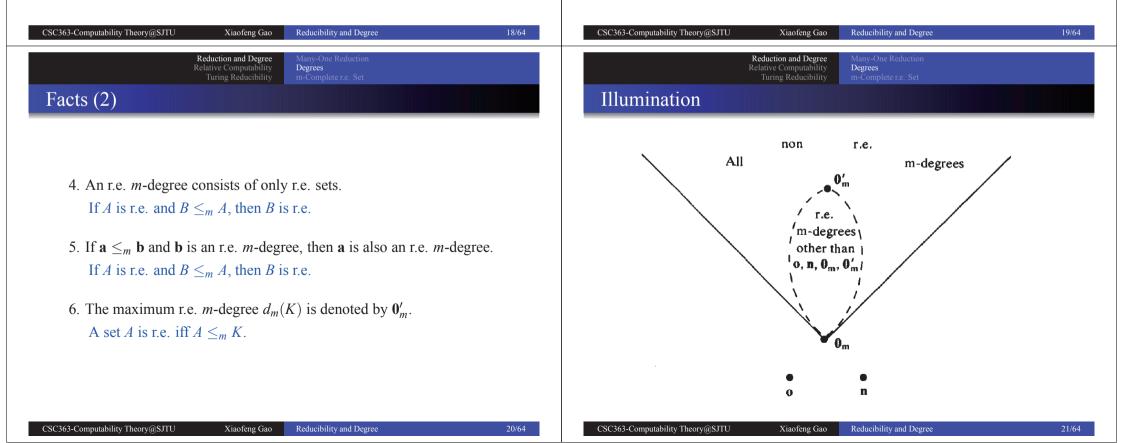
 $A \leq_m \mathbf{N} \Leftrightarrow A = \mathbf{N}; A \leq_m \emptyset \Leftrightarrow A = \emptyset.$

2. The recursive m-degree $\mathbf{0}_m$ consists of all the recursive sets except \emptyset , \mathbb{N} .

 $\mathbf{0}_m \leq_m \mathbf{a}$ for any *m*-degree \mathbf{a} other than \mathbf{o} and \mathbf{n} .

A is recursive, $B \leq_m A \Rightarrow B$ is recursive; A is recursive and $B \neq \emptyset$, $\mathbb{N} \Rightarrow A \leq_m B$.

3. \forall *m*-degree **a**, **o** \leq_m **a** provided **a** \neq **n**; **n** \leq_m **a** provided **a** \neq **o**. $\mathbb{N} \leq_m A \Leftrightarrow A \neq \emptyset; \emptyset \leq_m A \Leftrightarrow A \neq \mathbb{N}.$

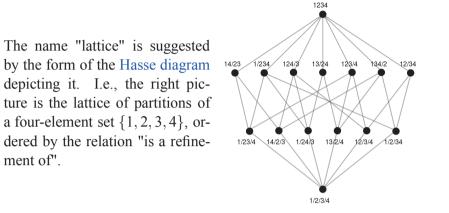


Reduction and Degree Many-One Reduction Relative Computability Degrees Turing Reducibility m-Complete r.e. Set	Reduction and Degree Many-One Reduction Relative Computability Degrees Turing Reducibility m-Complete r.e. Set
Facts about r.e. <i>m</i> -Degrees	Algebraic Structure
 Excluding o and n, there is a minimum r.e. <i>m</i>-degree O_m (in fact O_m is minimum among all <i>m</i>-degrees). The r.e. <i>m</i>-degrees form an initial segment of the <i>m</i>-degrees; i.e., anything below an r.e. <i>m</i>-degree is also r.e. There is a maximum r.e. <i>m</i>-degree O'_m. While there are uncountably many <i>m</i>-degrees, only countably many of these are r.e. 	Theorem . The <i>m</i> -degrees form an upper semi-lattice.
CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 22/64 Reduction and Degree Reduction and Degree Many-One Reduction Degrees Relative Computability Turing Reducibility Many-One Reduction Degrees Group Group Many-One Reduction Degrees	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 23/64 Reduction and Degree Reduction and Degree Many-One Reduction Degrees Reducibility Turing Reducibility m-Complete r.e. Set Degrees
 In mathematics, a group is an algebraic structure consisting of a set together with an operation (G, ●) that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy four conditions (group axioms), namely closure, associativity, identity and invertibility. 	 In mathematics, a lattice is a partially ordered set (poset) (L, ≤) in which any two elements have a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). To qualify as a lattice, the set and the operation must satisfy tow conditions: join-semilattice, meet-semilattice.
closure: $a, b \in G \Rightarrow a \bullet b \in G$. associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c)$. identity: $\forall a \in G, \exists$ identity element $e \in G$, s.t. $e \bullet a = a \bullet e = a$.	join-semilattice: $\forall a, b \in L$, the set $\{a, b\}$ has a join $a \lor b$. (the least upper bound)meet-semilattice: $\forall a, b \in L$, the set $\{a, b\}$ has a meet $a \land b$.
invertibility: $\forall a \in G, \exists inverse \ b \in G \text{ s.t. } a \bullet b = b \bullet a = e \ (b = a^{-1}).$	(the greatest lower bound)

CSC363-Computability Theory@SJTU

The Name "Lattice"

ment of".



CSC363-Computability Theory@SJTU	Xiaofeng Gao	Reducibility and Degree	26/64
	Reduction and Degree Relative Computability Turing Reducibility	Many-One Reduction Degrees m-Complete r.e. Set	
Proof			

(i). Pick $A \in \mathbf{a}, B \in \mathbf{b}$, and let $C = A \oplus B$, i.e.,

$$C = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$$

Then

 $x \in A \Leftrightarrow 2x \in C \Longrightarrow A \leq_m C;$ $x \in B \Leftrightarrow 2x + 1 \in C \Longrightarrow B \leq_m C;$

Thus **c** is an upper bound of **a**, **b**.

Reduction and Degree Relative Computability Turing Reducibility Degrees

Upper Semi-lattice

Theorem. Any pair of *m*-degrees **a**, **b** have a least upper bound; i.e. there is an *m*-degree **c** such that

(i). $\mathbf{a} \leq_m \mathbf{c}$ and $\mathbf{b} \leq_m \mathbf{c}$ (c is an upper bound);

(ii). $\mathbf{c} \leq_m$ any other upper bound of \mathbf{a} , \mathbf{b} .

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree Reduction and Degree Relative Computability Turing Reducibility Degrees Proof (2)

(ii). Let **d** is an *m*-degree such that
$$\mathbf{a} \leq_m \mathbf{d}$$
, and $\mathbf{b} \leq_m \mathbf{d}$.
 $\forall D \in \mathbf{d}$, suppose $f : A \leq_m D$ and $g : B \leq_m D$. Then
 $x \in C \iff (x \text{ is even } \& \frac{x}{2} \in A) \lor (x \text{ is odd } \& \frac{x-1}{2} \in B)$
 $\Leftrightarrow (x \text{ is even } \& f(\frac{x}{2}) \in D) \lor (x \text{ is odd } \& g(\frac{x-1}{2}) \in D)$
Thus we have $h : C \leq_m D$ if we define $h = \begin{cases} f(\frac{x}{2}) & \text{if } x \text{ is even;} \\ g(\frac{x-1}{2}) & \text{if } x \text{ is odd.} \end{cases}$
Hence $\mathbf{c} \leq_m \mathbf{d}$.

Reduction and DegreeMany-One ReductioRelative ComputabilityDegreesTuring Reducibilitym-Complete r.e. Set

Definition

Definition. An r.e. set is m-complete if every r.e. set is m-reducible to it.

Notation. $0'_m$, the *m*-degree of *K* is maximum among all r.e. *m*-degrees, and thus *K* is *m*-complete r.e. set (or just called *m*-complete set).

Theorem

Theorem. The following statements are valid.

(i) *K* is *m*-complete.

(ii) A is m-complete iff $A \equiv_m K$ iff A is r.e. and $K \leq_m A$.

(iii) $\mathbf{0}'_m$ consists exactly of all the *m*-complete sets.

C363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree Reduction and Degree Relative Computability Turing Reducibility Examples	30/64	CSC363-Computability Theory@SJTU	Xiaofeng Gao Reduction and Degree Relative Computability Turing Reducibility	Reducibility and Degree Many-One Reduction Degrees m-Complete r.e. Set	31/6
The following sets are m-complete. (i) $\{x \mid c \in W_x\}$. (ii) Every non-trivial r.e. set of the form $\{x \mid \phi_x \in \mathscr{B}\}$. (iii) $\{x \mid \phi_x(x) = 0\}$. (iv). $\{x \mid x \in E_x\}$.		Theorem . Any <i>m</i> -o Proof. If A is <i>m</i> -con Also, $K \leq_m A$, so \overline{R}	nplete, A is r.e.	set.	

Reduction and Degree Relative Computability Turing Reducibility Many-One Reduction Degrees m-Complete r.e. Set Myhill's Theorem	Reduction and Degree Relative Computability Turing Reducibility Many-One Reduction Degrees m-Complete r.e. Set m-Complete r.e. Sets
Myhill's Theorem . A set is m-complete iff it is creative.	Corollary . If a is the <i>m</i> -degree of any simple set, then $0_m <_m \mathbf{a} <_m 0'_m$ (Simple sets are not <i>m</i> -complete). <i>Proof</i> . Simple sets are designed to be neither recursive nor creative.
CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 34/64 Reduction and Degree Relative Computability Turing Reducibility Comparison	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 35/64 Reduction and Degree Reducibility Turing Reducibility 1 Relative Computability Turing Reducibility 1 1 Relative Computability Turing Reducibility 1 1 Relative Computability Turing Reducibility 1 1
m-reducibility has two unsatisfactory features: (i) The exceptional behavior of \varnothing and \mathbb{N} . (ii) The invalidity of $A \not\equiv_m \overline{A}$ in general. The problem is due to the restricted use of oracles. E.g. $x \in \overline{A}$ iff $x \notin A$	Suppose χ is a total unary function. Informally a function f is computable relative to χ , or χ -computable, if f can be computed by an algorithm that is effective in the usual sense, except from time to time during computations f is allowed to consult the oracle function χ . Such an algorithm is called a χ -algorithm.

Reduction and Degre Relative Computability

URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every n > 1.

If χ is the oracle, then the effect of O(n) is to replace the content r_n of R_n by $\chi(r_n)$.

 P^{χ} denote the program P when used with the function χ in the oracle.

 $P^{\chi}(\mathbf{a}) \downarrow b$ means the computation $P^{\chi}(\mathbf{a})$ with initial configuration $a_1, a_2, \cdots, a_n, 0, 0, \cdots$ stops with the number b is register R_1 .

Illumination	Turing Reducibility	
r_1 R_1 With result	$\frac{r_2}{R_2} = \frac{r_3}{R_3} \dots$ ng configuration	Oracle r_n χ r_n $\chi(r_n)$ r_n R_n
r1 CSC363-Computability Theory@	r2 r3 SJTU Xiaofeng Gao Reduction and Degree	$\chi(\mathbf{r}_n)$ Reducibility and Degree 40/64
Facts	Relative Computability Turing Reducibility	
(ii) $\mathscr{C} \subseteq \mathscr{C}^{\chi}$. Any URM (iii) If χ is con	O program $O(1)$. program is a URMO program is a URMO program is a URMO program of $\mathcal{C} = \mathcal{C}$	X.
whenever a va		e $\mathscr{C}^{\chi} \subseteq \mathscr{C}$. χ is computable, then imply compute it by the <i>f</i> is computable.
(iv) \mathscr{C}^{χ} is closed under substitution, recursion and minimalisation. Construct corresponding URMO programs.		
(v) If ψ is a to By Church		is χ -computable, then $\mathscr{C}^{\psi} \subseteq \mathscr{C}^{\chi}$.
CSC363-Computability Theory@	SJTU Xiaofeng Gao	Reducibility and Degree 42/64

Relative Computability

CSC505-Computationity meety@3110 Alabeling Gao Reductionity and Degree 35/04	CSC505-Computationity medigwash Computationity and Degree 40/04
Reduction and Degree Relative Computability Turing Reducibility	Reduction and Degree Relative Computability Turing Reducibility
URMO-Computable	Facts
Let χ be a unary total function, and suppose the f is a partial function from \mathbb{N}^n to \mathbb{N} .	(i) $\chi \in \mathscr{C}^{\chi}$. Use URMO program $O(1)$.

- (a) Let P be a URMO program, then P URMO-computes f relative to χ (or f is χ -computed by P) if, for every $\mathbf{a} \in \mathbb{N}^n$ and $b \in \mathbb{N}$, $P^{\chi}(\mathbf{a}) \downarrow b \text{ iff } f(\mathbf{a}) \simeq b.$
- (b) The function f is URMO-computable relative to χ (or χ -computable) if there is a URMO program that URMO-computes it relative to χ .
- \mathscr{C}^{χ} is the set of all χ -computable functions.

Partial Recursive Function

The class \mathscr{R}^{χ} of χ -partial recursive functions is the smallest class of functions such that

(a) the basic functions are in \mathscr{R}^{χ} .

(b) $\chi \in \mathscr{R}^{\chi}$.

CSC363-Computability Theory@SJTU

(c) \mathscr{R}^{χ} is closed under substitution, recursion, and minimalisation.

Reducibility and Degree

 χ -recursive, χ -primitive recursive are defined in the obvious way.

Xiaofeng Gao

Relative Computability

Theorem. For any χ , $\mathscr{R}^{\chi} = \mathscr{C}^{\chi}$.

Numbering URMO programs

Reduction and Degree Relative Computability Turing Reducibility

Numbering URMO programs

Let's fix an effective enumeration of all URMO programs

 Q_0, Q_1, Q_2, \ldots

Let $\phi_m^{\chi,n}$ be the *n*-ary function χ -computed by Q_m . Let ϕ_m^{χ} be $\phi_m^{\chi,1}$.

 W_m^{χ} is $Dom(\phi_m^{\chi})$ and E_m^{χ} is $Ran(\phi_m^{\chi})$.

Reduction and Degree Relative Computability

Universal Programs for Relative Computability

Xiaofeng Gao

Reducibility and Degree

S-m-n Theorem. For each $m, n \ge 1$ there is a total computable (m + 1)-ary function $s_n^m(e, \mathbf{x})$ such that for any χ

$$\phi_e^{\chi,m+n}(\mathbf{x},\mathbf{y}) \simeq \phi_{s_n^m(e,\mathbf{x})}^{\chi,n}(\mathbf{y}).$$

Notice that $s_n^m(e, \mathbf{x})$ does not refer to χ .

Universal Function Theorem. For each *n*, the universal function $\psi_U^{\chi,n}$ for *n*-ary χ -computable functions given by

$$\psi_U^{\chi,n}(e,\mathbf{x})\simeq \phi_e^{\chi,n}(\mathbf{x})$$

is χ -computable.

CSC363-Computability Theory@SJTU

Reduction	n and Degree
Relative C	omputability
Turing	Reducibility

Relativization

Once we have the S-m-n Theorem and the Universal Function Theorem, we can do the recursion theory relative to an oracle.

χ -Recursive and χ -r.e. Sets

Let *A* be a set

- (a) *A* is χ -recursive if c_A is χ -computable.
- (b) *A* is χ -r.e. if the partial characteristic function $f(x) = \begin{cases} 1 & \text{if } x \in A, \\ \uparrow & \text{if } x \notin A \end{cases} \text{ is } \chi\text{-computable.}$

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 47/64	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 48/64
Reduction and Degree Relative Computability Turing Reducibility	Reduction and Degree Relative Computability Turing Reducibility
χ -Recursive and χ -r.e. Sets	Computability Relative to a Set
Theorem . The following statements are valid.	Computability relative to a set A means computability relative to its characteristic function c_A .
(i) For any set A, A is χ -recursive iff A and \overline{A} are χ -r.e.	For example:
(ii) For any set A, the following are equivalent.	P^A for P^{c_A} (if P is a URMO program),
• A is χ -r.e.	\mathscr{C}^A for \mathscr{C}^{c_A} ,
• $A = W_m^{\chi}$ for some <i>m</i> .	ϕ_m^A for $\phi_m^{c_A}$.
• $A = E_m^{\chi}$ for some <i>m</i> .	W_m^A for $W_m^{c_A}$,
• $A = \emptyset$ or A is the range of a total χ -computable function.	E_m^A for $E_m^{c_A}$,
• For some χ -decidable predicate $R(x, y)$, $x \in A$ iff $\exists y. R(x, y)$.	K^A for K^{c_A} ,
def	A-recursive for c_A -recursive
(iii) $K^{\chi} \stackrel{\text{def}}{=} \{x \mid x \in W_x^{\chi}\}$ is χ -r.e. but not χ -recursive.	A-r.e. for c_A -r.e.

Turing Reducibility and Turing Degrees

The set *A* is Turing reducible to *B*, notation $A \leq_T B$, if *A* has a *B*-computable characteristic function c_A .

The sets *A*, *B* are Turing equivalent, notation $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

Reduction and Degree Relative Computability Turing Reducibility

Notation

Suppose $A \leq_T B$ and P is the URMO program that computes c_A relative to B. Then $\forall x, P^B(x)$ converges and

 $P^{B}(x) \downarrow 1 \text{ if } x \in A$ $P^{B}(x) \downarrow 0 \text{ if } x \notin A$

When calculating $P^B(x)$ there will be a finite number of requests to the oracle for a value $c_B(n)$ of c_B . These requests amount to a finite number of questions of the form ' $n \in B$?'.

So for any x, ' $x \in A$?' is settled in a mechanical way by answering a finite number of questions about *B*.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 52/64	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 53/64
Reduction and Degree Relative Computability Turing Reducibility Facts.	Reduction and Degree Relative Computability Turing Reducibility Facts. (2)
 (i) ≤_T is reflexive and transitive. A ≤_T B iff C^A ⊆ C^B; (ii) ≡_T is an equivalence relation. A ≡_T B iff C^A = C^B; (iii) If A ≤_m B then A ≤_T B. If f : A ≤_m B and P is URM program to compute f, then the URMO program P, O(1) is B-compute c_A. (iv) A ≡_T Ā for all A. c_Ā = s̄g ∘ c_A, Ā is A-recursive ⇒ Ā ≤_T A. (Similarly A ≤_T Ā.) 	 (v) If A is recursive, then A ≤_T B for all B. Since C ⊆ CX. (vi) If B is recursive and A ≤_T B, then A is recursive. If χ is computable, then C = CX. (vii) If A is r.e. then A ≤_T K. If A ≤_m B then A ≤_T B; A set A is r.e. iff A ≤_m K.

Turing Degrees

The equivalence class $d_T(A) = \{B \mid A \equiv_T A\}$ is called Turing degree of A, or T-degree of A.

- A T-degree containing a recursive set is called a recursive T-degree.
- A T-degree containing an r.e. set is called an r.e. T-degree.

Turing Reducibility and Turing Degrees

The set of degrees is ranged over by **a**, **b**, **c**,

 $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$.

 $\mathbf{a} < \mathbf{b} \text{ iff } \mathbf{a} \leq \mathbf{b} \text{ and } \mathbf{a} \neq \mathbf{b}.$

The relation \leq is a partial order.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 56/64 Reduction and Degree Relative Computability Turing Reducibility Theorem 1000000000000000000000000000000000000	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 57/64 Reduction and Degree Reduction and Degree Reduction and Degree 1 Jump Operation Jump Interval Interval Interval
 (i) There is precisely one recursive degree 0, which consists of all the recursive sets and is the unique minimal degree. If A is recursive, then A ≤_T B for all B; If B is recursive and A ≤_T B, then A is recursive. (ii) Let 0' be the degree of K. Then 0 < 0' and 0' is a maximum among all r.e. degrees. From (i), 0 ≤ 0'; 0 ≠ 0' since K is not recursive. Since A is r.e. ⇒ A ≤_T K, we have if a is any r.e. degree, a ≤ 0'. (iii) d_m(A) ⊆ d_T(A); and if d_m(A) ≤_m d_m(B) then d_T(A) ≤ d_T(B). If A ≤_m B then A ≤_T B. 	Theorem . The following statements are valid. (i) $K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$ is <i>A</i> -r.e. Since K^{χ} is χ -r.e. (ii) If <i>B</i> is <i>A</i> -r.e., then $B \leq_T K^A$. By relativised s-m-n theorem, if <i>B</i> is <i>A</i> -r.e., then $B \leq_m K^A$. (iii) If <i>A</i> is recursive then $K^A \equiv_T K$. " \Leftarrow " $K \leq_T K^A$ since <i>K</i> is <i>A</i> -r.e. for any <i>A</i> ; " \Rightarrow " If <i>A</i> is recursive then <i>A</i> -computable partial characteristic function of K^A is actually computable (if χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$). Hence K^A is r.e., and $K^A \leq_T K$. (iv) $A <_T K^A$.
$A \leq_T K$, we have if a is any r.e. degree, $\mathbf{a} \leq 0'$. (iii) $d_m(A) \subseteq d_T(A)$; and if $d_m(A) \leq_m d_m(B)$ then $d_T(A) \leq d_T(B)$.	function of K^A is actually computable (if χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$). Hence K^A is r.e., and $K^A \leq_T K$.

Relativization

(v) If $A \leq_T B$ then $K^A \leq_T K^B$. If $A \leq_T B$, then since K^A is A-r.e. it is also B-r.e., so $K^A \leq_T K^B$. (vi) If $A \equiv_T B$ then $K^A \equiv_T K^B$. Follows immediately from (v).

Jump Operation

 K^A is a T-complete *A*-r.e. set. Also called the completion of *A*, or the jump of *A*, and denoted as A'.

Definition. The jump of **a**, denoted **a**', is the degree of K^A for any $A \in \mathbf{a}$.

Notation (1). By Relativization jump is a valid definition because the degree of K^A is the same for every $A \in \mathbf{a}$.

Notation (2). The new definition of 0' as the jump of 0 accords with our earlier definition of 0' as the degree of *K*.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 60/64	CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 61/64
Reduction and Degree Relative Computability Turing Reducibility Basic Properties	Reduction and Degree Relative Computability Turing Reducibility Important Results
Theorem . For any degree a and b , the following statements are valid. (i) $\mathbf{a} < \mathbf{a}'$. (ii) If $\mathbf{a} < \mathbf{b}$ then $\mathbf{a}' < \mathbf{b}'$ (iii) If $B \in \mathbf{b}$, $A \in \mathbf{a}$ and B is A -r.e. then $\mathbf{b} \le \mathbf{a}'$.	Theorem . Any degrees a , b have a unique least upper bound. Theorem . Any non-recursive r.e. degree contains a simple set. Theorem . There are r.e. sets <i>A</i> , <i>B</i> s.t. $A \not\leq_T B$ and $B \not\leq_T A$. Hence, if a , b are $d_T(A)$, $d_T(B)$ respectively, $\mathbf{a} \not\leq \mathbf{b}$ and $\mathbf{b} \not\leq \mathbf{a}$, and thus $0 < \mathbf{a} < 0'$ and $0 < \mathbf{b} < 0'$.
	Degrees a , b such that $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{a}$ are called incomparable degrees, denoted as $\mathbf{a} \mid \mathbf{b}$.
	Theorem . For any r.e. degree $\mathbf{a} > 0$, there is an r.e. degree \mathbf{b} such that $\mathbf{b} \mid \mathbf{a}$.

Important Results (2)

Sack's Density Theorem. For any r.e. degrees a < b there is an r.e. degree c with a < c < b.

Sack's Splitting Theorem. For any r.e. degrees a > 0 there are r.e. degrees b, c such that b < a c < a and $a = b \cup c$ (hence $b \mid c$).

Lachlan, Yates Theorem.

(a). \exists r.e. degrees a, b > 0 such that 0 is the greatest lower bound of a and b.

(b). \exists r.e. degrees **a**, **b** having no greatest lower bound (either among all degrees or among r.e. degrees).

Shoenfield Theorem. There is a non-r.e. degree a < 0'.

Spector Theorem. There is a minimal degree. (A minimal degree is a degree m > 0 such that there is no degree a with 0 < a < m).

Theorem. For any r.e. m-degree $\mathbf{a} >_m \mathbf{0}_m$, \exists an r.e. m-degree \mathbf{b} s.t.

Xiaofeng Gao

CSC363-Computability Theory@SJTU

Reducibility and Degree

64/64