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Abstract—Opportunistic networking is an important technique
to enable users to communicate in an environment where
contemporaneous end-to-end paths are unavailable or unstable.
To support end-to-end messaging in opportunistic networks, a
number of probabilistic routing protocols have been proposed.
However, when nodes are selfish, they may not have incentives to
participate in probabilistic routing, and the system performance
will degrade significantly. In this paper, we present a novel
incentive scheme for probabilistic routing that stimulates selfish
nodes to participate. We not only rigorously prove the properties
of our scheme, but also extensively evaluate our scheme using
GloMoSim. Evaluation results show that there is an up to 75.8%
gain in delivery ratio compared with a probabilistic routing
protocol providing no incentive.

I. INTRODUCTION

With the broad deployment of mobile wireless devices,

opportunistic networking is becoming increasingly important

in Mobile Ad-Hoc Networks (MANETs) and Delay-Tolerant

Networks (DTNs), as well as mobile social networking ap-

plications. Opportunistic networking techniques enable users

to communicate in an environment where contemporaneous

end-to-end paths are unavailable or unstable. In such an

environment, due to transitivity of links, messages are usually

passed from one user to another in a store and forward fashion.

Forwarding opportunities arise whenever mobile devices/users

come into the communication range of each other. In contrast

to traditional networking techniques, in which messages are

delivered along preexisting end-to-end paths, opportunistic

networking allows a message to be transferred from its source

to its destination even when such a path from the source to

the destination never exists.

In recent years, many routing protocols have been proposed

to support end-to-end messaging in opportunistic networks

(see [7] for a survey). A large portion of these existing

protocols (e.g., [2], [10]) are probabilistic routing protocols.

In probabilistic routing protocols, when a node carrying a

message meets another node, it estimates the probability of the

latter node being able to bring the message to the destination.
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This probability is used to decide whether the message should

be forwarded to the latter node or not. Existing research

has shown that probabilistic routing is a very practical and

effective technique in opportunistic networking.

The adoption of such probabilistic routing protocols, how-

ever, might lead to reduced network performance when nodes

have selfish behavior. In particular, opportunistic networks,

like many distributed autonomous systems, suffer from com-

mon incentive problems such as the free-rider problem [1]

when nodes are selfish. If selfish nodes are not appropriately

rewarded, they do not have incentives to behave cooperatively.

Hence, the performance of the network could degrade signifi-

cantly, because only a small fraction of user nodes contribute

their resources. Therefore, it is crucial to have a good incentive

scheme that stimulates selfish nodes to cooperate in probabilis-

tic routing.

Although much progress has been made in designing in-

centive schemes for wireless networks [4], most of existing

incentive schemes are based on contemporaneous end-to-end

connections, and thus do not apply to probabilistic routing.

It is still an open problem to design incentive schemes for

probabilistic routing. The objective of this paper is to study

this open problem. Specifically, we would like to answer this

question: if we are given a probabilistic routing protocol, how

can we make it incentive compatible? That is, how can we

enhance a probabilistic routing protocol such that selfish nodes

will have incentives to cooperate when using this protocol?

To answer this question, we propose an approach based

on bargaining. Bargaining theory [11], [12] captures both the

competitive property and the positional property of a negoti-

ation process between two or more parties. The intersecting

yet conflicting interests of the different parties lead to a game

between the involved parties, through which an agreement is

reached.

In this paper, we model the message exchange process

between a pair of nodes in probabilistic routing as a bargaining

game. Hence, when a message is transferred from its source

to its destination, it goes through a series of bargaining game.

In each of these games, the message is traded from its current

carrier to a node with even higher valuation. When this

series of bargaining games is completed, the message reaches

its destination. Based on analysis of the bargaining game,
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we design an incentive scheme that stimulates cooperative

behavior in probabilistic routing. Below is a summary of our

contributions in this paper:

• We model the process of probabilistic routing as a series

of bargaining game.

• We present a novel and practical scheme to make a

broad class of probabilistic routing protocols incentive

compatible. We rigorously prove that, if our incentive

scheme is used, there exists a unique subgame perfect

equilibrium, in which nodes behave cooperatively. Here,

intuitively, subgame perfect equilibrium means that a

player can not get more benefit by unilaterally deviating

from the equilibrium strategy in any subgame starting at

her move. So, being cooperative is always to the best

interests of the selfish nodes.

• We extensively evaluate our scheme using GloMoSim.

Our evaluation results verify that, with our scheme,

participation is to the best interest of each node, and

there is an up to 75.8% gain in delivery ratio if compared

with a probabilistic routing protocol having no incentive

provided.

The rest of this paper is organized as follows. In Section II,

we present technical preliminaries. In Section III, we present

our message trading scheme to achieve incentive compatibility

for probabilistic routing. In Section IV, we report evaluation

results. In Section V, we review related works. In Section VI,

we draw conclusions.

II. TECHNICAL PRELIMINARIES

Before presenting our system architecture and developing

our scheme, we first review the probabilistic routing protocols

we consider. We also review relevant game theoretic solution

concepts.

A. Basic Probabilistic Routing Protocol

We assume we are given a basic probabilistic routing pro-

tocol, which is an abstraction of a broad class of probabilistic

routing protocols. Probabilistic routing protocols are based on

the observation that, in practice, nodes are not likely to move

around randomly, but rather move in a predictable fashion

based on mobility patterns. If a pair of nodes has met several

times before, it is likely that they will meet again in the

future. Such mobility patterns can be exploited to improve

performance of routing protocol in opportunistic networks.

To exploit the mobility patterns, a probabilistic metric called

delivery probability was introduced. Let Pa,b ∈ [0, 1] be the

delivery probability from node a to a destination node b.
This metric indicates how likely that a node will be able

to deliver a message to the destination. Each node stores

a matrix of delivery probabilities. When two nodes meet,

they exchange their delivery probability matrices. This matrix

is used to update the internal delivery probability matrix.

Then the delivery probability matrix is used to decide which

message to forward from one node to another.

Formally, a basic probabilistic routing protocol works as

follows.

Forwarding Algorithm: When a node a meets another node

b, they perform a message exchange through a number of steps.

First, node a gives node b a list of the messages node a carries

as well as their destinations. Each message is also annotated by

a with a’s delivery probability. Node a receives the same list

from node b and calculates its delivery probabilities of node

b’s messages. Node a then requests from node b the messages

of which it has higher delivery probability than node b by at

least θ.

Delivery Probability Calculation: The calculation of the

delivery probability has two parts. The first part is to calculate

each node’s probability of meeting each of the other nodes. Let

ρa,b be the estimated probability that node a and node b meet.

Here ρa,b is computed based on the recorded movement events

of the nodes during the last τ time slots, where a time slot is

a fixed length of time (e.g., 1 hour or 1 day, depending on the

movement speed of a typical node). The basic probabilistic

routing protocol specifies a function f1(), which computes

ρa,b = f1

({

et−t̂
a,b |t̂ ∈ {1, 2, . . . , τ}

})

,

where t is the current time slot, et−t̂
a,b indicates whether node

a and node b met in time slot t− t̂.
Next, the transitive property of previously computed meet-

ing probabilities is exploited to calculate the delivery probabil-

ity Pa,b. The basic probabilistic routing protocol also specifies

a function f2(), which computes

Pa,b = f2 ({(a, b, ρa,b)|a, b ∈ V }) ,

where V is the set of nodes in the system.

Note that, by using different functions for f1() and f2(),
we can get different instances of basic probabilistic routing

protocol. For example, PROPHET [10] and MV [2] are both

instances of the basic probabilistic routing protocol. Protocols

in [5], [6] are also instances of this class after scaling the

estimation to the range [0, 1].
As we have mentioned, the existing probabilistic routing

protocols lack incentive mechanisms, and accordingly selfish

intermediate nodes may not be willing to forward messages

for others for free.

B. Game Theoretic Model and Solution Concepts

To study the incentive compatibility of probabilistic routing,

we model the message forwarding process as a bargaining

game [12].

Specifically, we isolate a pair of nodes, who come into the

communication range of each other, and model the interaction

between them for the possible transfer of a message as a

bargaining game. One of these two nodes is the current carrier

of the message. It determines whether to forward the message

to the other node. We view this process as bargaining, where

the current carrier of the message is the seller of the message,

and the other node is the buyer. Hence, there are two players

in the game, the seller S and the buyer B. The set of players

is N = {S,B}. These two players need to agree on a price

at which S sells the message to B.

The bargaining game is played in rounds. In each round,

the seller S makes a proposal, then the buyer B decides to

accept it or not. Acceptance ends the game while rejection

leads to the next round. A strategy si of player i ∈ N is

790



a function that assigns an action to player i when it is its

turn to move. As a notational convention, −i represents the

player other than player i in the bargaining game. Similarly,

s−i represents the strategies of the player other than player i.
Note that s = (si, s−i) is a strategy profile.

If an agreement on purchase price x is reached in round r,

then the two players’ utilities are:

uS = x− VS(m)− T (m)− cS(r), (1)

uB = VB(m)− P (m)− x− cB(r), (2)

where Vi(m) is the valuation of message m to player i, T (m)
and P (m) are the costs associated with the transmission and

reception of message m, cS(r) and cB(r) are the bargaining

costs of seller S and buyer B in the procedure of the game.

We note that Vi(m) is the integrated message valuation of

node i and its downstream nodes. In a bargaining game, if −i
is i’s downstream node, then V−i(m)−Vi(m)−T (m)−P (m)
is this game’s profit margin.1 Vi(m) is determined as follows:

assume that whoever delivers message m to the destination

node can get a payment ω from the source node. Considering

the previously defined delivery probability Pi,d, the valuation

of a message m at node i is as follows.

Vi(m) = ω · Pi,d.

Clearly, a node with a higher delivery probability of a message

also has a higher valuation of the message. Hence, a node

has incentives to purchase the message from nodes who

have lower delivery probabilities. (Consequently, the message

is forwarded to the node with higher and higher delivery

probability, and finally reaches the destination.) For simplicity,

we assume that the source and the destination nodes in a

session are trustworthy, and do not consider their utilities in

this work. However, we will consider the case in which both

the source and the destination nodes act as game players in

our future work.

Assume that each of the two player nodes S and B incurs

a cost (e.g., power consumption) σ > 0 for every round of the

game. Then we have cS(r) = cB(r) = r · σ.

Let R be the maximum number of rounds for bargaining.

If the players do not reach any agreement after R rounds of

bargaining, then their utilities are

uS = −cS(R), (3)

uB = −cB(R). (4)

In Section ??, we assume that the value of R is known by

all nodes.2 We also assume that the players always keep bar-

gaining for the possible message exchange, until an agreement

is reached or the bargaining reaches the last round.

Bargaining game is a special case of extensive game with

perfect information [12]. In an extensive game with perfect

information Γ, a history h is a sequence of actions starting

from the beginning of the game. A subgame is the remaining

part of the game following a specific history. Denote by Γ|h the

1We do not deduct the bargaining costs here, because they are variables
depending on the design of the bargaining scheme.

2This is the case when, for example, nodes are equipped with GPS systems,
which enable they to calculate the length of communication time by geometry,
given communication ranges, speeds, and heading directions of the two nodes.

subgame that follows the history h. Let si|h denote the strategy

that si induces in the subgame Γ|h, and ui|h denote the utility

of player i in subgame Γ|h. We now review commonly used

solution concepts for extensive game with perfect information.

In extensive games, an important solution concept is sub-

game perfect equilibrium [12]:

Definition 1 (Subgame Perfect Equilibrium): A subgame

perfect equilibrium of an extensive game with perfect

information Γ is a strategy profile s⋆ such that for every

player i ∈ N and every nonterminal history h, after which it

is player i’s turn to take an action, we have

ui|h(s
⋆
i |h, s

⋆
−i|h) ≥ ui|h(si, s

⋆
−i|h),

for every strategy si of player i in the subgame Γ|h.

The game studied in this paper has a finite horizon, which

means that the number of rounds is finite and the number of

actions at any round is finite.

We can restrict our attention, for each player i and each

subgame, to alternative strategies that differ from s⋆i in the

actions they prescribe after just one history. That is to say, a

strategy profile is a subgame perfect equilibrium if and only if

in each subgame the player who makes the first move cannot

obtain a better utility by changing only his initial action.

III. MESSAGE TRADING SCHEME

In this section, we propose a scheme that stimulates nodes

to participate in the game, so that messages can be forwarded.

The main idea of our scheme is to influence the players’

strategy by introducing a carefully designed transaction fee.

Denote by X(m,x) the transaction fee of the message m at

price x. In the message trading game, this transaction fee is

included in the final purchase price. That is to say, the seller

gives out some of her profit as transaction fee when accessing

the CCC to clear the transaction. The advantage of introducing

the transaction fee is that, by carefully choosing a formula

for X(m,x), we can change the seller’s best strategy in the

game, such that her offer in the first round is a “reasonable”

price for the message. This price is “reasonable” in the sense

that it makes the transaction profitable for both parties. That

is, both parties will have positive utilities in the game. Recall

that a node request a message on which it has at least θ higher

delivery probability. In our scheme, a message trading game

takes place only on a message m such that VB(m)−VS(m)−
T (m)−P (m) > 2σ. Furthermore, accepting this “reasonable”

price is also to the best interest of the buyer.

Our designed formula for X(m,x) is as follows:

X(m,x) =

{

γ if x ≤ VS(m)+VB(m)+T (m)−P (m)
2

k(x− VS(m)+VB(m)+T (m)−P (m)
2 ) + γ o.w.,

where γ ≤ (VB(m) − VS(m) − T (m) − P (m))/2 − σ is a

very small primary transaction fee, and k = 2−2γ/(VB(m)−
VS(m)−T (m)−P (m)). We note that the advantage of using

the proposed formula is twofold. On one hand, since γ is very

small, the transaction fee is also very small compared with

the utilities got by the players, when the purchase price is in

reasonable range (x ≤ (VS(m)+VB(m)+T (m)−P (m))/2).

On the other hand, using the proposed formula, the equilibrium

purchase price is (VS(m)+VB(m)+T (m)−P (m))/2, which
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makes the utility difference between seller and buyer is only

γ. When γ converges to 0, seller and buyer will have the same

utility in the transaction.

Figure 1 gives a complete description of our scheme.

Suppose two nodes come into the communication range

of each other.

1) The two nodes exchange the lists of the message

they carry. Suppose one of the nodes (buyer B)

wants to buy a message m from the other node

(seller S).

2) In each round r ≤ R, starting from r = 1, the

seller S makes a proposal (a purchase price) x,

which the buyer B then either accepts or rejects.

Acceptance ends the game while rejection leads to

round r + 1.

3) If an agreement is reached, the seller S transmits

the message m to the buyer B; and the buyer

B pays x to the seller S. If no proposal is ever

accepted then the outcome is the disagreement

event.

4) When the seller S has a connection to the credit

clearance center (CCC), it clear the transaction and

pays transaction fee X(m,x).

Fig. 1. Message Trading Scheme.

The following theorem shows the analysis result of our

scheme. Due to limitations of space, we omit the proof here.

For details of proof, please refer to our technical report [14].

Theorem 2: If the above scheme is used, then there exists

a unique subgame perfect equilibrium. In the subgame perfect

equilibrium, the seller S always proposes

x⋆ =
VS(m) + VB(m) + T (m)− P (m)

2
,

in each round r; the buyer B only accepts proposal x for

which

x ≤

{

VS(m)+VB(m)+T (m)−P (m)
2 + σ if r < R

VB(m)− P (m) if r = R,

and rejects any other proposals.

Note that the structure of message trading game allows the

game to continue for R rounds, but under our scheme, an

agreement is reached immediately at price x = (VS(m) +
VB(m)+T (m)−P (m))/2 in the subgame perfect equilibrium.

IV. EVALUATIONS

In this section, we integrate our scheme with MV routing [2]

and evaluate it using GloMoSim [13].

A. Methodology

We consider wireless networks with 10, 20, 30, and 40

mobile nodes randomly distributed in a terrain area of 10

km by 10 km. Each node has three locations in the physical

terrain, and randomly travel among these locations at a speed

uniformly chosen between 10 m/s and 30 m/s. After reaching

its destination, the node stays there for 5 minutes.3 Nodes

use IEEE 802.11 (at 11Mbps) as the MAC layer protocol.

The radios’ transmission range is set to 250 meters. Nodes

broadcast hello message every 1 second. The length of time

unit used in probabilistic routing protocols is set to 1 minute.

Nodes generate messages with uniform time interval of 10

minutes. The destination of the message is randomly selected

from the other nodes. A message is dropped if it can not be

forwarded to another node in 1 hour. Each simulation runs

for 24 hours, and is repeated 10 times with different random

seeds. Every node has an initial credit of 5000, and pays 100

credit for each delivered message.

Node Behaviors: In our evaluations, we compare two types

of node behavior:

• Cooperative behavior: Following the scheme faithfully.

• Selfish behavior: Not be willing to participate in message

forwarding for others. We report results when 30% and

70% of the nodes are selfish.

B. Impacts of Selfish Behavior on Cumulative Utility

In our first set of evaluations we demonstrate that being

cooperative is better than being selfish in terms of cumulative

utility.
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Fig. 2. Cumulative utilities obtained by node 13 in a network with 20 nodes.
Four cases are compared: A) Behaving cooperatively when all the other nodes
are cooperative; B) Behaving cooperatively when 30% nodes are selfish; C)
Behaving cooperatively when 70% nodes are selfish; D) Behaving selfishly
no matter what the others do.

Figure 2 shows the cumulative utilities of node 13 in a 20-

node network . We note that the results for the other players are

similar to that of player 13. We can see that the node always

has positive and increasing cumulative utility when it behaves

cooperatively no matter what the other nodes do. In contrast,

the node’s cumulative utility always stays at 0 throughout the

simulation if it behaves selfishly. Therefore, for an individual

node, being cooperative can always get a better utility than

being selfish.

Figure 3 shows the cumulative distribution function (CDF)

of the achieved cumulative utilities for 400 tracked node

records. This result is composed of 10 repeated simulations

with different random seeds. Each simulation is on a network

with 40 nodes. The figures show the results when all nodes are

cooperative and when some of them are selfish. We observe

that the cumulative utilities achieved by collectively being

3We evaluate the performance of our schemes on a 3-waypoint mobility
model instead of human movement traces, because the time spans of available
human movement traces are not long enough for this evaluation. The range
of movement speed roughly captures the average driving speeds in city.
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Fig. 3. CDF of cumulative utilities achieved with our schemes for 400
tracked node records. Three cases are compared: A) 100% nodes behave
cooperatively; B) 30% nodes behave selfishly; C) 70% nodes behave selfishly.

cooperative are higher than those of partially being selfish.

Intuitively, this is because when more nodes are cooperative,

nodes get more opportunities to forward messages, which re-

sults in getting more utilities. These figures again demonstrates

that being cooperative is better than being selfish in getting

utility.

C. Impacts on Delivery Ratio

Our second set of evaluations are to demonstrate that our

scheme improve the delivery ratio of probabilistic routing in

face of selfish nodes.
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Fig. 4. Average delivery ratio as a function of the number of nodes in the
network. Standard deviations are shown using lines. Three cases are compared:
A) 100% nodes behave cooperatively; B) 30% nodes behave selfishly; C) 70%
nodes behave selfishly.

Figure 4 shows the average delivery ratio as a function of

the number of nodes in the network when all nodes behave

cooperatively and when some of the nodes behave selfishly.

The figures show that the average delivery ratio increases with

the number of nodes in the network, and the highest delivery

ratio is always achieved by 100% being cooperative, which can

be guaranteed by our incentive schemes. However, the larger

number of nodes is, the more significant advantage of using

our schemes is. Particularly, our schemes achieves 11.1-22.8%

and 28.8-75.8% gain in delivery ratio in the cases where 30%

and 70% of the nodes behave selfishly, respectively.

V. RELATED WORK

In this section we briefly review the related works on

incentive-compatible message/packet forwarding in wireless

networks.

We focus on the works using credit, or virtual money,

as compensation for participating the game and forwarding

packets. Buttyan and Hubaux was the first to use virtual money

for the packet forwarding [3]. Their solution needs the help

of a piece of tamper-proof hardware on each node. Zhong et

al.’s Sprite [16] is another simple credit-based solution but

it does not require tamper-proof hardware. Another solution

to this problem was due to Jakobsson et al., using a micro-

payment scheme [8]. Zhong et al. combined problems of route

selection and packet forwarding and designed a protocol using

an integrated approach of game theory and cryptography [15].

Lee et al. presented a secure incentive framework for commer-

cial ad dissemination in vehicular networks [9]. Different from

existing works, our scheme integrates bargaining and proba-

bilistic routing to provide incentives for message forwarding

in opportunistic networks.

VI. CONCLUSIONS

In this paper, we have presented a novel and practical

scheme to integrate incentive compatibility into a class of

probabilistic routing protocols for opportunistic networks. We

have integrated our scheme with MV routing and evaluated

them using GloMoSim. Evaluation results have shown that:

A) behaving cooperatively is to the best interest of each node

under our scheme; B) our incentive scheme can substantially

improve network delivery ratio (11.1%-75.8% in our evaluated

settings) in the presence of selfish nodes.
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