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ABSTRACT
Dynamic spectrum redistribution—–under which spectrum
owners lease out under-utilized spectrum to users for finan-
cial gain—–is an effective way to improve spectrum utiliza-
tion. Auction is a natural way to incentivize spectrum own-
ers to share their idle resources. In recent years, a number
of strategy-proof auction mechanisms have been proposed
to stimulate bidders to truthfully reveal their valuations.
However, it has been shown that truthfulness is not a nec-
essary condition for revenue maximization. Furthermore, in
most existing spectrum auction mechanisms, bidders may
infer the valuations—–which are private information—–of
the other bidders from the auction outcome. In this paper,
we propose a Differentially privatE spectrum auction mech-
anism with Approximate Revenue maximization (DEAR).
We theoretically prove that DEAR achieves approximate
truthfulness, privacy preservation, and approximate revenue
maximization. Our extensive evaluations show that DEAR
achieves good performance in terms of both revenue and
privacy preservation.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wireless
Communication

General Terms
Algorithm, Differential Privacy, Economics

Keywords
Spectrum Auction, Mechanism Design, Privacy

1. INTRODUCTION
Radio spectrum is a critical yet scarce resource in this

age of fast growing wireless technology. However, the tradi-
tional static, expensive, and inefficient spectrum allocation
has hampered the growth of the wireless networks and its
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applications. Under this type of allocation, the utilization of
radio spectrum is low in spatial and temporal dimensions [1].
Thus, a new trend is to make spectrum access dynamic [2].
With dynamic spectrum access (DSA), new wireless appli-
cations may take advantage of (instantaneous) spectrum us-
age opportunities left over by primary spectrum users. Open
markets, such as Spectrum Bridge [3], have already emerged
to improve spectrum utilization by providing services of sell-
ing, buying, and leasing idle spectrum chunks.

Auctions are the best-known market-based allocation mech-
anisms due to their perceived fairness and efficiency in re-
source allocation. One important objective of an auction
mechanism is to generate a maximum revenue (i.e., total
payments collected from the bidders) [8]. Revenue maxi-
mization is not only the sellers’ goal in the auctions, but also
the basic motivation for spectrum owners to sell or lease out
under-utilized spectrum.

In recent years, a number of strategy-proof spectrum auc-
tion mechanisms (e.g., [10, 11, 12]) with approximate rev-
enue maximization have been proposed, but under a strong
assumption that the auctioneer knows the probability dis-
tribution of bidders’ valuations. However, none of these
mechanisms consider privacy preservation. In existing stud-
ies, a strategy-proof spectrum auction mechanism motivates
each bidder to report her true valuation, which is commonly
termed as type in the literature. However, once the true
valuations of the bidders are reported as bids, one (other
than the auctioneer) may infer the private valuation of a
bidder based on the outcomes of the auction. In most of the
dynamic spectrum auctions, the permissions of using the
wireless channels are granted to the bidders for a certain
period of time, and the bidders would soon compete again
for the usage of the channels. This makes the inference of
the bidders’ types even easier. For example, n bidders par-
ticipate in an auction for a set of channels and winners are
granted the permissions to use the spectrum within a certain
period of time. After the period of time expires, the auction-
eer holds another round of the auction for the same set of
channels, and the same group of bidders except for one, who
leaves the auction, participate in the second round. In both
rounds, the participants bid truthfully in order to maximize
their utilities, given the strategy-proofness of the auction
mechanism. However, the difference between the two auc-
tion outcomes may probably expose the type of the bidder
who only participates in the first round of the auction to the
others. The true types of bidders are critical commercial se-
crets of the bidders, because they can reflect the potential
revenues of the wireless service providers gained through use



of the spectrum. Therefore, it is important to achieve bid-
privacy preservation in spectrum auctions.

Besides, truthfulness, which means revealing truthful in-
formation is the dominant strategy for every bidder, is a too
strong assumption, since it prevents the mechanism from
having very desirable properties [25, 34]. A number of stud-
ies (e.g., [20, 25]) emphasized that proper relaxations on
truthfulness can help achieve a good approximation to the
revenue and the social welfare in auction mechanisms.

To tackle the problem of privacy preservation, we consider
the concept of differential privacy [21], which is a paradigm
for private data analysis developed in recent years. Differen-
tial privacy aims to reveal information about the population
as a whole, while protecting the privacy of each individual.
A differentially private mechanism was first investigated by
McSherry and Talwar [22]. However, spectrum is different
from traditional goods, due to its spatial reusability. Two
spectrum users cannot share the same channel simultane-
ously if their services interfere with each other. Therefore,
existing differentially private mechanisms cannot be directly
applied to spectrum auctions, in which a slight change of a
bidder’s bid may change the outcome dramatically.

In this paper, we aim at designing a differentially pri-
vate spectrum auction mechanism with approximate revenue
without prior information on the distribution of the bidders’
valuations. We present a Differentially privatE spectrum
auction mechanism with Approxiamte Revenue (DEAR). In
DEAR, the auctioneer will first partition all bidders into
groups and subgroups, and then randomly select the pay-
ment and allocation which generates approximate revenue
with high probability while protecting the privacy.

Our contributions in this paper are summarized as follows.

• Existing differentially private auction mechanisms can-
not be directly applied to spectrum allocations, and
hence DEAR is the first to bridge differentially pri-
vate mechanism design and dynamic spectrum redis-
tribution. It protects bidders’ privacy without heavy-
weighted cryptographic tools.

• We proposed a polynomial-time spectrum auction mech-
anism with approximate truthfulness achieving 2ε dif-
ferential privacy and yielding an expected revenue of
at least OPT/7 − 3ln(e + εOPT |P|)/ε in a prior-free
setting, where OPT is the optimal revenue, P is the
set of possible bids and ε > 0 is a small constant.

• DEAR is further extended for the case of multi-channel
bids with budget constraints, still guaranteeing 2ε dif-
ferential privacy and providing an expected revenue of
at least OPT/7 − 3c · ln(e + εOPT |P|)/ε, where c is
the number of channels.

• We implement DEAR and extensively evaluated its
performance. Our evaluation results show that DEAR
generates more revenue than the other mechanisms,
while protecting bid-privacy.

The rest of this paper is organized as follows. Section 2
briefly reviews related work, while Section 3 covers techni-
cal preliminaries. Section 4 presents the detailed design of
DEAR for the single channel request case. Section 5 ex-
tends DEAR to support multi-request bidders with budget
constraints. Section 6 presents our evaluation results of the
proposed mechanism. Finally, we conclude the paper in Sec-
tion 7.

2. RELATED WORK
In recent years, dynamic spectrum allocation has been

suggested as a viable solution to efficiently utilize and share
the available spectrum [1, 4, 7]. In this architecture, the
spectrum is allocated dynamically in spatial and temporal
domains. Periodically, the spectrum owners allocate chan-
nels to the bidders under interference constraints with the
financial goal.

In traditional economic theory, revenue-maximizing auc-
tions are designed under the assumption that the auctioneer
knows the probability distribution of the bidders’ valuations;
by applying Vickrey-Clarke-Groves (VCG) mechanism using
virtual valuation of bidders [13], the resulting auctions can
be both strategy-proof and revenue-maximizing (e.g., [10,
11]).

Without prior information of the distribution of bidders’
valuations, Gandhi et al. [8] used a linear programming ap-
proach to model interference constraints. This work does
not consider strategic user behavior, and assumes truth-
ful bids for free. Strategic behavior is considered by Sen-
gupta and Chatterjee, who proposed a knapsack-based auc-
tion for dynamic spectrum allocation to optimize the rev-
enue [9]. However, they did not address the problem of inter-
ference in spectrum. Considering the spectrum interference
constraints, Gopinathan and Li [24] proposed a strategy-
proof and revenue maximization spectrum auction mecha-
nism, providing a guarantee on expected revenue. However,
none of these mechanisms provides any guarantee on privacy
preservation.

The design of privacy-preserving mechanisms has been
studied extensively. In [32, 33], the authors presented auc-
tion protocols that prune the auctioneers’ ability to falsify
the auction outcome and reveal confidential information by
introducing a new third party. In [15, 16, 17, 18], the au-
thors employed various cryptography techniques to achieve
security in various auction schemes. But these cryptography
tools will incur high computation and overheads. Huang
et al. [14] proposed a strategy-proof and privacy-preserving
mechanism called SPRING, to achieve k-anonymity in spec-
trum auctions. Later, Huang et al. [36] proposed PPS, which
is a privacy-preserving and strategy-proof mechanism for ap-
proximate social welfare maximization in spectrum auctions.
However, none of these mechanisms considered the problem
without prior knowledge of revenue maximization.

Recently, differential privacy was first introduced by Dwork
[21]. Then, McSherry and Talwar [22] elegantly integrated
differential privacy with mechanism designs, and pointed out
that differential privacy implies approximate truthfulness as
well as resilience to collusion. In particular, they studied
the problem of revenue maximization in digital auctions and
attribute auctions. They also suggested use of the exponen-
tial mechanism, which can achieve differential privacy, to
solve mechanism design problems with different objective
functions like revenue. Later studies gave further results
on mechanism design via differential privacy, e.g., in [38].
Huang and Kannan examined the properties of the exponen-
tial mechanism, which can be thought of as a noisy version
of VCG. They showed that, with appropriate payments, this
mechanism is truthful, individually rational, approximately
efficient, and differentially private.

3. PRELIMINARIES



In this section, we first present the auction model, and
then briefly review important solution concepts drawn from
differential privacy and mechanism design.

3.1 Auction Model
We consider a collusion-free spectrum auction with an

auctioneer (seller) and a group of bidders (buyers). The
auctioneer has a set C = {1, 2, . . . , c} of orthogonal chan-
nels. Unlike the allocation of traditional goods, wireless
channels can be spatially reused, meaning that multiple well-
separated bidders can work on the same channel simultane-
ously, if they do not interfere with each other. Also, a set
N = {1, 2, . . . , n} of bidders compete for the use of channels.
Each bidder i ∈ N requests a single channel (in Section 4) or
multiple channels within its budget (in Section 5). For the
case of multi-channel requests, we assume that the bidders
do not have preference over different channels.

Each bidder has valuation vi for a channel. The valuation,
which is known as type in the literature, is private to the
bidder for since can reflect the potential revenue the bidder
gains, the valuation of each bidder may need to be kept
private. Let ~v = (v1, v2, . . . , vn) denote the profile of the
bidders’ private valuations. Without loss of generality, we
can normalize the bidders’ valuations to the interval of (0, 1].

The bidders’ bids for the channels are based on their val-
uations in the auction, and each bidder has a bid bi per

channel. Let ~b = (b1, b2, . . . , bn) denote the profile of the
bidders’ bids, which are also in the range of (0, 1]. The bid-
ders may lie about their valuations, and thus for each bidder
i, bi may not be equal to vi. The auctioneer also initializes a
set of prices P = {ρ1, ρ2, . . . , ρh}, including all the different
possible valuation/bid values in (0, 1].

In the auction, the bidders are located in a geographical
region. For every bidder, there is a region called interference
area around her. We say bidders i and j interfere with each
other if their interference areas overlap. We assume that
a bidder’s interference area is a unit-radius disk [11] (i.e.,
the interference range is 2). The interference among bidders
can be model as a conflict graph G = {N,E}, in which the
vertices are the bidders, and a pair of bidders is connected
if and only if their interference areas overlap.

The auctioneer wishes to allocate channels, such that ev-
ery pair of the winning bidders do not interfere with each
other, and set prices to maximize the total revenue. So, the
outcome of an auction includes an allocation profile and a
charging profile, which is based on some criteria over the

bidding profile ~b. Let ~x = (x1, x2, . . . , xn) denote the al-
location profile, where xi is the number of channels bidder
i could get. Let pi denote the payment for bidder i, and
~p = (p1, p2, . . . , pn) denote the charging profile.

In the auction, each bidder i is considered selfish and ra-
tional [29, 30], and always tries to maximize her own utility
ui:

ui = vixi − pi.

The revenue of an auction mechanism is the sum of the
payments Σipi collected from the bidders. Clearly, if the bid-
ders bid untruthfully, the lower bids (than their actual val-
uations) may indirectly lower the revenue. However, truth-
fulness is shown to be too strong as a solution, which will
impact the allocation scheme and may lower the revenue.
So, we want to enforce approximate truthfulness. Specifi-
cally, we aim at maximizing the revenue without any prior

information, while enforcing approximate truthfulness and
protecting bidders’ privacy.

3.2 Related Solution Concept
We now review some of the important and closely related

solution concepts from mechanism design and differential
privacy.

(1) γ-truthful
We first introduce Dominant Strategy [30], a strong solu-

tion concept from mechanism design.

Definition 1. (Dominant Strategy [30]) Strategy si is a
player i’s dominant strategy in a game, if for any strategy
s′i 6= si and any other players’ strategy profile s−i,

ui(si, s−i) ≥ ui(s′i, s−i).

The concept of dominant strategy is based on truthfulness.
Truthfulness in an auction means that revealing truthful in-
formation is a dominant strategy for every bidder. However,
exact truthfulness sometimes turns out to be too strict as
a solution, so we consider approximate truthfulness, or γ-
truthfulness [23].

Definition 2. (γ-truthful [23]) Let si denote the strategy
when player i behaves truthfully. A mechanism is said to be
γ-truthful if for every player i, for any strategy s′i 6= si and
any other players’ strategy profile s−i,

E[ui(si, s−i)] ≥ E[ui(s
′
i, s−i)]− γ,

where γ > 0 is a small constant.

(2) Differential Privacy
Differential privacy has been studied extensively in the

community of theoretical computer science. It guarantees
that the probability distributions of possible outcomes are
nearly identical, when the (input) data profiles are nearly
identical. Formally,

Definition 3. (Differential Privacy[21]) A mechanismM
gives ε differential privacy if for any two data profiles D1 and
D2 differing in a single element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε)×Pr[M(D2) ∈ S],

where ε > 0 is a small constant.

When integrating differential privacy with an auction mech-

anism, two neighboring profiles are the bid profiles ~b =

(b1, b2, . . . , bn) and ~b′ which differs from ~b in one bid (added,
removed or changed).

A differentially private mechanismM can address the con-
cern of personal input leakage. In an auction, any change
in a bidder’s bid won’t bring significant changes to the out-
come, and thus, the others cannot infer information of this
particular bidder just from the outcomes.

(3) Exponential Mechanism
A powerful tool in the literature of differential privacy

is the exponential mechanism proposed by McSherry and
Talwar [22].

The exponential mechanism is a general technique for con-
structing differentially private algorithms over an arbitrary

range P of outcomes and any objective function F (~b, p) that

maps a pair consisting of a data profile ~b and a feasible out-
come p ∈ P to a real-valued score.



In our setting, ~b is the declared valuation (bid) profile,
p is every winning bidder’s payment per channel. In basic

DEAR, the objective function F (~b, p) is the revenue func-
tion; and in extended DEAR, the objective function is the
revenue function divided by the number of channels. In
a spectrum auction, once the graph of bidders’ location is
given, the allocation scheme ~x is only depends on parame-

ter ~b and p. Thus, we can denote the revenue function as

Q(~b, p), and Q(~b, p) = pΣixi(~b, p).

Given a range P , a data profile ~b, an objective func-
tion F , and a small constant ε, the exponential mechanism

Exp(P,~b, F, ε) chooses an outcome p from the range P with
probability

Pr[Exp(P,~b, F, ε) = p] ∝ exp
(
εF
(
~b, p
))

,

Theorem 1. The exponential mechanism gives 2ε∆ dif-
ferential privacy [22].

Here, ∆ is the Lipschitz constant of the objective func-

tion F , i.e., for any two data profiles ~b and ~b′ differing in a

single element, and for any outcome p, the score F (~b, p) and

F (~b′ , p) differs by at most ∆.
Theorem 1 highlights that the exponential mechanism will

be the most useful when ∆ is small. In DEAR, a small ∆
ensures that a single change in the bid of a bidder has a
small effect on the outcome.

4. DEAR
We now present DEAR, a differentially private spectrum

auction mechanism with approximate revenue maximiza-
tion.

4.1 Design Rationale
DEAR integrates the exponential mechanism with spec-

trum auction to achieve both approximate revenue maxi-
mization and differential privacy. Basically, DEAR is a sin-
gle price auction, in which all the winning bidders will be
charged with a uniform price. The main idea of DEAR is to
randomly select a price from a set of prices with a carefully
designed probability distribution. For each price, there are
a corresponding allocation and a generated revenue. The
probability of a price to be chosen is set to be proportional
to its corresponding revenue. Thus, approximate revenue
maximization and differential privacy can be achieved. We
briefly illustrate the design challenges and our ideas in meet-
ing them.

(1) Payment Selection
In a non-informative-prior setting, the auctioneer has no

information on the distribution of bidders’ valuations. The
obstacle in such a setting is to design a mechanism that
can select the optimal/sub-optimal price to charge bidders.
Setting p either too high or too low may reduce the rev-
enue. Moreover, we want the payment selection to guar-
antee approximate truthfulness, which should force bidders
in the auction to have limited incentive to lie. To achieve
these objectives, we integrate the exponential mechanism
with spectrum auction to determine the price. DEAR sets
the probability of each price to be chosen to be proportional
to its corresponding generated revenue. Therefore, DEAR
could choose the price that generates a high revenue with
high probability, while protecting privacy.

(2) Spectrum Allocation
For each price ρ in the set of prices, the auctioneer wants

to allocate channels to as many bidders as possible in order
to maximize her revenue. Unlike traditional goods, spec-
trum is reusable among bidders subject to the spatial inter-
ference constraints. It has been shown that it’s NP-complete
[35] to find the optimal spectrum allocation. DEAR parti-
tions the bidders into groups according to their geographic
locations. For each price ρ, DEAR allocates channels to
groups that can generate the highest revenue.

4.2 Design Details
Following the guidelines in Section 4.1, we now describe

the detailed design of DEAR. It performs the auction in
three steps. It first partitions the bidders into groups and
subgroups. Then, it initializes the set of prices, and calcu-
lates the probability distribution over the set. Finally, it ran-
domly selects a price from the set of prices as the payment
with the carefully designed probability distribution and al-
locates the channels to the winners.

Step 1: Grouping of Bidders
Before running the spectrum auction, DEAR first divides

the set of bidders N into groups and subgroups.

Figure 1: Hexagons uniformly-colored using 7 col-
ors. No adjacent hexagons are in the same color.

Since the bidders are located in a geographic region, DEAR
basically divides the entire region into small hexagons with
unit side-length [11], and then uniformly colors the hexagons
with seven colors, as illustrated in Fig. 1.

Let gi denote the group that contains all the subgroups
in color i, and gji denote the j’th subgroup of gi which con-
tains the bidders located in the same hexagonal region. Like
in Fig. 1, g1 contains all the bidders located in the yellow
region, and gj1(j = 1, . . . , |g1|) contains bidders located in
each separate yellow hexagon.

Since there are seven colors, we denote the set of groups
as:

G = {g1, g2, . . . , g7} ,

and denote the set of subgroups in group gk, k ∈ {1, 2, . . . , 7}
as:

gk =
{
g1
k, g

2
k, . . . , g

|gk|
k

}
.

In such a grouping, we have the following two properties.
Property 1 Any pair of bidders from the same subgroup

cannot be allocated on the same channel due to the inter-
ference constraint.

Property 2 Any pair of bidders from different subgroups
in the same group can share the same channel.



Any pair of bidders from the same subgroup are in the
same hexagon with unit side-length (i.e., half of the interfer-
ence range), so the distance between them is no more than
2. Since every bidder’s interference area is an unit-radius
disk, then any two bidders’ interference areas intersect with
each other, so no two bidders from the same subgroup could
share a common channel. Thus, Property 1 holds.

Property 2 can be obtained from the observation that
since each bidder’s interference area is a unit-radius disk, the
distance between any pair of bidders from two different sub-

groups but in the same group is at least (
√

3
2

)2 + ( 5
2
)2 =

√
7.√

7 > 2, which means that the distance between the two
bidders is far enough for these bidders to be out of interfere
with each other. Thus, they can share the same channel.

These two properties tell us that: (A) For each subgroup
gik, the number of winning bidders in it is at most min(|gik|, c);
(B) Winning bidders from different subgroups in the same
group can be combined to obtain the whole set of winners.

Step 2: Calculation of Probability Distribution
For each price ρj ∈ P, DEAR removes the bidders with

bids less than ρj in every subgroup. This changes gik ∈ gk
to gik

′
, and changes gk ∈ G to gk

′, and we denote this step
as

G′ = Remove(N,G, ρj),

where Remove() is the removing function that returns the
set of groups containing bidders with bids at least ρj .

For the remaining bidders in subgroup gik
′ ∈ gk′, DEAR

randomly selects min(|gik
′|, c) bidders as candidates. Obvi-

ously, this method of candidate selection is not related to
bidders’ bids. We denote this step as

W i
k(ρj) = Select(gik

′
,min(|gik

′|, c)),

where Select() is the candidate selection function.
For each group gk

′ ∈ G′, DEAR combines the candidates
from all its subgroups to form the set of candidates Wk(ρj)
in group gk

′ at price ρj :

Wk(ρj) =

|gk′|⋃
i=1

W i
k(ρj).

DEAR picks up the group with most candidates from the
seven groups, let W (ρj) be the group with the most candi-
dates when the price is ρj :

k0 = argmax
k
|Wk(ρj)|, (1)

W (ρj) = Wk0(ρj) (2)

The tentative price for the candidates in W (ρj) is set to
ρj . Thus, the revenue when setting the price to ρj is:

Q(~b, ρj) = ρj |W (ρj)|. (3)

DEAR calculates the corresponding revenue when setting
the price to all possible values in P. Then, DEAR sets the
probability of price ρj ∈ P to be chosen proportional to its
corresponding revenue, i.e.,

Pr(ρj) =
exp(εQ(~b, ρj))

Σρi∈Pexp(εQ(~b, ρi))
.

Algorithm 1 shows the pseudo-code of the probability cal-
culation over the prices in set P.

Algorithm 1 Calculation of Probability over Prices

Input: A set of bidders N, a set of channels C, a bid

profile ~b, a set of prices P and a set of groups G.
Output: A probability vector of possible prices ~Pr.

1: for all ρj ∈ P do
2: G′ ← Remove(N,G, ρj).
3: for all gk

′ ∈ G′ do
4: Wk(ρj)← ∅.
5: for all gik

′ ∈ gk′ do

6: W i
k(ρj)← Select(gik

′
,min(|gik

′|, c)).
7: Wk(ρj)←Wk(ρj) ∪W i

k(ρj).
8: end for
9: end for

10: k0 ← argmax
k
|Wk(ρj)|.

11: W (ρj)←Wk0(ρj)

12: Q(~b, ρj)← ρj |W (ρj)|.
13: end for
14: for all ρj ∈ P do

15: Pr(ρj)← exp(εQ(~b,ρj))

Σρi∈Pexp(εQ(~b,ρi))
.

16: end for
Return ~Pr;

Step 3: Price Selection and Channel Allocation
After calculating the probabilities of all the prices in set P

to be chosen as payment, we get the probability vector ~Pr =
(Pr(ρ1), P r(ρ2), . . . , P r(ρ|P|)). DEAR randomly selects a
price p ∈ P as the auction payment per channel according to
the probability vector. Then, the corresponding candidates
W (p) are the winners and will be allocated channels.

4.3 Analysis
We now analyze the privacy, approximate truthfulness,

and revenue of DEAR.
First, we show that the carefully designed grouping can

limit the Lipschitz constant ∆ of the objective function Q.
This way, DEAR can guarantee good differential privacy.

Theorem 2. DEAR achieves 2ε differential privacy.

Proof. We consider two bid profiles ~b and ~b′ differing in
only one bid. Let M denote the outcome function, which
corresponds to the per-channel charge determined by the
auctioneer in DEAR. We denote the probability of price p ∈
P to be chosen when the bid profile is~b and~b′ as Pr(M(~b) =

ρ) and Pr(M(~b′) = ρ), respectively. We define ∆Q ≥ 0,
which is the Lipschitz constant of the objective function Q,
to be the largest possible difference in Q, when applied to
two bid profiles that differ only in one bid, for all p. Then,

Pr(M(~b) = ρ)

Pr(M(~b′) = ρ)

=
exp(εQ(~b, ρ))/Σρi∈Pexp(εQ(~b, ρi))

exp(εQ(~b′ , ρ))/Σρi∈Pexp(εQ(~b′ , ρi))

=
exp(εQ(~b, ρ))

exp(εQ(~b′ , ρ))
× Σρi∈Pexp(εQ(~b′ , ρi))

Σρi∈Pexp(εQ(~b, ρi))

≤ exp(εQ(~b′ , ρ) + ε∆Q)

exp(εQ(~b′ , ρ))
× Σρi∈Pexp(εQ(~b′ , ρi))

Σρi∈Pexp(εQ(~b, ρi))



≤ exp(ε∆Q)× Σρi∈Pexp(εQ(~b, ρi) + ε∆Q)

Σρi∈Pexp(εQ(~b, ρi))

= exp(ε∆Q)× exp(ε∆Q)

= exp(2ε∆Q) (4)

Since in DEAR, for any ρ ∈ P, any bidder i ∈ N can

change the revenue function Q(~b, ρ) by at most

∆Q = pxi(~b, ρ) ≤ ρ ≤ 1. (5)

From (1) and (2), we get

Pr(M(~b) = p) ≤ exp(2ε)Pr(M(~b′) = p). (6)

Therefore, DEAR achieves 2ε differential privacy.

Next, we show the approximate truthfulness of DEAR.

Theorem 3. DEAR is 4ε-truthful.

Proof. Let E[ui(bi, b−i)] denote the expected utility of
bidder i, when she bids bi. M is the outcome function and
ε is very small (satisfying exp(2ε) < 1 + 4ε).

Suppose bidder i bids bi 6= vi. We distinguish the follow-
ing two cases:

• Case 1: We consider the scenario where i bids lower
than her true value, bi ≤ vi.

For all ρ ∈ P, if bi < ρ, the bidder will be removed
and then xi(bi, b−i, ρ)vi−ρ = 0; if bi ≥ ρ, the bidder is
still in the subgroup, and xi(bi, b−i, ρ) = xi(vi, b−i, ρ)
for the candidate selection function Select() is not re-
lated to the bid. In Theorem 2, we proved that DEAR
achieves 2ε differential privacy. Obviously, the utility
of each bidder with a single demand is less than 1, so
we have:

E[ui(bi, b−i, vi,P)]

= Σρ∈PPr[M(bi, b−i) = ρ]× (xi(bi, b−i, p)vi − ρ)

≤ Σρ∈Pexp(2ε)Pr[M(vi, b−i) = ρ]

× (xi(vi, b−i, ρ)vi − ρ)

= exp(2ε)E[ui(vi, b−i, vi,P)]

≤ (1 + 4ε)E[ui(vi, b−i, vi,P)]

≤ E[ui(vi, b−i, vi,P)] + 4ε (7)

• Case 2: We consider the scenario where bi > vi.

For all ρ ∈ P, if vi ≥ ρ, then bi > ρ and bidder i
will still be in the subgroup. Since the selection func-
tion Select() is not related to the bid, xi(bi, b−i, ρ) =
xi(vi, b−i, ρ). For all ρ ∈ P satisfying vi < ρ, if bi < ρ,
then bidder i will be removed and the utility is 0; else
if bi ≥ ρ, bidder i will still be in the subgroup. If she
loses, her utility is 0; if she wins, her utility

ui(bi, b−i, vi, ρ) = vi − ρ < 0.

Thus, for all ρ ∈ P satisfying vi < ρ, misreporting
leads the utility to non-positive. Then,

E[ui(bi, b−i, vi,P)]

= Σρ∈PPr[M(bi, b−i) = ρ]× (xi(bi, b−i, ρ)vi − ρ)

≤ Σ(ρ∈P)∧(ρ≤vi)Pr[M(bi, b−i) = ρ]

× (xi(bi, b−i, ρ)vi − ρ)

≤ Σ(ρ∈P)∧(ρ≤vi)Pr[M(vi, b−i) = ρ]

× (xi(vi, b−i, ρ)vi − ρ)

≤ E[ui(vi, b−i, vi,P)] (8)

Thus, the theorem follows.

Theorem 4. DEAR has an expected revenue of at least
OPT/7 −3ln(e + εOPT |P|)/ε, where |P| is the number of
different bids from P, which is the set of price.

To prove this theorem, we first give the following lemmas.

Let OPT ∗ = maxρQ(~b, p) = maxρρ|W1(ρ)
′
|, let OPT

denote the optimal single price revenue for the spectrum
auction.

Lemma 1. OPT ∗ is within a factor of 7 of OPT, i.e.,
OPT/7 ≤ OPT ∗ ≤ OPT .

Proof. Suppose the revenue of the spectrum auction reaches

OPT when the charged price to each winner is ρ
′
. Then, for

price ρ
′
, DEAR chooses the group with the most candidates

(also with the highest revenue) from the seven groups. Since
OPT is upper-bounded by the sum of the optimal revenue
of each of the seven groups. Thus, OPT/7 ≤ OPT ∗ ≤
OPT .

Lemma 2. Letting St =
{
ρ : Q(~b, ρ) > OPT ∗ − t

}
. For

those t satisfying t ≥ ln(|P|OPT ∗/(t|St|))/ε, the expected
revenue generated by our mechanism E[REV (M)] ≥ OPT ∗−
3t.

Proof. Let S2t =
{
ρ : Q(~b, ρ) ≤ OPT ∗ − 2t

}
, we first

prove that Pr(ρ ∈ S2t) is at most |P |exp(−εt)|St| .

The probability Pr(ρ ∈ S2t) is no more than Pr(ρ ∈
S2t)/Pr(ρ ∈ St), as the new denominator is at most one.
Then, we can write:

Pr(ρ ∈ S2t)

Pr(ρ ∈ St)

=
Σρ∈S2t

exp(εQ(~b, ρ))/Σρi∈Pexp(εQ(~b, ρi))

Σρ∈Stexp(εQ(~b, ρ))/Σρi∈Pexp(εQ(~b, ρi))

=
Σρ∈S2t

exp(εQ(~b, ρ))

Σρ∈Stexp(εQ(~b, ρ))

<
exp(ε(OPT ∗ − 2t))|S2t|
exp(ε(OPT ∗ − t))|St|

= exp(−εt) |S2t|
|St|

≤ |P|exp(−εt)
|St|

. (9)

Then, DEAR selects price ρ ∈ P that achieves revenue at

least OPT ∗ − 2t with probability of at least 1− |P|exp(−εt)|St| .

By using the assumption on t, we make this probability at
least 1− t

OPT∗ . Multiplying them, we get:

E[REV (M)] ≥ (1− t

OPT ∗
)(OPT ∗ − 2t)

> OPT ∗ − 3t. (10)

Next, we use the above lemmas to prove Theorem 4.



Proof. Let t = ln(e+ εOPT ∗|P|)/ε, notice that t ≥ 1/ε,
then we have,

ln(OPT ∗|P|/(t|St|))/ε < ln(OPT ∗|P|/t)/ε
< ln(e+OPT ∗|P|/t)/ε
< ln(e+ εOPT ∗|P|)/ε (11)

We apply Lemma 2 using t = ln(e+ εOPT ∗|P|)/ε and by
Lemma 1, we have:

E[REV (M)] ≥ OPT ∗ − 3t

≥ 1

7
OPT − 3

ε
ln(e+ εOPT ∗|P|)

≥ 1

7
OPT − 3

ε
ln(e+ εOPT |P|).

(12)

This completes the proof.

5. EXTENSION TO MULTI-DEMAND BID-
DERS WITH BUDGET CONSTRAINTS

In the previous section, we proposed a differentially pri-
vate spectrum auction mechanism with approximate revenue
maximization, in which each bidder bids for a single chan-
nel. Here we extend it to adapt to a more practical scenario
in which a bidder can bid for multiple channels with a bud-
get constraint. This extension also achieves privacy preser-
vation, approximate truthfulness and approximate revenue
maximization.

Different from the existing spectrum auction with bidders
having multiple requests, we consider the budget of each
bidder instead of the demand number. The budget of a
bidder is the maximum upper bound on her ability to pay;
this is a very common constraint. Also, budget constraints
are studied extensively in the theoretical computer science
community and are a central feature of many real auctions.

In the extended mechanism, we allow bidders to bid for
multiple channels by submitting their budgets. Let B =
(B1, B2, . . . , Bn) denote the budget profile of the bidders.
We assume that each bidder has an identical valuation on
different channels. In the auction, each bidder i ∈ N sub-
mits not only her per-channel bid bi ∈ (0, 1], but also the
budget Bi ∈ [0, c] to the auctioneer. Here, c is the number
of channels.

5.1 Virtual Bidder
In the extended DEAR, bidders with adequate budgets

may get more than one channels. Here, we introduce the
concept of virtual bidder to turn the extended problem into
the basic problem.

For price ρ ∈ P, bidder i with a bid greater than ρ could
get at most bBi/ρc different channels. Thus, DEAR creates
bBi/ρc replicas called virtual bidders for bidder i. Each vir-
tual bidder can be allocated at most one channel. DEAR
places these virtual bidders in the same subgroup with bid-
der i. Therefore, any two virtual bidders of a bidder should
be allocated different channels. Then, DEAR sets the bids
of all the virtual bidders to ρ.

Let’s consider an illustrative example of virtual bidder.
Suppose there are 20 channels in the auction, bidder i ∈ gjk

is willing to buy spectrum at the price of 0.4 per channel,
and she has a budget of 0.9. Assume a price from the price
set is ρ = 0.3. Given p, bidder i could buy at most b0.9/0.3c
= 3 different channels and will be charged at 0.3 per channel.
So, DEAR creates 3 virtual bidders i1, i2 and i3instead of

Figure 2: An illustrative example.

the original bidder i in subgroup gjk, and then set the bids
of these virtual bidders to 0.3, as shows in Fig. 2.

5.2 Extended DEAR
The procedures of bidder grouping and random selection

and allocation are nearly the same as those in DEAR. Due
to space limitation, we will focus on the differences in the
step of probability calculation.

Step 1: Bidder Grouping
Please refer to subsection 4.2 for details.

Step 2: Calculation of Probability Distribution
For each price ρj ∈ P, DEAR first removes the bidders

with bids less than ρj in every subgroup. This changes each

subgroup gik ∈ gk to gik
′
, changes each group gk ∈ G to gk

′,
and changes G to G′. Then, for the remaining bidders in
each subgroup gik

′ ∈ g′k, DEAR creates virtual bidders for

each bidder l ∈ gik
′

according to her budget and the price

ρj . Let ĝik
′

denote the set of virtual bidders in subgroup gik
′
.

DEAR randomly selects min(|ĝik
′|, c) virtual bidders as

virtual candidates, represented by ˆW i
k(ρj). This method of

virtual candidate selection is not related to bidders ↪aŕ bids.
For each group g′k ∈ G′, DEAR combines the virtual can-

didates from all its subgroups to form the set of virtual can-

didates ˆWk(ρj) in group g′k at price ρj :

ˆWk(ρj) =

|g
′
k|⋃

i=1

ˆW i
k(ρj).

DEAR picks up the group with most virtual candidates

from the seven groups, let ˆW (ρj) be the group with the most
virtual candidates when the setting price is ρj .

The tentative price for the virtual candidates in ˆW (ρj) is
set to ρj . Thus, the revenue when setting the price to ρj is:

Q(~b, ρj) = ρj | ˆW (ρj)|.

DEAR calculates the corresponding revenue when setting
the price to all possible values in P. Then, DEAR sets the
probability of price ρj ∈ P to be chosen proportional to its
corresponding revenue divided by the number of channels,
i.e.,

Pr(ρj) =
exp(εQ(~b, ρj)/c)

Σρi∈Pexp(εQ(~b, ρi)/c)
.

Step 3: Price Selection and Channel Allocation
DEAR selects the price and virtual winners according to

subsection 4.2. Winners will be the bidders of the winning
virtual bidders, and the number of channels each winner gets
is equal to the number of her virtual winners.



For the extended DEAR, we get the following theorem.

Theorem 5. The extended DEAR is individually ratio-
nal, and every bidder pays within her budget.

Proof. Suppose DEAR selects p ∈ P as the payment and
allocates channels to the corresponding winning bidders. If
the bid of bidder i ∈ N is less than p, then she will be charged
nothing. Otherwise, bidder i ∈ N will get at most bBi/ρc
channels and will pay at most ρbBi/ρc ≤ Bi. Thus, every
bidder pays within her budget. The mechanism achieves
individual rationality.

Theorem 6. The extended DEAR gives 2ε differential
privacy, an expected revenue at least OPT/7 − 3c · ln(e +
εOPT |P|)/ε, where |P| is the number of different bids of P,
and the extended DEAR is 4ε(maxi∈NE[ui])-truthful.

Proof. Here, the objective function is Q(~b, ρ)/c.
As for any ρ ∈ P, any bidder i ∈ N can change the revenue

function Q(~b, ρ) by at most

pbBi/ρc ≤ Bi ≤ c.

Thus, ∆(Q/c) could be at most 1. Similar to the proof
of Theorem 2, the extended mechanism gives 2ε differential
privacy.

The proof of approximate truthfulness and revenue anal-
ysis is similar to the proof of Theorem 3 and Theorem 4
respectively.

6. EVALUATION
We have implemented DEAR and extensively evaluated

its performance. On one hand, our evaluation results show
that DEAR can generate a relatively high revenue despite
randomness. On the other hand, the evaluation results show
that DEAR achieves good differential privacy.

6.1 Methodology
When evaluating the revenue of DEAR, we compare DEAR

with a greedy and truthful spectrum auction mechanism (de-
noted by “GREEDY”) proposed in [10] and another truthful
spectrum auction mechanism (denoted by “TSAWAP”) in
[11]. For the extended DEAR, since there exists no other
privacy-preserving spectrum auction mechanism for bidders
with budget constraints, we evaluate its performance under
various settings without comparison with others.

We vary the number of bidders from 100 to 1500 with a
step of 100, and set the number of channels to be 15, 20,
and 30. The bidders are randomly deployed in a square area
of 5000m×5000m. Each bidder has an interference range of
425m [37]. Any pair of bidders who lie within each other’s in-
terference range are in conflict, and thus cannot be allocated
on the same channel simultaneously. We assume that each
bidder’s bid is uniformly distributed over (0,1] with a pre-
cision of 2 decimal places. In the case of extended DEAR,
we further assume that each bidder has a budget Bi ran-
domly chosen from [bi,c], c is the number of channels. We
set the privacy constant ε to 0.1 and 0.5.1 All the results
are averaged over 1000 runs.

1The range of each bidder’s valuation/bid, budget, and the
value of ε can be chosen differently from those used here.
However, the results of using different setups are similar to
the results shown in this paper. Therefore, we only show
the results for the above setup.

We use two performance metrics to evaluate DEAR, in-
cluding revenue and privacy. The revenue is referred to as
the sum of charges to the bidders. A mechanism guarantees
good privacy if the outcome of probability distribution over
prices has a as small as possible change when any bidder
unilaterally reports a different bid. We definite the notion
of Privacy Leakage according to the definition of differential
privacy to quantitatively measure the privacy guarantee of
DEAR.

Definition 4 (Privacy Leakage). Given a mechanism

M, suppose ~a and ~a′ are probability distributions over a price

set P for bidding profiles ~b and ~b′, which only differ in a sin-
gle bid, respectively. The privacy leakage between the two
bidding profiles is the maximum of absolute differences be-
tween the logarithmic probabilities of the two distributions,
i.e.,

max
i∈{1,2,...,|P|}

| ln ai − ln a′i|. (13)
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Figure 3: Revenue comparison among GREEDY,
TSAWAP and DEAR.

6.2 Revenue
We first evaluate DEAR and extended DEAR’s perfor-

mances in terms of revenue.
Fig. 3(a) shows the comparison results of DEAR with

GREEDY and TSAWAP, when the number of channels is
15. From these results, we can see that DEAR outperforms
GREEDY and TSWAP in nearly all the cases in terms of



revenue. The only exceptions are when the number of bid-
ders is greater than 1200 (for ε = 0.5), and when the number
of bidders is greater than 1000 (for ε = 0.1), GREEDY and
TSWAP can generate slightly more revenues than DEAR.
This is because both GREEDY and TSAWAP rely on the
existence of critical neighbors to generate revenue, and when
the number of bidders grows, GREEDY and TSAWAP can
find critical neighbors with higher and higher bids.

Figs. 3(b) and 3(c) show the comparison results of DEAR
with GREEDY and TSAWAP, when the number of chan-
nels are 20 and 30, respectively. From these results, we can
see that DEAR outperforms GREEDY and TSWAP signif-
icantly in all the cases in terms of revenue. This is because
DEAR does not rely on the existence of critical neighbor to
generate revenue, and when the number of channels grows,
some winning bidders may not have any critical neighbor.

These results imply that DEAR is suitable for secondary
spectrum markets with relatively sparse bidders.
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Figure 4: Revenue generated by extended DEAR

Fig. 4 shows the revenue generated by extended DEAR,
when bidders bid for multiple channels with budget limits.
We observe that, the larger the number of channels is, the
higher the revenue is. When the number of channels is fixed,
the growth rate of revenue becomes slower as the number of
bidders increases. This is because the number of winning
bidder in each subgroup is bounded by the number of chan-
nels, and thus, the generated revenue converges.

6.3 Privacy
We finally evaluate DEAR and extended DEAR in terms

of privacy. We set the number of channels to 20, and vary
the number of bidders from 100 to 1500. Fig. 5 shows the
privacy leakage of DEAR and extended DEAR.

Fig. 5(a) shows the privacy leakage of DEAR. The results
show that when ε = 0.1, DEAR’s privacy leakage is always
less than 0.018, and when ε = 0.5 DEAR’s privacy leakage
is always less than 0.085. From the evaluation results, we
see that in both cases the privacy performance of DEAR are
far better than 0.2−differential privacy and 1−differential
privacy, respectively. This implies that it is nearly impossi-

ble for any agent to learn the bid information of the others.
Thus, DEAR can guarantee good privacy performance.

Fig. 5(b) shows the privacy leakage of extended DEAR.
Similar to DEAR, the results show that in both cases of
ε = 0.1 and 0.5, the privacy leakages of extended DEAR are
small, and the privacy performance of DEAR are far bet-
ter than 0.2−differential privacy and 1−differential privacy,
respectively. Besides, we can see that when the number of
bidders increases, the privacy leakage of extended DEAR de-
creases. This is because extended DEAR allows each bidder
to bid for multiple channels, and thus the impact of a single
bid change is limited.

These results show that (extended) DEAR achieves good
differential privacy.
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Figure 5: Privacy performance.

7. CONCLUSION
In this paper, we have presented the first differentially

private spectrum auction mechanism, called DEAR, with
approximate revenue maximization. DEAR performs well
with both single- and multi-channel requests when bidders
have budget constraints. For both cases, we have theoreti-
cally proven the properties in revenue and privacy. We have
also implemented DEAR and extensively evaluated its per-
formance. Our mechanisms are shown to be able to generate
relatively high and stable revenue, while protecting the bid-
privacy.
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