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ABSTRACT
With the growing deployment of wireless communication
technologies, radio spectrum is becoming a scarce resource.
Auctions are believed to be among the most effective tools
to solve or relieve the problem of radio spectrum shortage.
However, designing a practical spectrum auction mechanism
has to consider five major challenges: strategic behaviors
of unknown users, channel heterogeneity, preference diver-
sity, channel spatial reusability, and social welfare maxi-
mization. Unfortunately, none of existing work fully con-
sidered these five challenges. In this paper, we model the
problem of heterogeneous spectrum allocation as a com-
binatorial auction, and propose AEGIS, which is the first
framework of unknown combinatorial Auction mEchanisms
for heteroGeneous spectrum redIStribution. AEGIS con-
tains two mechanisms, namely AEGIS-SG and AEGIS-MP.
AEGIS-SG is a direct revelation combinatorial spectrum
auction mechanism for unknown single-minded users, achiev-
ing strategy-proofness and approximately efficient social wel-
fare. We further design an iterative ascending combinatorial
auction, namely AEGIS-MP, to adapt to the scenario with
unknown multi-minded users. AEGIS-MP is implemented in
a set of undominated strategies and has a good approxima-
tion ratio. We evaluate AEGIS on two practical datasets:
Google Spectrum Database and GoogleWiFi. Evaluation
results show that AEGIS achieve much better performance
than the state-of-the-art mechanisms.
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1. INTRODUCTION
The fast development of wireless networks and mobile

communications is exhausting the limited radio spectrum
resource. However, currently, almost all spectrum is stati-
cally allocated to large service providers on a long term basis
for large geographical regions, which is reflected in the radio
regulations published by the International Telecommunica-
tion Union (ITU) [11]. Such static spectrum management
leads to low utilization in spatial and temporal dimensions.
On one hand, many spectrum owners (i.e., primary users)
are willing to lease out their idle spectrum and obtain proper
profit. On the other hand, new wireless applications (i.e.,
secondary users), starving for spectrum, would like to pay for
using the spectrum. Therefore, an open and market-based
framework is highly needed to redistribute the idle spectrum,
and thus improve the utilization of spectrum. Spectrum
Bridge [25] is an emerging platform that provides services
for buying, selling, and leasing idle spectrum.
Due to the fairness and allocation efficiency, auctions are

attractive market-based mechanisms to distribute resources.
Examples include FCC spectrum license auctions in the Unite
States [6], and auctions for UMTS [16] and LTE [18] in Eu-
rope. While these auctions target only at large wireless ser-
vice providers, our focus is secondary spectrum markets of
small wireless applications, such as community wireless net-
works and home wireless networks.
Designing a feasible and practical spectrum auction has

its own challenges. The first major challenge comes from
the strategic behaviors of rational and selfish wireless users.
In practical spectrum auctions, selfish users can not only
misreport their valuations, but also their channel demands,
to increase their utilities. We call them unknown users
when both the valuations and channel demands are pri-
vate information. The model of unknown users does not
fall into the family of conventional mechanism design with
one-parameter domains [1], and has not been considered in
any of the existing work for spectrum auctions.
Another design challenge is to consider both the channel

heterogeneity and preference diversity. The channel hetero-
geneity comes from both spatial heterogeneity and frequency
heterogeneity. On one hand, the availability and quality of
spectrum vary at different locations. On the other hand,
spectrum resided in different frequency bands may have dif-
ferent propagation and penetration characteristics. Due to
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Figure 1: Heterogeneous TV White Space spectrum
redistribution based on combinatorial auctions.

the heterogeneity of channels, users may have diverse prefer-
ences on different combinations of heterogeneous channels.
For instance, a secondary user may be likely to have a valua-
tion for some paired channels to provide LTE-based services,
and have another different valuation for unpaired channels
to support WiMax services. Therefore, it is necessary to al-
low users to express different valuations on multiple channel
bundles. Considering the channel heterogeneity and prefer-
ence diversity, it is natural to model the market of hetero-
geneous spectrum redistribution as a combinatorial auction.
However, spectrum is different from traditional goods due to
its spatial reusability, by which well-separated users can be
allocated on the same spectrum band simultaneously. Thus,
traditional combinatorial auction mechanisms cannot be di-
rectly applied to spectrum auctions. Figure 1 shows a com-
binatorial auction mechanism for TV white space spectrum
redistribution. The TV white spaces has both spatially and
frequency heterogeneity. White space devices at different
locations can access to different available white spaces, and
have distinct permissive maximum power, adjacent channel
interference and noise floor. The frequency of TV broadband
ranges from 54MHz to 806Mhz, leading to various frequency
characteristics of different white spaces.
The last but not least design challenge is the basic and

common objective of auctions: maximizing social welfare,
which is defined as the sum of winners’ valuations on allo-
cated goods (Please refer to Section 3.2 for the definition).
However, finding the optimal social welfare in combinatorial
spectrum auctions is normally computationally intractable.
In this paper, we conduct an in-depth study on the prob-

lem of dynamic spectrum redistribution, jointly considering
the above challenges. We propose a family of unknown com-
binatorial Auction mEchanisms for heteroGeneous spectrum
redIStribution (AEGIS). AEGIS contains two mechanisms,
namely AEGIS-SG and AEGIS-MP. Specifically, AEGIS-SG
is a direct revelation combinatorial auction for unknown sin-
gle minded users, achieving both strategy-proofness (Please
refer to Section 3.3 for the definition) and a good approx-
imation ratio. AEGIS-MP is a novel iterative ascending
combinatorial auction for unknown multiple minded users.
AEGIS-MP achieves approximately efficient social welfare,
and is implemented in undominated strategies, which is an
important solution concept from game theory (Please refer
to Section 3.3 for the definition). To the best of our knowl-
edge, AEGIS is the first combinatorial auction framework
considering spectrum redistribution among unknown users.
We summarize our contributions in this paper as follows.
• First, we propose a general combinatorial auction model

for the problem of heterogeneous spectrum redistribution,
and use the concept of virtual channel to capture the con-
flict of channel usage among wireless users. This general

model is powerful enough to express channel heterogeneity
and spatial reusability, as well as preference diversity.
• Second, we begin with considering a simple but classi-

cal setting with unknown single minded users, and propose
AEGIS-SG, which is a strategy-proof and approximately ef-
ficient combinatorial auction mechanism for heterogeneous
channel redistribution.
• Third, we further extend this work by considering a more

general case, in which users are unknown multiple minded.
We propose a novel iterative ascending combinatorial auc-
tion mechanism, namely AEGIS-MP, which is an algorith-
mic implementation in undominated strategies, and achieves
approximately efficient social welfare.
• Last but not least, we evaluate the performance of AEGIS

based on two practical datasets, Google Spectrum Database
and GoogleWiFi, and compare AEGIS with the state-of-the-
art mechanisms. Our evaluation results show that AEGIS
achieves superior performance in terms of social welfare, rev-
enue, user satisfaction ratio, and channel utilization.
The rest of this paper is organized as follows. In Sec-

tion 2, we review related work. In Section 3, we present
the model of combinatorial auction for heterogeneous spec-
trum redistribution. In Section 4, we propose AEGIS-SG
for the case with unknown single minded users. We further
consider the case with unknown multiple minded users, and
propose AEGIS-MP in Section 5. The evaluation results are
presented in Section 6. We conclude the paper in Section 7.

2. RELATED WORK
In recent years, designing auction mechanisms for spec-

trum redistribution attracts increasing interests [5, 7, 29, 31,
33]. Unfortunately, none of these mechanisms fully consider
the above design challenges. Some of the spectrum auction
mechanisms (e.g., VERITAS [31] and TRUST [33]) consider
channel spatial reusability, but fail in heterogeneous chan-
nel scenarios. Recent work CRWDP [5], TAHES [7] and
SMASHER [29] consider channel heterogeneity, but CR-
WDP ignores channel spatial reusability, while TAHES and
SMASHER have simple valuation formats. Furthermore,
these mechanisms only prevent users from misreporting their
valuations to manipulate the auction, and always assume
that the channel demands are publicly known to the auction-
eer. However, in practice, users can further improve their
utilities by cheating on their channel demands. In this work,
we design heterogeneous spectrum auction mechanisms, con-
sidering both channel spatial reusability and diverse valua-
tion formats. To some extent, our mechanisms are resistant
to both valuations and channel demands cheating behaviors.
There are some other related work on spectrum auctions

mechanism design, e.g., online spectrum auction [28], rev-
enue generation [15] and spectrum auction with multiple
auctioneers [8] Besides auction theory, some other powerful
tools, e.g., contract theory [24], queueing theory [13], and
randomized algorithm [10], have been applied to different
scopes in spectrum markets design.
Another category of related work is combinatorial auc-

tion mechanism design. Dobzinski [4] and Papadimitriou
et al. [23] proved that optimal social welfare and strategy-
proofness cannot be achieved simultaneously in general com-
binatorial auctions. Considering the intractability of combi-
natorial auctions, a number of strategy-proof auction mech-
anisms with well bounded approximation ratios are pro-
posed [1, 3, 20]. There are still no positive results (compu-
tationally efficient, deterministic and strategy-proof mech-
anisms with good social welfare approximation) to combi-
natorial auctions with unknown multi-minded buyers. Our
design is based on the iterative wrapper technique for un-
known combinatorial auction mechanism [2]. However, none
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of the above combinatorial auctions considered the spectrum
spatial reusability.

3. PRELIMINARIES AND PROBLEM FOR-
MULATION

In this section, we first describe network and auction model
for the problem of heterogeneous channel redistribution, and
then review related solution concepts used in this paper from
game theory. At last, we formulate the channel allocation
problem as a classic weighted set packing problem.

3.1 Network Model
We consider a static secondary spectrum market with a

primary spectrum holder, called“seller”, and some secondary
users (e.g., WiFi APs), called “buyers”. The primary spec-
trum holder wants to sell her temporary unused spectrum,
and the secondary users would like to lease spectrum to pro-
vide wireless services for their customers at certain Qual-
ity of Service (QoS). We consider that the trading channels
are heterogeneous, and thus buyers have diverse preferences
over the different combinations of channels according to their
QoS, hardware abilities and the interference conditions of ac-
cessible channels. Different from traditional goods, wireless
channels can be spatially reused, meaning that conflict-free
buyers can be allocated the same channel simultaneously.
We denote the set of m orthogonal and heterogeneous

channels for leasing by C � {c1, c2, . . . , cm}, and the set

of buyers by N � {1, 2, . . . , n}.
Conflict Graph: In spectrum auctions, conflict graphs are

usually used to represent the interference among buyers, and
can be built by the auctioneer through some measurement
methods, e.g., measurement calibrated method [32]. Due
to the heterogeneity of channels, each channel may have a
distinct conflict graph. Let Gk � (Nk, Ek) denote the con-
flict graph on channel ck, where Nk ⊆ N is the set of buy-
ers who can access channel ck, and each edge (i, j) ∈ Ek

represents the interference between buyers i and j on chan-
nel ck. We also denote the maximum degree on graph Gk

by Δk, and the maximum among all Δk’s by Δmax, i.e.,
Δmax � maxck∈C{Δk}.

3.2 Auction Model
We model the process of heterogeneous channels redistri-

bution as combinatorial auctions. We discuss two popular
kinds of combinatorial auctions: direct revelation combina-
torial auction for the case with unknown single-minded buy-
ers, and iterative ascending combinatorial auction for the
case with unknown multi-minded buyers. Specifically, in the
direct revelation combinatorial auction, buyers simultane-
ously declare their bids and channel demands to a trustwor-
thy auctioneer, and then the auctioneer makes the decision
on channel allocation and the charge to each winner. In the
iterative ascending combinatorial auction, buyers compete
by gradually raising their bids, and the auctioneer main-
tains a provisional allocation in each iteration. The auction
stops when all the remaining active buyers are declared as
winners, and winners pay their lastly reported bids. We list
some useful notations in our model as follows.
Interested Channel Bundle: Each buyer i ∈ N has various

private preferences on li channel bundles Ŝi � {Ŝ1
i , Ŝ

2
i , . . . ,

Ŝli
i }, in which Ŝj

i ⊆ C and li can be arbitrarily large, even
exponential. We call a buyer i, who is interested in li channel
bundles as li-minded buyer. We discuss single-minded case
(li = 1 for all i ∈ N) in Section 4 and multi-minded case (li >
1 for some i ∈ N) in Section 5. We denote the interested

bundles of all buyers by S � {Ŝ1, Ŝ2, · · · , Ŝn}.

Valuation: Each buyer i ∈ N has a private valuation vji
over each of her interested channel bundle Ŝj

i ∈ Ŝi. For the

other channel bundles not in Ŝi, we adopt the XOR oper-
ation in combinatorial auctions [21], and formally describe
the valuation function of buyer i as

Vi(S) �
{
max

Ŝ
j
i ∈Ŝi,Ŝ

j
i ⊆S

{
vji
}
, ∃ Ŝj

i ∈ Ŝi, Ŝ
j
i ⊆ S,

0, otherwise.
(1)

We assume that Vi(·) is normalized (i.e., Vi(∅) = 0) and
monotone (i.e., Vi(S) ≤ Vi(T ) for each S ⊆ T ⊆ C). Since
the valuation function is derived from the expected qual-
ity of wireless service applications, we can assume that the
range of the valuation function Vi(·) of buyer i is [vi, vi]
and vi ≥ ε, where ε is the minimum monetary unit in auc-
tion systems. We denote the maximum value of all vi by
vmax � maxi∈N vi. We call the valuation function of buyer
i is δi-close when vi

vi
≤ δi. This parameter characterizes

the diversity of valuation function from one buyer. Let
δmax � maxi∈N δi. We denote the valuation functions of

all buyers by �V � (V1(·), V2(·), · · · , Vn(·)).
Bid and Declared Channel Bundle: In the direct revela-

tion combinatorial auction for unknown single-minded case,
each buyer i ∈ N declares a bid bi and one channel bundle Si

to the auctioneer, meaning that she is willing to pay at most
bi, if she is allocated a channel bundle containing Si. The

bid vector of all buyers is represented as �B � (b1, b2, · · · , bn),
and the declared channel bundles of all buyers are denoted

by �S � (S1,S2, · · · ,Sn). In the iterative ascending com-
binatorial auction for unknown multi-minded case, active
buyer i submits a temporary bid bji and a channel bundle Sj

i
in the jth iteration. The bids of non-active buyers are set
to zeros, and their current bundles are the declared bundles
when they drop out of the auction. We denote all bids by
�Bj � (bj1, b

j
2, · · · , bjn) and the declared bundles of buyers by

�Sj � (Sj
1,S

j
2, · · · ,Sj

n) in the jth iteration.
Clearing Price and Utility : The auctioneer charges each

winner i a clearing price pi, and let the losers free of any

charge. We use vector �P � (p1, p2, · · · , pn) to represent the
clearing prices of all buyers. Each buyer i ∈ N has a quasi-
linear utility defined as

ui � Vi(S
∗
i )− pi, (2)

where S∗
i is the channel bundle allocated to buyer i.

In our model, we consider buyers are unknown, i.e., both
the valuation functions and interested channel bundles are
private information, and unknown to the auctioneer. In such
environment, the selfish and rational buyers have more flex-
ibilities to manipulate the results of the auction, and are
eager to maximize their own utilities. In contrast to buyers,
the overall objective of the auction mechanism is to maxi-
mize social welfare, which is defined as follows.

Definition 1 (Social Welfare). The social welfare in a spec-
trum auction is the sum of winning buyers’ valuations on
their allocated bundles of channels, i.e.,

SW �
∑
i∈W∗

Vi(S
∗
i ), (3)

where W∗ is the set of winners, and S∗
i is the corresponding

allocated channel bundle for winner i.

In this paper, we assume that buyers do not collude with
each other, and leave relaxation of this assumption to our
future work.
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3.3 Economic Properties
We briefly review the solution concepts used in this paper

from game theory.

Definition 2 (Dominant Strategy [22]). A strategy sti (weak-
ly) dominates another strategy st′i of player i, if for any other
players’ strategy profile st−i: ui(sti, st−i) ≥ ui(st

′
i, st−i),

and this inequality is strict for at least one instance of st−i.
A strategy sti is a dominant strategy for player i if it

(weakly) dominates any other strategies of player i.

A strategy sti is an undominated strategy for player i if it
is not dominated by any other strategies of player i.
In direct revelation mechanisms, incentive-compatibility

means that truthfully revealing private information (both
the valuations and channel demands in this paper) is a dom-
inant strategy for each player. An accompanying concept is
individual-rationality, which means that players truthfully
participating in the game gain non-negative utilities. The
formal definition of strategy-proof mechanism is as follows.

Definition 3 (Strategy-Proof Mechanism [19]). A direct
revelation mechanism is strategy-proof when it satisfies both
incentive-compatibility and individual-rationality.

Strategy-proofness is a strong solution concept in mecha-
nism design. However, the requirement of having dominant
strategies limits the existence of feasible allocation algo-
rithms in combinatorial auctions for unknown multi-minded
buyers [3, 17]. Therefore, we turn our attention to another
well-known game theoretic concept: implementation in un-
dominated strategies.

Definition 4 (Implementation in Undominated Strategies
[2,12]). A mechanism M is an implementation of c-approxi-
mation in undominated strategies if there exists a non-empty
set of undominated strategiesDwith the following properties.
• M achieves a c-approximation in polynomial time for

any combination of undominated strategies from D. 1

• M is individually rational for players taking undomi-
nated strategies from D.
• M has fast undominance recognition property, meaning

that a player can efficiently determine if a strategy belongs
to D, and if not, compute an undominated strategy in D to
dominate it.

The underlying goal of spectrum auctions is to achieve ap-
proximately optimal social welfare in the present of strate-
gic behaviors of buyers. In unknown multi-minded case, we
achieve this goal by relaxing the strict strategy-proofness
constraint, and allowing the mechanism to leave several strate-
gies in D for the buyers to choose from. We compensate
this uncertainly on the game-theoretic side by strengthen-
ing the algorithmic analysis, showing that the mechanism
can achieve a good approximation for any combination of
undominated strategies from D.

3.4 Problem Formulation
We borrow the novel concept of virtual channel [29] to

represent the conflict of channel usage among buyers. By
using virtual channels, we transform the channel allocation
problem to a classical weighted set packing problem, and for-
mulate it as a binary program. Specifically, a virtual channel
hk
i,j indicates that buyers i and j cause interference between

each other on channel ck, when channel ck is allocated to i

1In this paper, a mechanism M achieves c-approximation
means that the approximation ratio of M is 1

c
. The ap-

proximation ratio is defined as the ratio between the social
welfare achieved by M and the optimal social welfare.

and j simultaneously, i.e., virtual channel hk
i,j is correspond-

ing to the edge (i, j) ∈ Ek on conflict graph Gk. We now show
the process of constructing virtual channels. We first create
virtual channel hk

i,j for each edge (i, j) ∈ Ek on conflict graph

Gk, and then append hk
i,j to the channel bundles containing

channel ck from the buyers i and j. We finally remove the
original channels from all channel bundles. Hence, the up-
dated channel bundles only contain virtual channels. From

now on, the set S and vector �S ( �Sj) represent the updated
interested channel bundles and updated declared channel
bundles, respectively. We note that the valuations on up-
dated channel bundles retain the same. Let Hi be the set
of virtual channels for the buyer i. All virtual channels are
denoted by H � {H1, H2, · · · , Hn}. According to the rule of
virtual channel construction, the maximum size of updated
interested channel bundle is bounded by κ = m×Δmax.
When virtual channel hk

i,j is added into the channel bun-
dles containing channel ck from the buyers i and j, at most
one of the channel bundles from the buyers i and j can be
allocated, ensuring the exclusive allocation of channel ck for
the buyers i and j. If the buyer i obtains all virtual chan-
nels hk

i,j , (i, j) ∈ Ek on conflict graph Gk, then she is granted
channel ck. We note that the buyer i may not conflict with
any other buyers on some channels. For these channels with
no interference, we directly allocate them to the buyer i.
Consequently, the exclusive allocation of virtual channels
implies the feasible channel allocation under conflict graph
constraint.
We now transform the channel allocation problem to the

weighted κ-set packing problem. The weighted κ-set pack-
ing problem can be described as: given a family of weighted
sets, each containing at most κ elements drawn from a finite
universe, find a maximum weight sub-collection of disjoint
sets. In the channel allocation problem, the set of virtual
channels H corresponds to the universe, collection of up-

dated declared channel bundles �S ( �Sj) corresponds to the
family of weighted sets, and κ = m × Δmax. In the direct
revelation combinatorial auction for the single-minded case,
the problem of channel allocation can be formulated as an
integer programming.

Problem: Heterogeneous Channel Allocation
Objective: Maximize

∑
i∈N

(x(i,Si)× bi)
Subject to:

∑
i∈N

∑
Si�hk

x (i,Si) ≤ 1, ∀hk ∈ H, (4)

x (i,Si) ∈ {0, 1}, ∀i ∈ N. (5)

Here, the variable x(i,Si) = 1 indicates that channel bun-
dle Si is allocated to buyer i; otherwise x(i,Si) = 0. The
first set of constraints represents the exclusive allocation of
virtual channels, and the second set of constraints states
the binary value of the auctioneer’s decision of allocation.
In the jth iteration of ascending combinatorial auction, we
can formulate the channel allocation problem as a similar
integer programming by replacing bi and Si with bji and

Sj
i . In the formulation, we use declared information ( �B, �S,
�Bj and �Sj) instead of truly private information (S and �V),
because the strategy-proof mechanism in Section 4 will guar-
antee that bidding truthfully is a dominant strategy for each
buyer, and the iterative auction mechanism implemented in
undominated strategies in Section 5 will ensure that the de-
clared information is close to the truthful information at the
end of the auction.
Solving the above integer programming is NP-hard, which

makes the general and celebrated VCG mechanism [22] in-
applicable. Considering the computational intractability of
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Algorithm 1: Channel Allocation in AEGIS-SG

Input: A set of buyers N, bid vector �B, declared channel

bundle set �S.
Output: A pair of sets of winners and allocated channel

bundles (W∗, S∗).
1 (W∗, S∗) ← (∅,∅);
2 Sort buyers in non-increasing order of their bids:

Γ1 : b1 ≥ b2 ≥ · · · ≥ bn;
3 for i = 1 to n do
4 if Si

⋂
S∗ = ∅ then

5 (W∗, S∗) ← (W∗ ⋃{i}, S∗ ⋃ {Si});
6 return (W∗, S∗);

the problem, we present alternative solutions with greedy al-
location algorithms to achieve approximately efficient social
welfare in following sections.

4. AEGIS-SG
In this section, we begin with a simple but classical set-

ting, in which buyers are unknown single-minded. As shown
in section 3.4, finding the optimal auction decision is com-
putationally intractable, even in this restricted case. There-
fore, we design AEGIS-SG, which is a direct revelation com-
binatorial auction mechanism for heterogeneous channel re-
distribution among unknown single-minded buyers, achiev-
ing both strategy-proofness and approximate efficiency.

4.1 Design Details
We first formally define the concept of unknown single-

minded buyers.

Definition 5 (Unknown Single-Minded Buyer). Buyer i is
an unknown single-minded buyer iff she is only interested

in one channel bundle Ŝi ⊆ H, and has a valuation vi for

any bundle containing Ŝi. Both the valuation vi and channel

demand Ŝi are private information.

AEGIS-SG consists of two major components: greedy chan-
nel allocation and clearing price calculation. The greedy
channel allocation procedure is depicted in Algorithm 1. The
algorithm contains two steps:
� Step 1: We sort buyers according to their bids in non-

increasing order, and denote the sorted list by Γ1. We
break the tie following any bid-independent rule, e.g., lexi-
cographic order of buyers’ IDs or channel numbers.
� Step 2: Following the order in Γ1, we greedily grant

channel bundles, which do not overlap with the previous
allocated virtual channels.
The clearing price calculation is based on critical bid.

Definition 6 (Critical Bid). The critical bid for buyer i ∈ N
is the minimum bid that the buyer i should declare to win
the auction.

The critical bid of winner i ∈ W∗ can be calculated by the
following steps. Consider the winner i in the sorted list Γ1,
we find the first buyer following i that has been denied but
would have been granted a channel bundle when the buyer
i is removed from Γ1, and denote this buyer by π(i). We
note that such a buyer necessarily conflicts with i. We can
formally represent π(i) as

π(i) � min{j|j > i,Sj ∩ Si 	= ∅ and

∀k < j, k 	= i, k is a winner ⇒ Sk ∩ Sj = ∅}.
The critical bid for the winner i is bπ(i). We show the method
of calculating the clearing price for buyer i ∈ N by distin-
guishing two cases.

Buyers 3 2 3 2 1

Valuations 10 9 8 6 4

Channel Bundles

Virtual Channel
Bundles

1{ }c1{ }c2{ }c 2{ }c
2
2,3{ }h 1

1,3
1
1,2{ , }h h2

2,3{ }h 2
1
1,{ }h

1 2{ , }c c
1 2
1,3 2,3{ , }h h

1{ }c
1
1,3{ }h

1

Winners 2 3

Prices 4 9

Utilities 2 1

Winners 2 3

Prices 4 6

Utilities 2 4

Buyer 3 Cheats

Cheated Bundle

3

2

1

32

Conflict Graph on c1

Conflict Graph on c2

Figure 2: An illustrative example on why extend-
ing AEGIS-SG is not strategy-proof in multi-minded
scenario. When buyer 3 changes her second inter-
ested bundle from {c2} to {c1}, she decreases her
clearing price from 9 to 6, and obtains higher utility.

� If buyer i is a loser or π(i) does not exist, she pays zero.
� If there exists a π(i), and i is granted Si, she pays bπ(i).

4.2 Analysis
In this section, we prove that AEGIS-SG guarantees strate-

gy-proofness in terms of valuations and channel demands,
and analyze the approximation ratio of AEGIS-SG. Due to
the space limitation, we leave the detailed proofs of these
results to our technical report [30].
We first show the monotonicity of channel allocation al-

gorithm, which is essential for a strategy-proof mechanism.

Lemma 1. AEGIS-SG’s channel allocation algorithm is mo-
notonic, i.e., buyer i, who wins by declaring (Si, bi), also
wins if she declares (S′

i, b
′
i), such that, S′

i ⊆ Si and b′i ≥ bi.

We present the strategy-proofness and approximation ra-
tio of AEGIS-SG.

Theorem 1. AEGIS-SG is a strategy-proof combinatorial
spectrum auction for unknown single-minded buyers.

Theorem 2. AEGIS-SG achieves O(κ)-approximation.

5. AEGIS-MP
In this section, we consider a more general scenario, in

which buyers are unknown multi-minded. We first give an
illustrative example to show that simply extending AEGIS-
SG can no longer guarantee strategy-proofness. Further-
more, designing a deterministic, approximately efficient and
strategy-proof combinatorial auction mechanism for unknown
multi-minded buyers is still an open problem in algorithmic
mechanism design, and some negative results are demon-
strated [4, 23]. We turn to another well known game the-
oretic concept, implementation in undominated strategies,
and design AEGIS-MP, which is an approximately efficient
ascending combinatorial auction for heterogeneous channel
redistribution among unknown multi-minded buyers.
We first give the definition of unknown multi-minded buyer.

Definition 7 (Unknown Multi-Minded Buyer). Buyer i is
an unknown multi-minded buyer iff she is interested in mul-

tiple channel bundles Ŝi = {Ŝ1
i , Ŝ

2
i , · · · , Ŝli

i }, li > 1, and has
valuation function Vi(·) defined as Equation (1). The chan-
nel demands and valuation function are private information.

5.1 A Counter Example
In Figure 2, there are three buyers {1, 2, 3}, and two trad-

ing channels {c1, c2}. Since buyers are multi-minded, they
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may have different valuations on different bundles, e.g., buyer
3 has valuation 10 and 8 over channel bundles {c1, c2} and
{c2}, respectively. Based on the conflict graphs and buyers’
interested channel bundles, we can construct virtual chan-
nel bundles for each buyer. In this example, we assume
that buyers truthfully reveal their valuations, and investi-
gate their manipulated strategies on channel demands.
In AEGIS-SG, we sort buyers’ declared channel bundles

according to the non-increasing order of their bids, and greed-
ily grant channel bundles, ensuring the exclusive allocation
of virtual channels. Buyers 2 and 3 are the winners, and
obtain channel bundles S1

2 = {c2} and S1
3 = {c1, c2}, respec-

tively. When bidding truthfully, according to the pricing
scheme of AEGIS-SG, buyer 3 should pay 9, which is the
bid of buyer 2 on bundle S2

2, and her utility is 10 − 9 = 1.
However, buyer 3 can cheat by changing her second inter-
ested bundle S2

3 to {c1}, and will still be allocated bundle S1
3

but be charged with 6, increasing her utility to 4. Hence, by
declaring untruthful channel demands, buyers can improve
their utilities, which leads to the untruthfulness of AEGIS-
SG in multi-minded scenario.

5.2 Design Rational
AEGIS-MP is an ascending Japanese auction [14] on top

of a greedy channel allocation algorithm. In traditional as-
cending Japanese auctions, the auctioneer collects tempo-
rary bids from active buyers, and maintains a provisional
allocation in each iteration. Provisional losers can choose to
increase their bids or permanently drop out of the auction.
This process is iterated until all remaining active buyers are
winners, and their prices are lastly reported bids.
The most challenging part of designing combinatorial auc-

tions for unknown multi-minded buyers is that both the
valuations and channel demands are private and unknown
to the auctioneer. We overcome this challenge by extend-
ing the ascending Japanese auctions to approach the true
valuations and channel demands of buyers. Informally, in
AEGIS-MP, we also maintain an “active bundle” for each
buyer. This active bundle will keep approaching to one of
the interested bundles of the buyer during the auction. An-
other challenge is the impact of manipulative behaviors of
selfish buyers, which should be prevented to form a relatively
stable market. Since the buyers are rational, they will not
take dominated strategies if some undominated strategies
can be quickly recognized. By exploiting this rationality of
buyers, we carefully design the structure of auctions, such
that, at each decision point, buyers can efficiently recognize
the undominated strategies and take one of them, leading
AEGIS-MP to be implemented in undominated strategies.

5.3 Design Details
We now describe AEGIS-MP in detail. We suppose that

GDY ALG is the approximately efficient greedy-based allo-
cation algorithm, and when given as input vectors of active
bundles and temporary bids, it outputs a provisional alloca-
tion that is approximate to the optimal solution. In AEGIS-

MP, which is shown in Algorithm 2, the vector of bids �B0 and

active bundles �S0 are initialized to �ε and (H1, H2, · · · , Hn),
respectively (Line 2). At the beginning of the jth itera-
tion, the auctioneer knows four parts of information: the
previous losers set Lj , the previous winners set Wj , the cur-

rent active bundle vector �Sj and the temporary bid vector

of buyers �Bj . These parameters are handed in as input to
GDY ALG, who, in return, outputs a new set of provisional

winners Wj+1 and active bundles �Sj+1 (Line 4). The provi-
sional winners retain the same bids, while provisional losers
are required to either increase their current bids by multiply-
ing e or permanently drop out of the auction (this is denoted

Algorithm 2: AEGIS-MP: A General Japanese Wrap-
per Mechanism

Input: A set of buyers N, a set of virtual channels H.
Output: A pair of sets of winners and allocated bundles of

channels (W∗, S∗). A payment vector �P.

1 (W∗, S∗) ← (∅,∅); �P ← �0; j ← 0;

2 W0 ← ∅; L0 ← ∅; �S0 ← (H1, H2, · · · , Hn); �B0 ← �ε ;

3 while Wj
⋃

Lj �= N do

4 (Wj+1, �Sj+1) ← GDY ALG
(
N,Lj ,Wj , �Sj , �Bj

)
;

5 �Bj+1 ← �Bj ;

6 foreach i ∈ N
∖ (

Wj+1
⋃

Lj
)
do

7 i chooses to increase bid: bj+1
i ← e× bj+1

i or drop

out: bj+1
i ← 0;

8 Lj+1 ←
{
i ∈ N

∣∣∣bj+1
i = 0

}
;

9 j ← j + 1;

10 J ← j;

11 (W∗, S∗) ← (WJ , �SJ );

12 �P ← �BJ ;

13 return (W∗, S∗), �P ;

by setting bj+1
i = 0) (Lines 5 to 8). Here, parameter e is Eu-

ler’s Number, and is the best choice over all constants for
the optimal approximation ratio. This process is iterated
until all remaining active buyers are declared as winners by
GDY ALG. Let the total number of iterations be J , and the
set of winners is WJ . Each winner i ∈ WJ gets her finally

active bundle SJ
i ∈ �SJ , and pays her lastly reported bid

bJi ∈ �BJ . The losers will not be allocated bundles, and are
free of any charge (Line 11 to 12).
We now depict the design of channel allocation algorithm

GDY ALG in details. Algorithm 3 shows the pseudo-code
of GDY ALG procedure. Let Nj denote the active buyers in

the jth iteration. Function Free(N , �Sj) denotes the virtual

channels not in
⋃

i∈N Sj
i . Here, N ⊆ N is a subset of buyers,

and �Sj is a vector of active bundles. GDY ALG constructs a
greedy allocation, Greedyj+1, by extending the channel allo-
cation algorithm in AEGIS-SG. Similarly, we sort the active
buyers according to their current bids in non-increasing or-
der, and break the tie following any bid-independent rule
(Line 2). Following order Γ2, two steps are performed for
the currently considered buyer i.

� Shrinking Active Bundle: If the buyer i was pre-
viously a provisional loser, then she is given an option to
“shrink” her active bundle. If the buyer i chooses to shrink
her bundle, the new bundle must satisfy that its valuation is
not less than her current bid bji , and it is a subset of the pre-

viously reported bundle Sj
i and disjoints from the bundles

of buyers that are already in Greedyj+1 (Line 4 to 5).
� Updating Candidate Winner Sets: Buyer i is

added to the allocation Greedyj+1 (or Wj) when her de-

clared bundle Sj+1
i does not intersect the bundles of existing

buyers in Greedyj+1 (or Wj). This operation ensures that
the two allocations Greedyj+1 and Wj are Pareto-efficient2

with respect to the new active bundles �Sj+1 (Line 6 to 7).
Once all the active buyers have been considered, GDY ALG

outputs the allocation with the maximum value out of the
two allocations Greedyj+1 and Wj as the new set of pro-

2Pareto-efficiency means that it is impossible to add losers
into the winner set without removing at least one winner.
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Algorithm 3: GDY ALG(): Channel Allocation Algo-
rithm

Input: A set of buyers N. A previous losers set Lj and

winners set Wj . A vector of active bundles �Sj and a
vector of current bid �Bj in iteration j.

Output: A provisional winners set Wj+1 and a new active

bundles �Sj+1 in iteration (j + 1).

1 Greedyj+1 ← ∅; �Sj+1 ← �Sj ; Nj = N
∖
Lj ; n′ =

∣∣Nj
∣∣;

2 Sort n′ active buyers in non-increasing order of bji :

Γ2 : bj1 ≥ bj2 ≥ · · · ≥ bj
n′ ;

3 foreach i = 1 to n′ do
4 if i ∈ N\ (Lj

⋃
Wj

)
then

5 i is allowed to update to any bundle that satisfies

Vi(S
j+1
i ) ≥ bji and

Sj+1
i ⊆

(
Sj
i

⋂
Free

(
Greedyj+1, �Sj+1

))
;

6 if Sj+1
i ⊆ Free

(
N , �Sj+1

)
,N ∈ {

Greedyj+1,Wj
}
then

7 N ← N ⋃ {i};

8 Wj+1 ← argmaxN∈{Greedyj+1,Wj}
∑

i∈N bji ;

9 return (Wj+1, �Sj+1) ;

visional winners Wj+1. It also outputs the updated active

bundles �Sj+1 (Line 8 to 9).
We summarize four important properties of GDY ALG.

These properties will be frequently used in next section.
� (Pareto Efficiency) For any buyer i /∈ Wj+1, Sj+1

i �
Free((Wj+1, �Sj+1)).

� (Improvement)
∑

i∈Wj+1 b
j
i ≥ ∑

i∈Wj b
j
i .

� (Shrinking Sets) For any buyer i ∈ N and any 0 ≤
j ≤ J − 1, Sj+1

i ⊆ Sj
i .

� (First Time Shrink) Let Fj � { i∣∣|Sj
i | = |Hi|, |Sj+1

i | <
|Hi| }. For any i1, i2 ∈ Fj , it holds that Sj+1

i1

⋂
Sj+1
i2

= ∅.

5.4 Analysis
In this section, we prove that AEGIS-MP is an imple-

mentation in undominated strategies by the following steps.
First, we characterize the set of undominated strategies D.
Second, we show that AEGIS-MP is individually rational for
buyers taking any strategies from D. Third, we demonstrate
that AEGIS-MP has fast undominance recognition property.
Finally, we analyze the approximation ratio of AEGIS-MP.
We start with defining a type of buyers in AEGIS-MP.

Definition 8 (Drop-out if silent buyers). Active buyer i is a
“drop-out if silent” buyer in the jth iteration if, when she is
allowed to shrink her active bundle at Line 5 in GDY ALG,
all the following hold:
� (Not a previous winner) i ∈ N\(Lj ⋃Wj).

� (Drop out if keep silent) Sj+1
i � Free(Greedyj+1, �Sj+1),

�Sj+1
i � Free(Wj , �Sj+1) and e× bji > Vi(S

j
i ).

A buyer can recognize that she is a “drop-out if silent”
buyer at Line 5 of GDY ALG, and if there exists a feasible
channel bundle, she will definitely shrink her active bundle.
This is because she is guaranteed to drop out of the auc-
tion if she keeps silent, and if she shrinks her active bundle,
she might win. In terminology of game theory, the strategy
that keeping silent is dominated by the strategy of bundle
shrinking.
We now characterize strategy set D, and claim that every

strategy in D is an undominated strategy.

Definition 9 (Set D). Let D be the set of all strategies that
satisfy the following conditions, for every iteration j:
� If buyer i does not drop out, her bid is always less than

her valuation on the active bundle, i.e., ε ≤ bji ≤ Vi(S
j
i ). As

Vi(S
j
i ) ≥ ε, her active bundle Sj

i must contain some inter-
ested bundles.
� If buyer i drops out, then bji > Vi(S

j+1
i )/e.

� If buyer i is a “drop-out if silent” buyer (Definition 8),

then she will definitely declare some feasible bundle Sj+1
i that

satisfies the conditions at Line 5 of GDY ALG, if such a
bundle exists.

Lemma 2. Strategy set D is a set of undominated strategies.
Proof. According to the definition of D, all strategies out-
side D are dominated strategies, which cannot dominate any
strategy in D. We just need to look at any two different
strategies of buyer i from the set D (i.e., sti, st

′
i ∈ D, sti 	=

st′i), and show that neither of them dominates the other.
We consider the first point that they differ (i.e., the buyer
i has different active bundles). At this point, we can con-
struct the strategies of the other buyers that will cause one
strategy to win and the other to lose. Therefore, neither
sti nor st

′
i dominates the other, and then both strategies sti

and st′i are undominated strategies.

Lemma 3. AEGIS-MP is individually rational for buyers
taking undominated strategies from D.
Proof. According to the fact that winners pay their lastly re-
ported bids and the first condition of Definition 9, a winner
cannot obtain a negative utility when she plays any undom-
inated strategy in D. Obviously, losers’ utilities are zeros.
Therefore, our claim holds.

Lemma 4. AEGIS-MP has fast undominance recognition
property, i.e., buyers can efficiently determine if a strategy
belongs to D, and if not, compute an undominated strategy
in D to dominate it in polynomial time.
Proof. Clearly, any buyer i can check if her strategy satis-
fies the conditions of undominated strategies in Definition 9
in polynomial time, and if not, modify her strategy to an
undominated strategy that dominates the original one.
We now analyze the approximation ratio of AEGIS-MP.

We first present some notations. Let OPT(N , �S) denote the
value of the optimal outcome (in terms of valuation function
�V) for a set of buyers N ⊆ N when their channel bundles

are �S. We call (N , �S) a valid allocation, if Si1

⋂
Si2 = ∅

for any i1, i2 ∈ N and Sii , Si2 ∈ �S. Besides the four impor-
tant properties in the previous section, we present another
property, which can be derived from Definition 9.
� (Value Bound) For any i ∈ N, and any 0 ≤ j ≤ J ,

bji ≤ Vi(S
j
i ). For buyer i who drops out in the jth iteration,

bji > Vi(S
j+1
i )/e.

Before presenting the main theorem, we give some impor-
tant lemmas. We first show that the number of iterations in
AEGIS-MP is limited.

Lemma 5. AEGIS-MP stops in at most J = 2 ln(vmax/ε)+
1 steps.
Proof. We look at a loser i1 who drops out in the last itera-
tion (the (J−1)th iteration). According to the Pareto Effi-
ciency property, loser i1’s active bundle must intersect with
that of a winner i2 ∈ WJ , which implies that SJ

i1

⋂
SJ
i2 	= ∅.

Additionally, by the Shrinking Sets property, it holds that
Sj
i1

⋂
Sj
i2

	= ∅, for any 0 ≤ j ≤ J − 1. Therefore, we can
claim that buyer i1 and i2 never win together. Each of them
can be a loser, and multiply her bid at most ln(vmax/ε) con-
secutive times. We can get that J − 1 ≤ 2 ln(vmax/ε), and
thus the lemma holds.
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We have the following lemma for buyers in AEGIS-MP.

Lemma 6. For AEGIS-MP, it holds that OPT(LJ , �SJ) <

etJ ×OPT(WJ , �SJ), where t = (1 + κ).

Due to the limitation of space, we leave the detailed proof
to our technical report [30].
We now present the approximation ratio of AEGIS-MP.

Theorem 3. AEGIS-MP achieves (δmax+eδmaxtJ
2+etJ)-

approximation.
Proof. Let O be the set of winners in the optimal allocation,

and winners are allocated bundles from �SO = (SO
1 ,S

O
2 , · · · ,

SO
n ). We partition the winners into three categories, and

bound the value of them separately.
� We denote the winners that also stay in WJ by N1. In

this case, winners might win other interested channel bun-
dles in the optimal allocation, so we get

OPT(N1, �SO) ≤ δmax ×OPT(WJ , �SJ). (6)

� We turn to another set of winners N2, which is the sub-
set of losers in AEGIS-MP, i.e., N2 ⊆ LJ . Buyer i belongs
to N2 if and only if she is a winner in the optimal allocation
O, and her allocated bundle SO

i is not included in SJ
i , which

is the bundle that the buyer i declares in AEGIS-MP when
she drops out. We have the following claim for winners N2.

Claim 1: OPT(N2, �SO) < eδmaxtJ
2 ×OPT(WJ , �SJ).

Proof. Let Fj =
{
i ∈ N2

∣∣∣ |Sj
i | = |Hi|, |Sj+1

i | < |Hi|
}
be the

set of buyers from N2 that first shrink their bundles in the
jth iteration, and we have N2 =

⋃J−1
j=0 Fj . According to the

first and third properties of undominated strategy in Defi-
nition 9, we can conclude that Sj

i contains some interested
channel bundles for all i ∈ N and 0 ≤ j ≤ J − 1. Therefore,
for any i ∈ Fj , we have

Vi(S
O
i ) ≤ δmax × Vi(S

J
i ), ∀i ∈ Fj . (7)

According to the First Time Shrink property, all bun-

dles �Sj+1 of buyers in Fj are disjoint. Additionally, by the
Shrinking Sets property, we have SJ

i ⊆ Sj+1
i , implying

bundles �SJ of buyers in Fj are also disjoint. Therefore,

(Fj , �SJ) is a valid allocation. Since Fj ⊆ N2 ⊆ LJ , we get

OPT(Fj , �SJ) ≤ OPT(LJ , �SJ). (8)

Combining with Inequalities (7)(8), we conclude that

OPT(Fj , �SO) =
∑

i∈Fj

Vi(S
O
i ) ≤ δmax

∑

i∈Fj

Vi(S
J
i )

= δmaxOPT(Fj , �SJ ) ≤ δmaxOPT(LJ , �SJ ). (9)

Using Inequality (9) and Lemma 6, we get

OPT(Fj , �SO) < eδmaxtJ ×OPT(WJ , �SJ).

Finally, we conclude that

OPT(N2, �SO) ≤ ∑J−1
j=0 OPT(Fj , �SO) < eδmaxtJ

2OPT(WJ , �SJ) (10)

� We denote the winners in LJ
∖N2 by N3. According to

the definition of N2, the allocated bundles of winners in N3

are contained in bundles �SJ , together with Lemma 6, we get

OPT(N3, �SO) ≤ OPT(LJ∖N2, �SJ)

≤ OPT(LJ , �SJ) < (etJ)OPT(WJ , �SJ). (11)

We now combine these three types of winners together

(Inequalities (6)(10)(11)), and conclude thatOPT(O, �SO) ≤

OPT(N1, �SO) +OPT(N2, �SO) +OPT(N3, �SO) < (δmax +

eδmaxtJ
2 + etJ)OPT(WJ , �SJ).

From the above analysis, we now can get our main result
for AEGIS-MP according to Definition 4.

Theorem 4. AEGIS-MP is an implementation of an
O(δmaxtJ

2)-approximation in undominated strategies.

6. EVALUATION RESULTS
In this section, we show our evaluation results. We im-

plement AEGIS using network simulation, and compare its
performance with CRWDP [5] and NSR-MP. CRWDP is
an unknown single-minded combinatorial spectrum auction,
and NSR-MP is a variant of AEGIS-MP. Neither CRWDP
nor NSR-MP considers channel spatial reusability.

6.1 Methodology
We use two complementary datasets, namely Google Spec-

trum Database [9] and GoogleWiFi [32], to evaluate the
performance of our mechanisms. We take Google Spectrum
Database as our first dataset. We first extract WiFi nodes in
an area (Latitude range: [40◦25′18′′, 39◦38′29′′], Longitude
range: [−76◦34′40′′,−74◦52′20′′]) fromWiGLE.net [27], and
we then query Google Spectrum Database the available TV
white spaces and corresponding maximum permissible power
for each WiFi node, which is considered as a portable de-
vice in the database. Portable devices can work on unused
TV channel 21 through 51, except channel 37, 38, 39. To
generate conflict graphs, we apply a simple Free Space prop-
agation model [26] to predict the interference range between
nodes, and consequently create the conflict graphs.3 We
also evaluate our mechanisms in a practical conflict graph,
built from exhaustive signal measurements, in the second
data set. The second dataset, GoogleWiFi, records 78 APs
in a 7km2 residential area of the Google WiFi network in
Mountain View, California. It was collected by a research
group from UC Santa Barbara in April 2010 [32].
We build a set of auction configurations by sampling WiFi

nodes in the first data set, and the number of WiFi nodes
varies from 200 to 2000 with increment of 200. For the
second data set, we assume the number of leasing channels
can be one of three values: 6, 12 and 24. We consider the
case of single-minded buyers and the case of multi-minded
buyers, who can have up to 10 interested bundles (i.e., li ≤
10). For each buyer i, her li interested channel bundles are
randomly generated from her available channel set, and the
valuations on bundles are uniformly distributed over (0, 1].
The maximum closeness parameter of valuation is set as 5,
i.e., δmax = 5. The minimum monetary unit in the auction
systems is set as ε = 10−5. In AEGIS-MP, since buyers
may have multiple undominated strategies at their decision
points, we assume that buyers randomly select one of them.
All the results of performance are averaged over 200 runs.
Metrics: We evaluate the following five metrics:
� Social Welfare: The sum of winning buyers’ valuations

on their allocated bundles of channels.
� Revenue: The sum of payments received from buyers.
� Satisfaction Ratio: The fraction of winners over buyers.
� Channel Utilization: The number of radios worked on

each channel.
� Channel Eccentricity: The ratio of allocated channels

over actually used channels for one buyer. In AEGIS-MP, for
each winner, the final allocated bundle may contain multiple
interested bundles and uninterested channels, but the winner
only use one interested bundle. Therefore, we use channel
eccentricity to measure this channel over-allocation.
3Other propagation models, e.g., Egli and Longley-Rice [26],
could be used to generate more accurate conflict graphs.
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Figure 3: Performance of AEGIS, CRWDP and NSR-MP on Google Spectrum Dataset.
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Figure 4: Channel eccentricity and channel utilization of AEGIS.

6.2 Performance on Google Spectrum Dataset
By varying the number of buyers, we collect a set of per-

formance data, as illustrated in Figure 3. We can see that
AEGIS always outperforms the other two mechanisms, CR-
WDP and NSR-MP. This result demonstrates that exploit-
ing channel spatial reusability can significantly improve the
performance of spectrum auction systems. Figure 3 also
shows that when the number of buyers increases, the social
welfare and revenue increase, while the satisfaction ratio de-
creases. On one hand, AEGIS allocates channels more ef-
ficiently among more buyers, hence the social welfare and
revenue increase. On the other hand, larger number of buy-
ers leads to more intense competition on limited channels,
thus decreases the satisfaction ratio. We also observe from
Figure 3 that revenue is much lower than social welfare.
Similar to previous work [31], we can institute reserve prices
for channels to increase revenue, and make a trade-off be-
tween revenue and social welfare. How to determine an op-
timal reserve price is out of the scope of this paper. In-
tuitively, multi-minded auction mechanisms should perform
better than single-minded ones because of the more feasible
bundle choices for buyers. However, as shown in Figure 3,
AEGIS-MP is slightly worse than AEGIS-SG in terms of
social welfare and revenue. As we will discuss later, the
channel eccentricity of winners in AEGIS-MP is the main
reason for this degradation of system performance.
We now present the evaluation results of channel eccen-

tricity and channel utilization. The channel eccentricity for
AEGIS-SG is always equal to 1, because the allocated bun-
dle is exactly buyer’s interested bundle. Figure 4(a) shows
the channel eccentricity of AEGIS-MP. We randomly select
one instance from the 200 simulation instances when the
number of buyers is fixed at 2000, and calculate the chan-
nel eccentricity for each winner. The placement of a circle
in Figure 4(a) indicates one set of winners with the same
channel eccentricity and the same size of used channel bun-
dle. The size of a circle is logarithmic to the number of
winners. Though some of winners’ channel eccentricities are

equal to 1, there exist about 67% winners, whose channel ec-
centricities are larger than 1. On one hand, AEGIS-MP just
stimulates buyers to take undominated strategies, such that
buyers can still maintain multiple bundles or uninterested
channels in their active bundles during the auction. On the
other hand, buyers only use the most valuable channel sub-
set among their allocated bundles. Therefore, the size of
allocated bundle can be larger than that of actually used
bundle in some cases, leading to channel over-allocation.
The channel eccentricity affects the channel utilization of

AEGIS-MP. By fixing the number of buyers at 2000 and
running 200 simulation instances, we record the average
channel utilization for each channel, and plot the results
in Figure 4(b). We do not include CRWDP and NSR-MP in
this analysis, because they do not consider channel spatial
reusability. As shown in the figure, different TV channels
have different channel utilization. The reason is that TV
white spaces are spatially heterogeneous, e.g., channel 47
can be accessed to almost all buyers, while channel 33 are
only available to around 36% buyers. In AEGIS-MP, we dis-
tinguish between allocated channels and used channels. We
can observe from Figure 4(b) that the allocated number is
always larger than the used number for each channel. This is
because some winners have channel eccentricity higher than
1. We can also see from Figure 4(b) that the channel utiliza-
tion of AEGIS-MP is always lower than that of AEGIS-SG.
The reason is that the winners with high channel eccentric-
ity in AEGIS-MP disables some possible allocations of their
interfering neighbors. From the above analysis, we can get
that buyers’ manipulated strategies on channel demands in-
deed impact the performance of spectrum auction systems.

6.3 Performance on GoogleWiFi Dataset
Figure 5 shows the system performance of AEGIS, CR-

WDP, and NSR-MP on GoogleWiFi dataset when there are
6, 12, 24 channels. Since channels are accessible to all buy-
ers in this setting, we average the channel utilization on
all channels on this dataset. Generally, the evaluation re-
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Figure 5: Performance of AEGIS, CRWDP and NSR-MP on GoogleWiFi Dataset.

sults are similar with those on Google Spectrum Dataset.
Again, AEGIS achieves better performance than CRWDP
and NSR-MP. Figure 5 also shows that when the number of
channels increases, the social welfare and satisfaction ratio
increase, and channel utilization decreases. The reason is
that fixing the number of buyers, larger supply of channels
results in more trades in the auction, and thus increases so-
cial welfare and satisfaction ratio. The channel utilization
decreases because buyers can be allocated to more chan-
nels when the number of channels increases. For revenue,
AEGIS-SG decreases with the number of channels, while
AEGIS-MP, CRWDP and NSR-MP increase. The clear-
ing price calculation in AEGIS-SG is based on critical bid.
When larger number of channels are accessible in the auc-
tion, more buyers are allocated channels, reducing the crit-
ical bids for winners. Hence, the revenue of AEGIS-SG de-
creases. Though the clearing price of CRWDP is also cal-
culated based on critical bid, there still exist considerable
losers when the number of channels becomes large. There-
fore, the critical bids for winners still stay high, so that the
revenue continue to grow with the increase of channels. The
clearing prices of AEGIS-MP and NSR-MP are the bids of
winners at the end of the auctions. Larger supply of chan-
nels leads to more winners, and thus revenues in AEGIS-MP
and NSR-MP become higher.

7. CONCLUSION
Considering the five challenges for designing a practical

spectrum auction mechanism, we have proposed AEGIS,
which is the first framework of unknown combinatorial auc-
tion mechanisms for heterogeneous spectrum redistribution.
For the case with unknown single-minded buyers, we have
designed a direct revelation combinatorial auction mecha-
nism, call AEGIS-SG. AEGIS-SG achieves strategy-proofness
and approximately efficient social welfare. We have fur-
ther considered the case with unknown multi-minded buyers,
and designed an iterative ascending combinatorial auction,
namely AEGIS-MP. AEGIS-MP is implemented in undom-
inated strategies, and has a good approximation ratio. We
have implemented AEGIS and evaluated its performance on
two practical datasets. Compared with the existing work,
AEGIS achieves superior performance, in terms of social
welfare, revenue, satisfaction ratio, and channel utilization.
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