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Abstract—It is urgent to solve the contradiction between
limited spectrum resources and the increasing demand from
the ever-growing wireless networks. Spectrum redistribution is
a powerful way to mitigate the situation of spectrum scarcity.
In contrast to existing truthful mechanisms for spectrum redis-
tribution which aim to maximize the spectrum utilization and
social welfare, we propose DIARY in this paper, which not only
achieves approximate revenue maximization, but also guarantees
bid privacy via differential privacy. Extensive simulations show
that DIARY has substantial competitive advantages over existing
mechanisms.

I. INTRODUCTION

Recent years have witnessed the fast development of wire-

less technology, which has brought about a great increase

in demand of spectrum resources. Spectrum is a scarce

commodity controlled by governmental agencies(e.g., Federal

Communications Commission (FCC) in US). Traditionally,

static spectrum allocation scheme is adopted to determine

resources distribution. However, studies show that such a static

spectrum allocation scheme is inefficient due to the dramatic

changes of spectrum utilization in both spatial and temporal

dimensions [12]. The current spectrum allocation problem is

that, large chunks of allocated spectrum are left idle most of

the time at lots of places, meanwhile unlicensed secondary

users are badly in need of spectrum to carry out their work. To

solve this problem and improve spectrum utilization, a number

of auction-based dynamic spectrum allocation schemes are

proposed [7], [17], [21], [23]. In fact, there are already some

companies like Spectrum Bridge [1] conducting spectrum auc-

tions, which makes such dynamic schemes no longer merely

theoretical.
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Auctions are well-studied protocols in economic theory for

allocating scarce resources, and attractive because of their

well-defined notions for various objective. A major difference

between economic auctions and spectrum auctions is the

spatial reusability of spectrum. A single chunk of spectrum

can be leased to multiple secondary users as long as they do

not interfere with each other. A natural goal of such auctions

is to maximize the revenue for primary users, since primary

users may not be willing to share their own spectrum resources

unless there are sufficient incentives.

Another major difference between spectrum auctions and

traditional auctions is that spectrum auctions are held re-

peatedly due to the dramatic changes of spectrum utilization.

Mostly previous studies on this issue neglect the repeatability

of spectrum auctions. Clues about others’ private information

may be concluded form historical records or previous rounds,

so that spiteful secondary users can use such information to

cheat or collusion. These malicious manipulations not only

abate victims’ enthusiasm for participation in auctions, which

reduces the long-term revenue of primary users, but also cause

some vindictive actions from secondary users who never have

a chance to win [24].

The problem of analyzing sensitive data with an eye towards

maintaining its privacy has existed for some time. However,

most of the existing mechanisms cannot guarantee the bid

privacy. For instance, lots of revenue maximization mecha-

nisms [11], [19], which make participators to bid truthfully

in order to guarantee strategy-proofness, obviously violate

the bid privacy. The recent notion of differential privacy

[2], [3], in addition with its own intrinsic virtue, can assure

that participants have limited effect on the outcome of the

mechanisms. As a consequence, participants will have limited

incentive to lie and little worry about privacy violations.

For the reasons mentioned above, designing a channel

auction mechanism, which could maximize the revenue of

the primary users and guarantee the bid privacy, is precisely

the goal of our work. Obviously, designing such an auction

mechanism has its own challenges:

• Computing Complexity: We all know that to find optimal

solutions to the general problem of the channel allocation
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is NP-complete [20], which means that the the optimiza-

tion problem of revenue maximization is NP-hard. It’s

impossible to find a deterministic solution to the revenue

maximization problem in polynomial time.

• Bid Privacy: Due to the spatial reusability of the spec-

trum, differential private mechanisms belonging to the

family of exponential mechanisms [10], [15] cannot be

adopted directly.

In this paper, we propose DIARY, which is a DIfferentially

private and Approximately Revenue maximizing auction

mechanism for secondarY spectrum markets. DIARY not

only achieves approximate revenue maximization, but also

guarantees bid privacy. To our best knowledge, we are the

first to investigate the auction mechanisms which achieve both

bid privacy and approximate revenue maximization. Our key

contributions are listed as follows.

• First, we model the channel redistribution problem as an

auction, and propose a novel non-deterministic mechanis-

m, DIARY, to achieve approximate revenue maximization

and bid privacy via differential privacy.

• Second, we prove that DIARY satisfies all requirements

of our goal.

• Third, we conduct extensive experiments to compare

the performance of DIARY with existing mechanisms

RGTS [11], TSA [19] and PFR [8]. Results show that

DIARY has substantial competitive advantages over ex-

isting mechanisms, especially when the competition for

channels is fierce.

The rest of this paper is organized as follows. In Section II,

we introduce our auction model and review some solution

concepts. In Section III, we show the design of our auction

mechanism DIARY. Extensive experiments are presented in

Section IV to compare the performance of the proposed

mechanism with others. In Section V, we discuss the related

works. In the end, we draw our conclusion and introduce our

future work in Section VI.

II. PRELIMINARIES

In this section, we show our problem model and introduce

some solution concepts about differential privacy.

A. Model

We model the problem of spectrum allocation as a sealed-

bid auction. Usually, in a spectrum auction, we refer to sec-

ondary users as bidders or buyers, and the primary user as the

seller. In this auction model, there are a number of buyers and

a single seller. The seller, who has m idle channels, wants to

lease the channels out to get profit. We denote the m channels

by C = {c1, c2, . . . cm}. A channel can be leased to multiple

buyers, if these buyers can communicate simultaneously and

send/receive signals with an adequate Signal to Interference

and Noise Ratio (SINR).

We assume that there are n buyers, such as access

points(AP), who want to lease/buy channels to carry out their

works, denoted by N = {1, 2, . . . , n}. The buyers’ bids are

represented as ~b = (b1, b2, . . . , bn). Each buyer has a per-

channel valuation, which is private to himself, represented by

~v = (v1, v2, . . . , vn). We use ~r = (r1, r2, . . . , rn) to indicate

the demands profile of the buyers.

We use a matrix T to indicate the allocation of the channels,

where Tik = 1 indicates that we allocate channel ck to buyer

i. What’s more, we use pik to indicate the price of buyer i

for using channel ck. Utilities of the buyers are defined as the

difference between his valuation and the price for using the

channel. For example, price of buyer i is
∑m

k=1 pik. His utility

after participating in this auction will be:

m
∑

k=1

(vi − pik)Tik.

Following the tradition, we assume buyers are selfish and

rational, which means they select strategies to maximize their

utilities. The seller wisher for a channel allocation without

interference, and charges ingeniously to maximize his own

revenue. The revenue of the seller is the sum of the charges

to the buyers, denoted by f(~b, p):

f(~b, p) =
n
∑

i=1

m
∑

k=1

pikTik.

B. Solution Concepts

We review some solution concepts used in this paper about

differential privacy here.

Definition 1 (Differential Privacy [13]): A randomized

function M gives ǫ-differential privacy if for any input vector
~b = (bi,~b−i) and ~b′ = (b′i,

~b−i) differing on a single item bi’s

bid, where b−i indicates the bid vector of other buyers except

i, and all P ′ ⊆ P = Range(M),

Pr[M(~b) ∈ P ′] ≤ eǫ × Pr[M(~b′) ∈ P ′].

Definition 2 (∆f − Sensitivity [14]): For user i, when

b′i 6= bi = vi, let ∆f be the difference of f((b′i,
~b−i), p)

and f((bi,~b−i), p) over all p ∈ P . If for all (b′i,
~b−i) over

all p ∈ P , the following inequality holds, we say that the

objective function f(~b, p) is ∆f − Sensitivity.

|f((b′i,
~b−i), p)− f((bi,~b−i), p)| ≤ ∆f. (1)

The solution concept of differential privacy is proposed by

Dwork [2]. McSherry and Talwar [13] combined differential

privacy and mechanism design for the first time.

∆f − Sensitivity guarantees that a single bidder’s mis-

reporting has limited effects on the output. If the objective

function is ∆f − Sensitivity, ∆f will be a deterministic

value, and it cannot be manipulated by the buyer.

III. DESIGN OF DIARY

In this section, we show the design details of DIARY.

DIARY uses a novel method to achieve bid privacy and

approximate revenue maximization in channel allocation. For

clear illustration, we discuss the scenario in which each buyer

is equipped with a single radio, and can just request one

channel. Multi-radio scenario can be easily extended by using

elementary buyers to indicate each radio equipped.



A. Design Details

To achieve bid privacy, we use a probabilistic mechanism

M ǫ
q to determine the price for the winners. The mechanism can

be divided into three phases: grouping, price determination,

and winner selection.

Phase 1: Grouping

Fig. 1. A simple conflict graph, in which there are 7 buyers A, B, C, D, E,
F and G. The link between two buyers indicates a confliction.

As the channel has spatial reusability, we can model the

confliction constraints by a conflict graph. In the conflict

graph, each node indicates a buyer and each link between two

buyers in the conflict graph indicates a confliction. In other

words, the two buyers linked by an edge cannot work on the

same channel simultaneously. With the method proposed in

[22], such a conflict graph can be figured according to an

adequate Signal to Interference and Noise Ratio(SINR). We

divide the buyers into λ groups in a bid independent way ,

using existing graph coloring algorithms (e.g., [16]). The λ

groups are denoted by G = {g2, g2, . . . , gλ}.

Fig. 1 shows a toy example, in which there are seven buyers

who want to lease the channels, denoted by A, B, C, D, E, F

and G. We divides all the buyers into groups. For example, in

Fig. 1, the 7 elementary buyers can be divided into 3 groups:

g1 = {A,D, F}, g2 = {B,E} and g3 = {C,G} or g1 =
{A,E}, g2 = {B,C, F} and g3 = {D,G}.

Phase 2: Price Determination

After dividing the buyers into non-conflicting groups, we

determine the price for the winners in each group. A too low

price will cause a loss to final revenue, but increasing the

offered price casually has the potential to send all buyers home

empty-handed. So the key point is to find an adequate price

for each group to maximize the revenue of the seller.

Here, we use three steps to determine the price for each

buyer group κ.

Step 1: We declare prices set Pκ.

The prices set, which is exactly the bids set in each group

κ, is enumerated as follows.

Pκ = {bi|i ∈ gκ}.

Step 2: We calculate all potential revenues of group κ

according to its all potential prices.

For each p ∈ Pκ, we use ϕi(p) to indicate whether buyer i

in group κ wins (can afford the price) or not.

ϕi(p) =

{

0 if bi < p,

1 otherwise.

Algorithm 1 Price Determination

Input: A set of elementary buyers N , a vector of bids ~b.

Output: A vector of price ~p∗.

1: (G, λ) = Grouping(N).
2: for all gκ ∈ G do

3: for all pj ∈ Pκ do

4: Rκ(pj) = pj
∑

i∈gκ
ϕi(pj).

5: ERκ(pj) = exp(ǫRκ(pj)).
6: end for

7: Pr∗κ(0) = 0.
8: for all j ≤ |gκ| do

9: Pr∗κ(j) =
∑

θ≤j
ERκ(pθ)∑

p∈Pκ
ERκ(p)

.

10: end for

11: tmp = rand(0, 1).
12: for all pj ∈ Pκ do

13: if Pr∗κ(j) < tmp ≤ Pr∗κ(j + 1) then

14: p∗κ = pj .

15: break.

16: end if

17: end for

18: end for

19: return ~p∗.

We define the function q(gκ,~b, p) to calculate the revenue

of group κ when the price is p:

q(gκ,~b, p) = p
∑

i∈gκ

ϕi(p). (2)

Step 3: We determine the final price of each group κ.

A probabilistic mechanism is adopted to determine the final

price of each group, which is denoted by M ǫ
q :

M ǫ
q := Prκ(p) ∝ eǫq(gκ,

~b,p).

Intuitively, the probability of each price p being chosen

increases exponentially with its corresponding revenue. But a

single participant’s bid change just have limited multiplicative

influence on the probability of the relevatn price being chosen.

We choose p∗κ as the final price for the winners in group κ,

the revenue of this group will be

q(gκ,~b, p
∗
κ) = p∗κ

∑

i∈gκ

ϕi(p
∗
κ). (3)

For all the buyer groups, we use the above three steps to

determine the price for the winners. A vector ~p∗ is used to

indicate final prices determined for the λ groups:

~p∗ = (p∗1, p
∗
2, . . . , p

∗
λ).

Algorithm 1 shows the pseudo code for the price determina-

tion process. Rκ indicates the set of all the potential revenues,

where the prices is in the set Pκ:

Rκ = {Rκ(p)|p ∈ Pκ}.

Line 3-6 calculates all the potential group revenues for group

gκ. Line 7-10 calculates the probability of p being chosen.



Algorithm 2 Winner Selection

Input: A set of buyers N , a vector of bids ~b, a set of the idle

channels C, the number of idle channels m, a vector of

price ~p∗.

Output: A set of winners W , an allocated matrix of channels

T .

1: T = 0n,m.

2: cnt = min{m,λ}.
3: G′ = Sort(G) based on group revenue.

4: for all g′κ ∈ G′ do

5: if cnt ≥ 0 then

6: cnt = cnt− 1.
7: for all i ∈ g′κ do

8: if ϕi(p
∗
κ) == 1 then

9: Tiκ = 1.
10: end if

11: end for

12: WS = g′κ − {i|i ∈ gκ, ϕi(p
∗
κ) = 0}.

13: W = W ∪WS.

14: end if

15: end for

16: return W and T .

Then, Line 11-16 determines the final price p∗κ depending on

a random variable.

According to the mechanism, we can see that the possibility

of the price being chosen will enjoy a exponential growth with

the increase of corresponding revenue. Intuitively, the mecha-

nism achieves approximate revenue maximization, which will

be proved in Section III-B.

Phase 3: Winner Selection

We now determine the winning groups and winners in each

winning group. There are m idle channels to be leased out

and λ groups waiting to lease channels.

• If λ ≤ m, then all the groups are winning groups.

• If λ > m, we sort the groups in non-increasing order

according to the group revenue, denoted by G′. In case

of a tie, we break it randomly.

G′ : g′1 ≥ g′2 ≥ . . . ≥ g′κ ≥ . . . ≥ g′λ.

We choose the first m groups with higher revenue as the

winning groups in group set G′.

In each winning group g′κ, buyers whose bid is higher than

the final price are winners. Algorithm 2 shows the pseudo code

for the winner selection process.

At the end of the auction, the seller collects all the payments

as his revenue. To illustrate clearly, we define Q(G,~b) as the

final revenue:

Q(G,~b) =

min {m,λ}
∑

κ=1

q(gκ,~b, p
∗
κ). (4)

B. Analysis

Now we are going to prove that DIARY achieves differential

privacy and approximate revenue maximization.

Differential Privacy

We assume that for any group gκ, a single buyer’s bid

change in ~b can change q(gκ,~b, p) by ∆q, which means that

the objective function q(gκ,~b, p) is ∆q − sensitivity.

Lemma 1: When there is at most one spiteful bidder, M ǫ
q

gives (2ǫ∆q)-differential privacy.

Proof: When there is one spiteful bidder, he just can

belong to one group. Without loss of generality, we assume

the spiteful bidder belongs to group gκ. Here,

P ′
κ = {b1, b2, . . . , b

′
i, . . . , bn}.

Assume a buyer i misreports his bid bi as b′i, for any p ∈ Pκ,

the density of M ǫ
q at p is equal to

eǫq(gκ,(bi,
~b−i),p)

∑

p∈Pκ
eǫq(gκ,(bi,

~b−i),p)

≤
eǫ∆q · eǫq(gκ,(b

′

i,
~b−i),p

′)

e−ǫ∆q ·
∑

p′∈P ′
κ
eǫq(gκ,(b

′

i
,~b−i),p′)

=e2ǫ∆q ·
eǫq(gκ,(b

′

i,
~b−i),p

′)

∑

p′∈P ′
κ
eǫq(gκ,(b

′

i
,~b−i),p′)

.

(5)

This gives a factor of at most eǫ∆q in the numerator and at least

e−ǫ∆q in the denominator, giving e2ǫ∆q in total. Intuitively,

M ǫ
q gives (2ǫ∆q)-differential privacy.

Lemma 2: When there are at most τ spiteful bidders, M ǫ
q

gives (2ǫτ∆q)-differential privacy.

Proof: The bid change of a single buyer can change q

by ∆q. When there are at most τ spiteful bidders, we assume

that k buyers will be divided into one group. A single buyer’s

bid change in a group can change the revenue by ∆q, then

k(k ≥ 1) bidders’ bid changes in a group can change q by

k∆q. Then, no matter how the τ buyers will be divided, τ

buyers’ bid change can change the revenue by at most τ∆q.

Here, ~b′ = (b1, b2, . . . , b
′
i, . . . , b

′
i+τ−1, . . . , bn) and the price

set P ′
κ is:

P ′
κ = {b1, b2, . . . , b

′
i, . . . , b

′
i+τ−1, . . . , bn}.

Using Theorem 1, for any p ∈ Pκ, we can get that:

eǫq(gκ,
~b,p)

∑

p∈Pκ
eǫq(gκ,

~b,p)

≤
eτǫ∆q · eǫq(gκ,

~b′,p)

e−τǫ∆q ·
∑

p′∈P ′
κ
eǫq(gκ,

~b′,p′)

= e2τǫ∆q ·
eǫq(gκ,

~b′,p)

∑

p′∈P ′
κ
eǫq(gκ,

~b,p′)
.

(6)

So (2ǫτ∆q)-differential privacy have been guaranteed.



We can get the following theorem according to the Lemma

1 and Lemma 2:

Theorem 1: DIARY achieves ǫ∗-differential privacy.

Approximate Revenue Maximization

Lemma 3: Let q(gκ,~b, p) be a ∆q − sensitivity objective

function and p ∈ Pκ. Then for any ~b and 0 < ǫ < 1,

EMǫ
q
[q(gκ,~b, p)] ≥ (1 − ǫ)maxp q(gκ,~b, p) − δ, where δ =

1
ǫ
ln( 1

ǫ
|gκ|).

Proof: For a fixed vector of bids ~b, we denote by P̂κ =
{p̂ ∈ Pκ : q(gκ,~b, p̂) < maxp q(gκ,~b, p) − δ}. Then, for any

p̂ ∈ P̂κ, the following holds:

M ǫ
q (p̂) =

eǫq(gκ,
~b,p̂)

∑

p∈Pκ
eǫq(gκ,

~b,p)

≤
eǫ(maxp q(gκ,~b,p)−δ)

eǫmaxp q(gκ,~b,p)

= e−ǫδ.

Then we can get that M ǫ
q (P̂κ) =

∑

p̂∈P̂κ
M ǫ

q (p̂) ≤ |P̂κ|e
−ǫδ ≤

|gκ|e
−ǫδ . What’s more, M ǫ

q (Pκ\P̂κ) ≥ 1−|gκ|e
−ǫδ . The above

calculation results imply:

E
Mǫ

q

[q(gκ,~b, p)]

≥ (max
p

q(gκ,~b, p)− δ)M ǫ
q (Pκ\P̂κ)

≥ (max
p

q(gκ,~b, p)− δ)(1− |gκ|e
−ǫδ).

We substitute for δ, then we get:

E
Mǫ

q

[q(gκ,~b, p)]

≥ (max
p

q(gκ,~b, p)− δ)(1− ǫ)

≥(1− ǫ)max
p

q(gκ,~b, p)− δ.

Then we draw the conclusion that

E
Mǫ

q

[q(gκ,~b, p)] ≥ (1− ǫ)max
p

q(gκ,~b, p)− δ. (7)

We use Equation 7 to all winning groups, which gives

E
Mǫ

q

min(m,λ)
∑

κ=1

[q(gκ,~b, p)]

≥

min(m,λ)
∑

κ=1

(1− ǫ)max
p

q(gκ,~b, p)− δ)

=(1− ǫ)max
p

Q(G,~b)−

min(m,λ)
∑

κ=1

δ.

We can draw the following theorem according to Lemma 3:

Theorem 2: DIARY achieves revenue approximate maxi-

mization.

IV. NUMERICAL RESULTS

In this section, we do extensive experiments to compare the

performance of DIARY with the existing mechanisms.

A. Evaluation Setup

In our evaluation setup, we assume that bidders are deployed

in a large geographic area randomly, and then apply a distance-

based interference model to produce the corresponding conflict

graph. In our experiment, we choose 2000 × 2000 meters

as default terrain. Any two bidders within 425 meters are

supposed to conflict with each other. We assume that all

bidders’ true valuation is uniformly distributed over (0, 1]. The

results are averaged over 200 runs to obtain expected results.
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Fig. 2. Revenue of DIARY, RGTS, TSA and PFA

B. Evaluation Results

In our first set of experimental results, we compare the

revenue of DIARY with existing mechanism RGTS [11],

TSA [19] and PFR [8]. In RGTS [11], the valuation of bidder

is replaced by virtual valuation. We use the normal distribution

here. In TSA [19], bidders are grouped into several cells,

adjacent cells conflict with each other. In PFR [8], an iterative

algorithm is used to determine the winner and the price.

As shown in Fig.2, DIARY outperforms other mechanisms

in most cases. Fig.2 Also shows that when the number



of buyers is very small or channels are sufficient, DIARY

achieves similar revenue with RGTS and PFR. We can see

that the more fierce the competition is, the better performance

DIARY gets.
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Then we compare the performance of DIARY with existing

auction mechanisms in different terrains. The terrains range

from 500×500 meters to 2000×2000 meters while remaining

the density of bidder. We assume that there are 20, 80, 180

and 320 buyers in 500× 500, 1000× 1000, 1500× 1500 and

2000×2000 meters respectively. The result is shown in Fig.3.

DIARY produces better performance than other mechanisms

in different terrain areas. As the terrain area increases or

the competition gets more fierce, DIARY’s advantages over

RGTS, TSA and PFR become more significant.

V. RELATED WORKS

In this section, we review related works on channel alloca-

tion schemes mechanism design via differential privacy.

Recently, dynamic mechanisms of spectrum auctions has

been widely concerned, especially in aspect of strategy-proof

[6], [17], [21], [23] and revenue maximization [5], [11],

[19]. However, the existing revenue maximization mechanisms

all lose sight of the importance of bid privacy, which may

cause a series of negative influence. Only a handful of work

[9] guarantee the privacy of bidders, but compromising the

revenue unfortunately.

Since the revenue maximization is well-studied, the novel

idea of our work is that we achieve bid privacy via differ-

ential privacy. So here we focus on the related works about

differential privacy. Dwork [2] proposed the solution concept

of differential privacy for the first time, then McSherry and

Talwar [13] combined the differential privacy and mechanism

design, and gave a general method to deal with revenue

maximization in unlimited supply auction, attribute auctions

and constrained pricing problems. Dwork [4] introduced the

definition of differential privacy and two basic techniques

for achieving differential privacy, meanwhile showed some

interesting applications of the techniques. Recently, Xiao [18]

argued that the study of privacy must be coupled with the

study of incentives, and introduced a model combining dif-

ferential privacy with truthfulness and efficiency. Nissim et

al. [15] designed an general approximately optimal mechanism

via differential privacy. Nissim et al. [14] also modeled the

privacy-aware agents and designed a privacy-aware mechanism

via differential privacy.

VI. CONCLUSION

In this paper, we have designed DIARY, which is a differen-

tially private and approximately revenue maximizing auction

mechanism for secondary spectrum markets. We have proven

that DIARY not only achieves differential privacy but also

achieves approximate revenue maximization. The experimental

results have shown that DIARY outperforms the existing

mechanisms.
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