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Abstract. High availability in peer-to-peer DHTs requires data redundancy. This
paper takes user download behavior into account to evaluate redundancy schemes
in data storage and share systems. Furthermore, we propose a hybrid redundancy
scheme of replication and erasure coding. Experiment results show that repli-
cation scheme saves more bandwidth than erasure coding scheme, although it
requires more storage space, when average node availability is higher than 48%.
Our hybrid scheme saves more maintenance bandwidth with acceptable redun-
dancy factor.
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1 Introduction

The last several years have seen the emergence of a class of structured peer-to-peer
systems that provide a distributed hash table (DHT) abstraction [13, 16, 18]. DHTs pro-
pose a determined object locating service, and already are used in many applications
[6, 7, 10, 17]. However, to provide high data availability in the DHT, when the peers that
are storing them are not 100% available, needs some form of data redundancy. Peer-to-
peer DHTs have proposed two different redundancy schemes: replication [6, 17] and
erasure coding [7, 10].

Some comparisons [2, 7, 19] argued that erasure coding is the clear winner, due to
huge storage and bandwidth savings for the same availability levels (or conversely, huge
availability gains for the same storage space). The other comparisons [3, 15] argued that
coding is an clear winner only when peer availability is low; the benefits of coding are
so limited in some cases that they can easily be outweighed by some disadvantages such
as extra complexity, download latency and lack of ability of keyword searching.

This paper argues that sharing user downloaded files for subsequent accesses (repli-
cation) and meanwhile utilizing erasure coding to maintain files’ availability will achieve
better performance: saving more bandwidth with acceptable redundancy factor. There
are two talking points. First, in current peer-to-peer file sharing communities, popu-
lar files are automatically kept at high availability level, due to thousands of times of
user downloads. Second, current hardware deployment suggests that idle bandwidth is
the limiting resource that volunteers contribute, not idle disk space. Further, since disk
space grows much faster than access point bandwidth, bandwidth is likely to become
even scarcer relative to disk space.

This paper makes the following contributions: First, to our best knowledge, this pa-
per is the first to take user download behavior into account — sharing user downloaded
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files for subsequent accesses — to evaluate redundancy schemes in data storage and
share systems. Second, this paper demonstrates that replication saves more bandwidth
than erasure coding, although it requires more storage space, when average peer avail-
ability is higher than 48%. Finally, this paper shows that the hybrid redundancy scheme
of replication and erasure coding can achieve better overall performance: saving more
bandwidth with redundancy factor less than 9.4 for three nines (99.9%) of per-file avail-
ability.

The rest of the paper is organized as follows. Section 2 formulates and describes
three schemes for high availability: replication, erasure coding and the combination of
them. Section 3 evaluates these three schemes by two sets of experiments. Finally, we
conclude the paper and point out future work in Section 4.

2 Redundancy Schemes

This section presents three redundancy schemes for high availability: replication, era-
sure coding and a hybrid scheme which shares user downloaded files for subsequent
accesses (replication) and utilizes erasure coding to adjust files’ availability. All of them
work upon consistent hashing [9], as used by storage systems such as CFS [6].

First, several key terminologies should be introduced. For simplicity, each file is
identified by a unique identifier d, which is consistent hash of the file name. The
peer that keeps location indexes for file copies or fragments is named indexer. Be-
sides, a dualistic hash function should be declared: h(d, n), where n ≥ 1 is the se-
quence number of each indexer. h(•, •) is the allocation function, typically based on
the hash function shared by all peers. The allocation function might be defined as fol-
lows: h(d, n) = H(d || n), where H(•) is the hash function which is used in the DHTs
and || is a concatenation.

All schemes consist of three parts with some difference due to their particularity:
register, request and maintenance.

– Register: Each peer periodically registers the unique IDs of the files it holds and/or
fragments in its cache in M distributed and independent indexers. The logical lo-
cation of M indexes is determined by the hash function defined above: h(d, n), n ∈
[1, M ]. If the peer pointed by h(d, n) is not alive, its successor takes over its role. The
indexer associates each item in the index with a timer. A copy of file or a fragment
will be recognized as unavailable and removed from the index if its timer runs out.

– Request: When requesting a file d, a peer randomly refers to one or more indexers
responsible for d. If the checked indexers do not provide enough whole file or frag-
ment location information, the peer will turn to other indexers. If all M distributed
indexers fail to provide enough location information, the peer will wait a period of
time and do the procedure as stated above again, until maximum lookup time ex-
pires. This balances the load of directory service and reduces the chance of getting
incomplete location index. Then the peer downloads the file or enough fragments
to reconstruct the original file from peers registered in location index.

– Maintenance: Periodically, each indexer estimates the availability of files and/or
fragments registered on it, and attempts to increase the availability of ones that is
not yet at target availability.
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2.1 Replication Scheme

Replication is the simplest redundancy scheme. Here r identical copies of each file are
kept at each instant by peers. The value of r must be set appropriately depending on
the desired object availability a (i.e., a has some “number of nines”), and on the aver-
age peer availability p. Throughout the analysis, it is assumed that the peer availability
is independent and identically distributed. The needed number of copies can be deter-
mined by:

a = 1 − (1 − p)r (1)

which upon solving for r yields

r =
log(1 − a)
log(1 − p)

(2)

Each peer periodically registers shared and cached files in M distributed and inde-
pendent indexes. When requesting a file d, a peer lookups a random index responsible
for d. If the referred indexer fails, the peer will turn to another indexer. If all M index-
ers fail, the peer will wait a period of time and do the lookup procedure again, until
maximum lookup time is reached. Then the peer accesses the file from a random peer
registered in location index. The already downloaded file is automatically treated as a
shared file for subsequent accesses. Finally, each indexer periodically adjust the avail-
ability of its indexed files by scheduling necessary number of file transfers from the
whole file holder to randomly chosen peers to reach the desired availability of file d.

2.2 Erasure Coding Scheme

Erasure codes (e.g., Reed-Solomon [14] or Tornado [5]) divide an object into m frag-
ments and recode them into n fragments, where n > m. This means that the effective
redundancy factor is r = n/m. The common property of erasure codes is that the orig-
inal object can be reconstructed from any m fragments (where the combined size of m
fragments is approximately equal to the original object size).

We assume that we place one encoded fragment per file per peer and there is no
duplicate fragments. File availability can be calculated by the probability of at least m
out of n fragments are available:

a =
n∑

i=m

(
n

i

)
pi(1 − p)n−i (3)

where p is the average peer availability.
The number of files per host follows a Poisson distribution. Because it is difficult

to directly evaluate the Poisson distribution, we use the normal approximation to the
Poisson distribution. With the normal approximation, if we perform random placement
of files on hosts then the number of files per host follows a normal distribution. Using
algebraic simplifications and the normal approximation to the binomial distribution (see
[1]), we get the following formula for the erasure coding redundancy factor:

r =
n

m
=

⎛

⎝σa

√
p(1−p)

m +
√

σa
2p(1−p)

m + 4p

2p

⎞

⎠

2

(4)



Redundancy Schemes for High Availability in DHTs 993

where σa is the value of standard deviations in a normal distribution for the required
level of availability. Table 1 shows the standard deviations in a normal distribution for
different values of availability a. These results are standard for any normal distribution.
For instance, σa = 3.1 corresponds to three nines of availability.

Table 1. Standard deviations that follows a normal distribution for the given level of availability

a σa

0.800 0.84
0.900 1.28
0.990 2.48
0.995 2.81
0.998 2.88
0.999 3.10

When erasure coding is used, an indexer that generates new fragments to adjust
availability must have access to the whole file. It is unscalable to download enough
fragments to reconstruct the file and then generate new fragments, since it is likely
that m fragments need to be downloaded to regenerate merely a new fragment. Thus
the amount of file that needs to be transferred is m times as much as the amount of
redundancy lost. An alternative is to associate the peer whose identifier is closest to the
consistent hash of the file name as the home peer for that file. The home peer stores
a permanent copy of the file and manages its fragment generation. If the home peer
fails, the next closest peer in the identifier space automatically becomes the new home
peer. This is reasonable because the peer that takes responsibility of a file restores a
complete copy, generates and pushes new fragments to targets in need. This corresponds
to increasing the redundancy factor by 1.

However, erasure coding scheme does not share the whole user downloaded files.
All shared objects in the system are erasure coded fragments stored in caches. Each peer
periodically registers all fragments it keeps in M distributed and independent indexes.
When requesting a file d, a peer lookups a random indexer responsible for d’s fragments.
If the referred indexer can not provide enough fragment location information, the peer
will turn to another indexer. If all M indexers fail, the peer will wait a period of time
and do the lookup procedure again, until maximum lookup time is reached. Then it
downloads enough number of fragments and resembles the original file, and tries to
regenerate and leave a fragment in cache. Finally, each indexer periodically adjusts the
availability of its indexed fragments. For a file whose availability is below target level,
the indexer consigns the home peer of the file to generate and push necessary number
of fragments to randomly selected peers.

2.3 Hybrid Scheme

The replication scheme shares user downloaded files for subsequent accesses to save
maintenance bandwidth. It saves more maintenance bandwidth than the erasure coding
scheme when average peer availability is high, but requires much larger redundancy
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factor. The erasure coding scheme requires much less storage space than the replication
to reach the availability level with the same average peer availability, and saves more
maintenance bandwidth in highly dynamic environment, but still unscalable when av-
erage peer availability is low. This paper proposes a hybrid scheme which combines
replication and erasure coding to achieve to better overall bandwidth saving with ac-
ceptable redundancy factor.

The hybrid scheme shares user downloaded files for subsequent accesses (replica-
tion) and utilizes erasure coding to maintain files’ availability. It automatically treats a
downloaded file as shared file for subsequent accesses as the replication scheme. When
adjusting file availability, it consigns a whole file holder to generate and push necessary
number of fragments to other peers, instead of transferring whole copy of file. On one
hand, the hybrid scheme utilizes file copies already downloaded on network for subse-
quent downloads to reduce maintenance bandwidth overhead as the replication scheme.
On the other hand, the hybrid scheme uses erasure coding to achieve less bandwidth
overhead than replication for the same increment of availability level.

We now exhibit the analogue of Equation (1) and (3) for the case of hybrid scheme.
We assume that we do not place files and fragments with the same ID on the same
peer, and there is no duplicate fragments. File availability a, can be calculated by the
probability of at least a whole copy or at least m out of n fragments are available. So
a is estimated as 1 minus the probability that all whole copies of a file are simultane-
ously unavailable and there are not enough (at least m out of n) fragments available to
reconstruct the original file:

a = 1 − (1 − p)h

(
1 −

n∑

i=m

(
n

i

)
pi(1 − p)n−i

)
(5)

where h is number of file copies.
The hybrid scheme’s redundancy factor can be calculated by adding redundancy

factor of replication and erasure coding:

r = h +
n

m
= h +

⎛

⎝σa(h)
√

p(1−p)
m +

√
σa

2(h)p(1−p)
m + 4p

2p

⎞

⎠

2

(6)

where σa(h) is a function of h, and its value corresponds to the availability level (see
Table 1) a′ that erasure coding has to obtain. a′ is derived from Equation (5) as follows:

a′ =
n∑

i=m

(
n

i

)
pi(1 − p)n−i = 1 − 1 − a

(1 − p)h
(7)

Figure 1 captures the theoretical redundancy factor for the replication, erasure cod-
ing and hybrid schemes determined by Equation (2), (4) and (6) to achieve three nines
of per-file availability. The redundancy factor of the hybrid scheme is determined by
two factors: average peer availability p and number of file copies h. With any fixed h,
there is a corresponding line. Intuitively, erasure coding requires less storage space to
reach the availability level than the other two with the same average peer availability.
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Fig. 1. Required redundancy factor for three
nines of per-file availability, as a function of
average peer availability, for the replication,
coding and hybrid schemes as determined by
Equation (2), (4) and (6)
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Fig. 2. Required redundancy factor for three
nines of per-file availability, as a function of
average peer availability, for the replication,
coding and hybrid schemes in simulation.

The hybrid scheme’s redundancy factor is slightly larger than erasure coding, and saves
more storage space than replication except when average peer availability is extremely
high.

Each peer periodically registers shared files and cached fragments in M distributed
and independent indexes. A peer locates a file with two kinds of indexes: whole file
location index and fragment location index. When requesting a file d, a peer randomly
refers to one or more indexers responsible for d. If the checked indexers do not provide
enough whole file or fragment location information, the peer will turn to other indexers.
If all M distributed indexers fail to provide enough location information, the peer will
wait a period of time and do the above procedure again, until the maximum lookup
time is reached. If the peer can not find a whole file living in system, it turns to gather
enough fragments to resemble the original file. The downloaded and resembled files are
regarded as shared.

Each indexer periodically adjusts the availability of its indexed files. For file d
whose availability is below target level, the indexer consigns a peer holding file d to
increase its availability by generating and pushing necessary number of fragments to
randomly selected peers. For those files without a complete copy, the adjustment will
be either delayed until a user download event happen, or performed as downloading
enough fragments to reconstruct original file and issue fragments by the indexer itself
when maximum waiting time is reached. Here, it is not necessary to use the mechanism
as erasure coding scheme to maintain a complete file in system, because almost all the
files have at least one copy in the system. Such, the hybrid scheme saves the bandwidth
on maintaining a copy of file on home peer.

3 Evaluation

We implemented the three schemes for high availability in a discrete-event packet level
simulator, p2psim [8]. The simulated network consists of 1024 peers. Each peer alter-
nately crashes and re-joins the network; the interval between successive events for each
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peer is exponentially distributed with a mean of given time. When a peer crashes, all
files, fragments and indexes on it are discarded. Each time a peer joins, it uses a dif-
ferent IP address and DHT identifier. There are 1000 same sized files in the system.
Distribution of requests follows Zipf-like distribution, in which relative probability of
requests for the i’th most popular file is proportional to 1/iα, where α is set as 0.74
(average of six traces shown in [11]). We did two sets of experiments: different peer
availability and different lookup rate. In different peer availability, average peer avail-
ability ranges from 30% to 90%. In different lookup rate, average number of lookups
during peer’s live time ranges from 2 to 20. Each simulation runs for a simulation time
of 6 hours; statistics are collected only during the second half of the simulation time.
We use m = 7, which is the number of fragments to reconstruct original object as used
in CFS [6]. The target file availability is set to 99.9% which is the availability that end
users might expect from today’s web services [12]. Finally, each data point in our plots
represents the average over 5 trials.

We evaluate three redundancy schemes using two primary metrics:

1. Redundancy factor is the total storage used to achieve target availability divided by
storage needed to store one copy of the whole file.

2. Bandwidth ratio is the total maintenance bandwidth incurred due to (1) maintaining
file availability, and (2) maintaining a copy of each file on home peer for erasure
coding scheme, divided by total bandwidth due to serving file requests. Bandwidth
on maintaining routing table and looking up is neglectable relative to maintenance
bandwidth (1) and (2). A bandwidth ratio of 0.1 implies that the bandwidth over-
head of maintaining availability is 10% as much as the system must consume for
normal operations.

Bandwidth ratio is regarded as more important factor in this paper, since idle band-
width is scarcer relative to idle disk space.

3.1 Redundancy Factor

In Figure 2, each line corresponds to a particular scheme for high availability. Figure 2
demonstrates that the erasure coding scheme’s line goes generally the same as predicted
in Figure 1, but the replication scheme’s does not, especially when peer availability goes
beyond 60%. While the erasure coding scheme makes the least use of user downloaded
files, leaving only a fragment in cache, the replication scheme shares the whole user
downloaded file. Meanwhile, the higher average peer availability is, the less copy loss
rate is. The replication scheme’s redundancy factor remains high with high average peer
availability, due to too many copies of popular files living in system.

Figure 2 also shows that although average peer availability varies from 30% to 90%,
the hybrid scheme’s redundancy factor changes not obviously, between 8.5 and 9.4.
When peer’s churn rate is intensive, the hybrid scheme takes the advantage of erasure
coding to save required storage space. When peer’s average availability is high, the
hybrid scheme’s redundancy factor does not continue falling, and even increase instead.
Its reason is the same as the replication scheme: too many copies of popular files living
in system. This extra redundancy is harmless. Useless copies can be discarded by user
or replacement function.
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3.2 Bandwidth Ratio

Figure 3 shows that the replication scheme saves more bandwidth than the erasure cod-
ing scheme when average peer availability is higher than 48%, and the erasure coding
scheme performs better than the replication scheme in the other case. The replication
scheme shares user download files to reduce the time and transfer load on maintenance.
The replication scheme is effective in communities with high average peer availabil-
ity, because most files are kept at desired availability level by user downloads. But in
highly dynamic communities, due to frequent peer joining and leaving, user downloads
do not compensate for the loss of copies. In this case, the erasure coding scheme shows
its advantage in achieving higher availability increment than replication does with the
same bandwidth consumption; or conversely, requiring less bandwidth for the same
increment of availability level.
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Fig. 3. Bandwidth ratio for three nines of per-file availability, as a function of average peer avail-
ability, for replication, coding and replication+coding

The highlight of Figure 3 is that the hybrid scheme of replication and coding
achieves the best overall performance on bandwidth ratio. The hybrid scheme makes
use of user download files as replication scheme, and maintains availability using era-
sure coding. When average peer availability is higher than 70%, the replication and the
hybrid scheme consume approximately the same bandwidth on maintenance, because
almost all of files’ availability is high enough. When average peer availability is lower
than 70%, the hybrid scheme’s advantage is obvious. The hybrid scheme shares user
downloaded files for subsequent accesses to save maintenance bandwidth. Another rea-
son why the hybrid scheme saves more maintenance bandwidth than the erasure coding
scheme is that the hybrid scheme do not need extra mechanism to maintain a copy of
the file on home peer.

Figure 4(a) shows the situation which we might expect to see in a corporate or uni-
versity environment with average peer availability is 80.7% [4]. It demonstrates that the
more intensive request rate is, the less bandwidth ratio requires. While bandwidth ratio
is a relative criterion, the absolute bandwidth overhead should also be paid attention to
as shown in Figure 4(b). Figure 4(b) shows that while the replication and the hybrid
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Fig. 4. Bandwidth ratio and number of file transferred on maintenance for three nines of per-file
availability when average peer availability is 80.7%, as a function of lookup rate, for replication,
coding and replication+coding. Where request rate is average number of requests issued during a
peer’s lifetime.

scheme’s number of transferred files on maintenance1 falls with increment of request
rate, erasure coding scheme’s absolute maintenance bandwidth overhead decreases not
obviously. This proves that sharing user downloaded files for subsequent accesses will
considerably reduce the bandwidth on maintenance.

Figure 4 also demonstrate that the hybrid scheme of replication and erasure coding
achieves better performance on bandwidth saving, especially when user request rate is
low. When request rate is larger than 10, the replication and hybrid scheme’s bandwidth
ratio are extremely adjacent and close to x-axis. File or fragment transfer is rarely per-
formed, because most of files’ availability is maintained at desired level by abundant
user downloaded files.

4 Conclusion and Future Work

This paper takes user download behavior into account to evaluate redundancy schemes
in data storage and share systems. Experiment results show that unlike previous com-
parisons argued: the replication scheme saves more bandwidth than the erasure cod-
ing scheme, although it requires more storage space, when average peer availability is
higher than 48%. When average peer availability is higher than 70%, the replication
scheme consumes approximately the same bandwidth on maintenance as the hybrid
scheme. Besides, the replication scheme introduces less complexity into system than
the other two. So the replication scheme is a good choice, in high peer availability en-
vironments, e.g. university environment.

1 Bandwidth overhead of the erasure coding scheme and the hybrid scheme is measured in terms
of fragments. For comparison, their transferred number of fragments should be converted to
number of files.
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The erasure coding scheme requires less storage space to reach the availability level
than replication with the same average peer availability, and consumes less maintenance
bandwidth in highly dynamic environment. But it suffers from heavier maintenance
bandwidth overhead than the replication, when average peer availability is higher than
48%, and introduces complexity into the system: not only encoding and decoding of
fragments, but also entire system design complexity.

The highlight of this paper is that sharing user downloaded files for subsequent
accesses (replication) and meanwhile utilizing erasure coding to maintain files’ avail-
ability will achieve better performance: saving more bandwidth with acceptable redun-
dancy factor (less than 9.4). The superiority of the hybrid scheme on saving mainte-
nance bandwidth is obviously shown when average peer availability is lower than 70%.
The experiment results also show that the hybrid scheme saves more bandwidth than the
other two, when user request rate is low relative to peer churn rate. The hybrid scheme
not only performs well in environments with high peer availability, but also demon-
strates its advantages in highly dynamic communities. The disadvantage of the hybrid
scheme is that it introduces complexity into the system.

The hybrid scheme achieve the best bandwidth saving, but in highly dynamic peer
communities where average peer availability is lower than 0.5, its bandwidth ratio is still
high, making the storage system suffer from poor scalability. Noting that bandwidth is
scarcer relative to idle disk space, the future work should focus on saving bandwidth.
Designing new coding algorithms and making further use of file copies already down-
loaded on network may be good for bandwidth saving. However, we leave these as
issues for future work. This paper did not consider the storage limitations of the peers,
we will consider it with some replacement strategies in the future.
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