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Abstract—Auctions are believed to be effective methods to solve
the problem of wireless spectrum allocation. Existing spectrum
auction mechanisms are all centralized and suffer from several
critical drawbacks of the centralized systems, which motivates the
design of distributed spectrum auction mechanisms. However,
extending a centralized spectrum auction to a distributed one
broadens the strategy space of agents from one dimension (bid)
to three dimensions (bid, communication, and computation), and
thus cannot be solved by traditional approaches from mechanism
design. In this paper, we propose two distributed spectrum
auction mechanisms, namely distributed VCG and FAITH. Dis-
tributed VCG implements the celebrated Vickrey-Clarke-Groves
mechanism in a distributed fashion to achieve optimal social
welfare, at the cost of exponential communication overhead.
In contrast, FAITH achieves sub-optimal social welfare with
tractable computation and communication overhead. We prove
that both of the two proposed mechanisms achieve faithfulness,
i.e., the agents’ individual utilities are maximized, if they follow
the intended strategies. We also implement FAITH and evaluate
its performance in various setups. Evaluation results show that
FAITH achieves superior performance compared with the Nash
equilibrium based approach.

I. INTRODUCTION

The naturally limited radio spectrum is becoming more and

more scarce with the increasing number of wireless appli-

cations. Unfortunately, traditional static spectrum allocations

are expensive and inefficient, causing newly emerged wireless

services and applications unable to meet their demands for

spectrum [1]. To overcome the limitations of traditional spec-

trum allocation, auctions have become natural choices due to

their fairness and efficiency.

In recent years, a number of spectrum auction mechanisms

(e.g., [2]–[8]) have been proposed. These mechanisms achieve

some attractive properties, such as strategy-proofness and ap-

proximate social welfare. Here, intuitively, strategy-proofness
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means that one can maximize her payoff by truthfully reveal-

ing her private valuation on the spectrum; social welfare means

the sum of auction winners’ valuations on the allocated spec-

trum. However, these existing spectrum auction mechanisms

rely on a centralized and trusted authority to perform as the

auctioneer and to process the auction procedures.

The centralized spectrum auction mechanisms have several

critical drawbacks [9]. The first is that the functionality of the

centralized mechanisms is based on the assumption that there

exists a trusted central authority. But in practice, especially in

the secondary spectrum market for wireless networks, a trusted

central authority may not always exist. The second drawback

is that the scalability of the centralized spectrum auctions can

be poor. Since the auctioneer needs to collect all the bids in

order to calculate the auction outcome, the agents need reliable

ways to deliver their bids to the auctioneer. Unfortunately,

such communication channels may not always exist between

the auctioneer and the agents in wireless networks, especially

when the wireless network is not fully connected. The third

drawback, which is not only limited to spectrum auction

mechanisms, but also applies to centralized systems in general,

is robustness. Once the central authority breaks down, the

entire system collapses.

To tackle the above drawbacks of the centralized spectrum

auction mechanisms, we propose to implement distributed

spectrum auction mechanisms. However, designing a distribut-

ed spectrum auction mechanism is much more challenging.

Most of all, without the management of a central authority,

the role of agents are now two-fold, i.e., not only to compete

with each other for the wireless spectrum (as they do in

centralized mechanisms), but also to cooperate in determining

the outcome of the auction. This greatly broadens the strategy

space of the agents from one dimension (i.e., bid reporting)

to three dimensions (i.e., bid reporting, message passing, and

computation) [10], and thus are beyond the scope of traditional

mechanism design perspective.

Second, unlike conventional goods, wireless spectrum can

be spatially reused by multiple agents as long as their trans-

missions do not reduce each other’s Signal to Interference

and Noise Ratio (SINR) below a predefined threshold. Such

a unique property makes it computationally intractable when

calculating an optimal spectrum allocation for a large scale



wireless network, even in a centralized manner. Due to lack

of global information of inter-agent interferences, optimizing

the spectrum allocation with local knowledge in a distributed

wireless network is really challenging.

Third, due to wireless devices’ limited computation ca-

pability and communication bandwidth, traditional secure

multiparty computation cannot be directly applied, given its

high computation and communication overhead. Therefore,

the problem of designing a manipulation-resistant distributed

auction mechanism need to be carefully considered.

In this paper, we characterize the spectrum allocation prob-

lem from the perspective of distributed algorithmic mechanism

design (DAMD) [9] and propose two complementary distribut-

ed auction mechanisms, i.e., distributed VCG and FAITH.

Distributed VCG is an extension of the celebrated Vickrey-

Clarke-Groves (VCG) mechanism [11]–[13] to the distributed

scenario. It collects bidding information bottom-up based

on a carefully constructed pseudo-tree, and disseminates the

optimal allocation top-down following the same tree structure.

The payment for using the allocated spectrum is determined

in the VCG manner. However, the optimal spectrum allocation

is achieved at the cost of high communication overhead.

Therefore, distributed VCG can only work in sparse secondary

spectrum markets. We further present FAITH, which achieves

sub-optimal spectrum allocation with bounded computation

and communication overhead in general cases. Our analysis

shows that both of the two proposed mechanisms are faithful,

i.e., achieving Incentive Compatibility (IC), Communication

Compatibility (CC), and Algorithm Compatibility (AC) [10],

[14]. Here, intuitively, IC, CC, and AC mean that none of

the agents has the incentive to deviate from the prescribed

information-revelation strategy, message-passing strategy, and

computation strategy of the auction mechanism, respectively.

Our main contributions are listed as follows.

• To the best of our knowledge, we are the first to consider

the problem of distributed algorithmic mechanism design for

secondary wireless spectrum markets. We extend the cele-

brated VCG mechanism to a distributed scenario, and prove

that our extension is a faithful implementation of spectrum

auction mechanism, achieving optimal social welfare.

• Second, we propose a more practical and efficient faithful

distributed spectrum auction mechanism, called FAITH.

FAITH achieves sub-optimal social welfare with low com-

putation and communication overhead.

• Finally, we implement FAITH and extensively evaluate

its performance. Our evaluation results show that FAITH

achieves good performance in terms of social welfare with

low communication overhead.

The rest of the paper is organized as follows. In Section II,

we present the technical preliminaries. Then, the distributed

VCG and FAITH are presented in Section III and Section IV,

respectively. In Section V, we evaluate FAITH and present

numerical results. Then, we briefly review related work in

Section VI. Finally, we conclude this paper in Section VII.

II. PRELIMINARIES

In this section, we describe our auction model for wireless

spectrum allocation, and present related solution concepts.

A. Model of Distributed Spectrum Auction

We model the problem of channel allocation in the sec-

ondary spectrum market as a distributed auction, in which

there are a number of orthogonal channels to be leased out and

a set of channel buyers, called agents, who want to lease the

channels to serve their subscribers and make profits. Multiple

agents can share the same channel if they do not interfere with

each other. Without the control of an auctioneer, a distributed

auction is conducted by the rational agents themselves in

the market. The objective of this auction is to efficiently

select winners among the agents satisfying their interference

constraints, and also to prevent the agents from manipulating

the auction outcome.

Specifically, we consider a set C = {c1, c2, . . . , cm} of

orthogonal and homogeneous channels. Information of the

channels is public and known to the agents. Each channel

can be simultaneously allocated to multiple non-conflicting

agents, i.e., they can provide services to their subscribers si-

multaneously with an adequate SINR. As shown in papers [7],

[15], the interference between the agents can be represented

by a conflict graph. We assume that the agents in one auction

belong to the same connected component in the conflict graph.

For a conflict graph with multiple connected components, each

connected component can conduct an independent distributed

spectrum auction. We also assume that conflicting agents can

communicate with each other through a commonly known

control channel, i.e., the communication range of the agents

on the control channel is larger than the interference range

of them on working channels. This is backed by the existing

communication protocols, e.g., the communication range of

IEEE 802.11b at a data rate of 1Mbps is normally larger than

the interference range of IEEE 802.11n at 150Mbps.

We also consider a set A = {a1, a2, . . . , an} of agents.

Each agent ai ∈ A has a per-channel valuation vi, which is

commonly known as type in the literature and is private to

the agent herself. The agent ai also has a strict demand of

di channels. Any winning agent ai has to pay pi for allocated

channel(s). We define the utility of agent ai to be the difference

between her total valuation and payment, i.e., ui , di×vi−pi.

Similar to papers [16]–[18], we assume that there is a Credit

Clearance Service (CCS), who neither participates in the auc-

tion to determine the allocation and payment, nor needs to be

always online during the auction. In distributed VCG, the CCS

collects the payments from the agents through an intermittently

connected wireless overlay network. In FAITH, the CCS subtly

controls agents’ manipulated strategies on computation and

communication by conducting an audit process.

In this paper, we consider that the agents are rational

but helpful, meaning that although self-interested, each of

the agents follows the prescriptions of the spectrum auction

mechanism, if no unilateral deviation can lead to a better

utility. We assume that there is no collusion among the agents.



In contrast to the agents’ individual objectives, the overall

objective of the spectrum auction is to maximize social welfare

(SW ), which is the sum of winning agents’ valuations on their

allocated channel(s), i.e.,

SW ,
∑

ai∈W

(di × vi),

where W is the set of winners.

B. Solution Concepts

Given the auction model, we review some important solu-

tion concepts used in this paper. First, we recall the definition

of distributed mechanism.

Definition 1 (Distributed Mechanism [9], [14]). A distributed

mechanism M = (g,Σ, sM ) defines a determination rule g,

a feasible strategy space Σ = Σ1 × Σ2 × . . . × Σn, and a

prescribed strategy profile s
M = (sM1 , sM2 , . . . , sMn ).

For any agent ai, the intended strategy sMi is composed

of three sub-strategies, i.e., information-revelation strategy,

message-passing strategy, and computation strategy.

Definition 2 (IC, CC, AC [10], [14]). A distributed mechanism

achieves IC (resp. CC, AC) if no agent can gain higher utility

by deviating from intended information-revelation strategy

(resp. message-passing strategy and computation strategy) in

an equilibrium.

Definition 3 (Ex-Post Nash Equilibrium [9], [10]). A strategy

profile s
∗ is an ex-post Nash equilibrium of a distributed

mechanism M, if for any agent ai, any s′i 6= s∗i , we have

ui(g(s
∗
i , s

∗
−i)) ≥ ui(g(s

′
i, s

∗
−i)).

We now introduce the concept of faithful implementation.

Definition 4 (Faithful Implementation [10], [14]). A distribut-

ed mechanism M = (g,Σ, sM ) is a faithful implementation

of outcome g(sM ) when the prescribed strategy profile s
M is

an ex-post Nash equilibrium.

Intuitively, under a faithful distributed mechanism, the a-

gents’ individual utilities are maximized, if they follow the

prescribed strategies.

III. DISTRIBUTED VCG

In this section, we present a distributed extension of the

celebrated VCG auction mechanism.

Definition 5 (VCG mechanism [11]–[13]). A mechanism

(f, p1, . . . , pn) is Vickrey-Clarke-Groves (VCG) mechanism if

• Outcome function f : (v1, . . . , vn)→ K, ends up with k
∗ =

argmaxk∈K

∑
i vi(k), where K is a discrete choice set.

• Payment function pi(v1, . . . , vn) = hi(v−i)−
∑

j 6=i vj(k
∗),

where hi : V−i →R (i.e., hi does not depend on vi).

The outcome k∗ in VCG mechanism achieves optimal social

welfare. To implement the outcome function in a distributed

manner, we propose a distributed channel allocation algorithm,

which is inspired by the idea of Distributed Pseudo-tree
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Fig. 1. Pseudo-tree construction

Optimization Procedure (DPOP) [19], but has clear differences

from DPOP by supporting multi-channel requests and consid-

ering spectrum spatial reusability.

Our distributed VCG has three phases: pseudo-tree construc-

tion, channel assignment, and payment determination. It differs

from the traditional VCG by (1) supporting parallel search

for the optimal solution, and (2) imposing only polynomial

computation overhead on the root agent in channel assignment.

A. Pseudo-Tree Construction

We construct a pseudo-tree from the conflict graph so that

conflicting agents are organized in the same branch of the tree.

The relative independence of nodes lying in different branches

of the pseudo-tree facilitates parallel searches for the global

optimal result [20], [21]. Fig. 1 shows an example of pseudo-

tree construction, where Fig. 1(b) is a pseudo-tree constructed

from the conflict graph shown in Fig. 1(a).

In the pseudo-tree, we define P (ai) and C(ai) be the set of

parent and children of agent ai, respectively. Here, ai’s parent

and children are connected with ai by solid edges. We further

define PP (ai) and PC(ai) as the set of pseudo parents and

pseudo children of agent ai, respectively. In contrast, an agent

is connected with her pseudo parents and pseudo children by

dashed edges. For example, in Fig. 1(b), C(a1) = {a2, a5},
PC(a1) = {a4, a7}, P (a7) = {a6}, PP (a7) = {a1}.

To construct the pseudo-tree, we can employ a distributed

Depth-First Search (DFS) tree construction protocol [22]. Due

to limitations of space, we omit the detailed algorithm. We

assume that the pseudo-tree has already been constructed and

every agent has known her parent, children, pseudo parents,

pseudo children, and their levels in the pseudo-tree.

B. Channel Assignment

Our channel assignment algorithm consists of two phases:

bottom-up social welfare aggregation and top-down chan-

nel choice propagation. It supports both single-channel de-

mand and multi-channel demand. For clarity, we only discuss

single-channel demand, and thus the selection domain is

the same for any agent, i.e., ∀ai ∈ A, di = 1, Di =
{c1, c2, . . . , cm, NULL}. We put NULL in agents’ selection

domains in order to let the agents choose nothing when they

do not want to lease any channel.

Here, we define agent ai’s constraint view CV (ai) to be

the set of ai’s parent and pseudo parents, and any other

agents satisfying the following two conditions: (1) having

higher level than ai and (2) having a pseudo child located

in the subtree rooted at ai (e.g., CV (a4) = {a1, a2} and

CV (a6) = {a1, a5}). In our algorithm, “ai : ki” means “when



ai is allocated ki” and vi(ai : ki, aj : kj) is ai’s valuation

over the channel allocation that ai is allocated ki and aj is

allocated kj , where ki ∈ Di and kj ∈ Dj . Note that ai’s

valuation function equals to ai’s per channel valuation vi if

and only if ai is allocated a channel and none of her neighbors

are allocated the same channel.

Algorithm 1: Social Welfare Aggregation (ai)

1 if C(ai) = ∅ and P (ai) 6= ∅ then
2 CV (ai)← P (ai) ∪ PP (ai);
3 foreach kCV (ai) ∈ Πj∈CV (ai)Dj do
4 SWi(CV (ai) : kCV (ai))←

maxki∈Di

(

vi(ai : ki, CV (ai) : kCV (ai))
)

;

5 Send SWi to P (ai);
6 else
7 if C(ai) 6= ∅ and P (ai) 6= ∅ then
8 Collect aggregation messages {SWj |j ∈ C(ai)} ;
9 Extract CV (ai) from received SW messages;

10 foreach kCV (ai) ∈ Πj∈CV (ai)Dj do
11 SWi(CV (ai) : kCV (ai))←

maxki∈Di

(

vi(ai : ki, CV (ai) : kCV (ai))

+
∑

aj∈C(ai)
SWj(ai : ki, CV (ai) : kCV (ai))

)

;

12 Send SWi to agents in P (ai);

Algorithm 2: Choice Propagation (ai)

1 if P (ai) = ∅ then
2 k∗

i ← argmaxki∈Di

∑

ax∈C(ai)
SWx(ai : ki);

3 Send choice message 〈ai, k
∗
i 〉 to agents in C(ai);

4 else
5 Collect choice message from P (ai);
6 Extract CV (ai)’s channel assignment k∗

CV (ai)
;

7 k∗
i ← argmaxki∈Di

SWi(ai : ki, CV (ai) : k
∗
CV (ai)

);
8 foreach aj ∈ C(ai) do
9 Extract CV (aj)’s channel assignment k∗

CV (aj)
;

10 Send choice message 〈CV (aj),k
∗
CV (aj)

〉 to aj ;

1) Social Welfare Aggregation: The bottom-up SW ag-

gregation, as shown in Algorithm 1, starts from leaf agents

and goes up towards the root following the pseudo-tree edges.

The SWi is the set of possible optimal social welfare that can

be achieved by the subtree rooted at ai, under each possible

channel assignment of CV (ai). After collecting SW messages

from her children, an agent can compose her aggregation

message and send it to her parent if she is not the root.

For a leaf agent ai, if P (ai) = {aj} and PP (ai) = ∅, then

CV (ai) = {aj} and the social welfare that can be achieved

at ai would only depend on her parent aj . Thus the SWi

sent from ai to aj would be a vector of the optimal social

welfare that can be achieved at ai, under each possible channel

assignment of aj . However, if PP (ai) 6= ∅, then CV (ai) =
{aj} ∪PP (ai) and the social welfare that can be achieved at

ai, would depend on both her parent and pseudo parents. Thus,

the SWi would be a hypercube of 1 + |PP (ai)| dimensions

(one dimension for parent and the other |PP (ai)| for pseudo

parents) of the tuple 〈P (ai), PP (ai)〉.
For an intermediate agent ai, the social welfare that can be

achieved by the subtree rooted at ai would be constrained by

agents in her constraint view. After receiving all the SW mes-

sages from her children, an intermediate agent can examine

the SW messages and get her children’s constraint views and

then extract her own constraint view CV (ai). After that, under

each possible channel assignment of CV (ai), say kCV (ai), ai
calculates the optimal social welfare that can be achieved by

the subtree rooted at ai, which is SWi(CV (ai) : kCV (ai)).

2) Choice Propagation: The top-down choice propagation,

as shown in Algorithm 2, starts from root agent and moves

towards the leaves. After receiving all the SW messages, the

root agent calculates the overall social welfare under each of

her own channel choice, then picks the optimal choice, and

sends her choice message down to her children. For any non-

root agent ai, based on the received choice message from her

parent, ai picks her own channel choice k∗i that maximizes

the social welfare for the subtree rooted at ai, and sends the

decision down to her children. The choice message received

by ai from P (ai), contains not only her parent’s choice, but

also the choices of other agents in CV (ai).

When all the leaf agents have made their choices, the

algorithm terminates. The channel assignment outcome k
∗ =

(k∗1 , k
∗
2 , . . . , k

∗
n), where k∗i ∈ Di, is the one that maximizes

the overall social welfare.

C. Payment Determination

After determining the optimal channel assignment k
∗, we

calculate the payment for each winner. We set hi(v−i) in VCG

payment function to maxk∈K

∑
j 6=i vj(k), then the payment

of agent ai is

pi = maxk∈K

∑

j 6=i

vj(k)−
∑

j 6=i

vj(k
∗).

We define k
∗
−i = argmaxk∈K

∑
j 6=i vj(k), then

pi =
∑

j 6=i

vj(k
∗
−i)−

∑

j 6=i

vj(k
∗) =

∑

j 6=i

(vj(k
∗
−i)− vj(k

∗)).

From the above payment scheme, we note that the payment

for ai can be calculated without ai. Thus, to calculate payment

for ai, we exclude ai from the conflict graph and create

DFS(A−i) by modifying DFS(A): the highest descendant of ai
that has a pseudo edge with an ancestor of ai turns the pseudo

edge into a tree-edge. If such descendant does not exist, we

exclude ai and her adjacent edges. For example, Fig. 2 shows

the DFS(A−2), DFS(A−5) and DFS(A−6) after agent a2, a5
and a6 are removed respectively from Fig. 1(b). Then, we

run channel assignment algorithm on modified DFS(A−i) to

get k∗
−i. If excluding ai causes more connected components,

then we run channel assignment algorithm on each connected

component once. Afterwards, each agent aj 6= ai is asked

to report vj(k
∗
−i) − vj(k

∗) to the CCS, who then extracts

payments from agents’ accounts. We run this procedure for
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each ai ∈W , where W is the set of winners, thus |W | times,

to calculate payments for all agents.

D. Mechanism Analysis

Theorem 1. Distributed VCG mechanism is a faithful imple-

mentation.

Proof. When agents follow the prescribed strategies s
∗ =

(s∗1, . . . , s
∗
n), the optimal allocation k

∗ can be achieved, then

for any agent ai, ai’s utility is

ui(g(s
∗
i , s

∗
−i)) = vi(k

∗)− pi

= vi(k
∗)−

∑

j 6=i

vj(k
∗
−i) +

∑

j 6=i

vj(k
∗)

=
∑

j∈A

vj(k
∗)−

∑

j 6=i

vj(k
∗
−i).

If agent ai personally chose to deviate from s∗i to s′i 6= s∗i ,

then the channel assignment outcome may change to k
′.

Since k
∗ maximizes social welfare, then

∑
j∈A

vj(k
′) ≤∑

j∈A
vj(k

∗). As ai’s payment would not be influenced by

her manipulation, ai’s utility under this situation is

ui(g(s
′
i, s

∗
−i)) =

∑

j∈A

vj(k
′)−

∑

j 6=i

vj(k
∗
−i)

≤
∑

j∈A

vj(k
∗)−

∑

j 6=i

vj(k
∗
−i) = ui(g(s

∗
i , s

∗
−i))

which means that under the prescribed strategy profile, fol-

lowing the prescribed strategy maximizes one’s utility. Thus

the strategy profile is an ex-post Nash equilibrium and the

distributed VCG is a faithful distributed mechanism.

The number of messages that distributed VCG produces is

polynomial. However, the size of message for every agent ai,

except the root agent, is exponential to the number of agents

in her constraint view, |CV (ai)|. It is because that the agent

has to calculate optimal welfare for the subtree, under each

possible channel assignment of CV (ai). We note that the

root agent, only burdens an overhead which is polynomial to

the total number of channels, by choosing the channel which

maximizes the overall social welfare.

IV. FAITH

In this section, we propose a more practical distributed spec-

trum auction, FAITH, to incentivize the rational agents towards

an efficient spectrum allocation in ex-post Nash equilibrium.

FAITH overcomes the computation and communication in-

tractability of the distributed VCG spectrum auction, and thus

can be extended to large scale spectrum markets.

A. Design Rationale

In most of the truthful centralized spectrum auctions, an

auctioneer sorts the agents in a non-increasing order of bids,

greedily allocates channels to agents without violating the

conflict constraints, and charges each winning agent with

the critical price [23]. Let Ni denote an agent ai’s set of

conflicting agents, called neighbors. After exchanging bids

with neighbors, ai can divide Ni into preemptive neighbor

set PNi = {aj |aj ≻ ai, aj ∈ Ni} and feedback neighbor set

FNi = {aj |ai ≻ aj , aj ∈ Ni}, where ≻ defines a priority

order (i.e., ai ≻ aj , if bi > bj , or bi = bj and i < j).

We observe that an agent’s channel allocation is only

affected by her preemptive neighbors, and her allocation will

directly influence her feedback neighbors’ selections. This ob-

servation indicates that propagating and gathering information

within local neighborhoods in a well designed order is enough

to determine the channel allocation. This local effect makes the

distributed implementation of the centralized auction possible.

However, simply letting the agents themselves handle the

auction process may lead to manipulation of computation

and communication. Therefore, besides incentive compatibil-

ity achieved by traditional centralized auctions, a distributed

auction should also resist the computation and communication

manipulations. We observe that in a distributed spectrum

auction, the computation and communication of an agent is

responded and confirmed by at least one of her neighbors,

i.e., every agent acts both as a principal for herself, and as

a witness for all of her neighbors. Exploiting agents’ dual

roles can provide necessary information for the CCS to verify

agents’ behaviors and to enable a “catch and punish” scheme

(i.e., check the consistency of the information and penalize a

deviation with a fine heavier than what one can gain).

B. Design Details

FAITH has two phases: (1) Bid Exchange and (2) Channel

Selection and Payment Calculation. Agents carry out the two

phases autonomously and independently without the partici-

pation of any centralized party.

1) Bid Exchange: In this phase, the agents exchange bid

statement messages (MSGBs) with neighbors to get local

bidding information. Each agent ai ∈ A sends her bid

statement message, which is formatted as

MSGBi =< BID, i, bi, di >,

to all of her neighbors Ni. Upon receiving a bid statement

message MSGBj from a neighbor aj , agent ai adds agent aj
into her preemptive neighbor set PNi, if aj ≻ ai; otherwise,

ai adds aj into her feedback neighbor set FNi. After the

bid exchange phase, each of the agents gets her preemptive

neighbor set and feedback neighbor set.

2) Channel Selection and Payment Calculation: Although

logically separated, the processes of channel selection and

payment calculation can be integrated together in order to

reduce the number of messages involved in the distributed

spectrum auction mechanism. The pseudo-code of this inte-

grated process is shown in Algorithm 3.



Algorithm 3: Channel Selection and Payment Calculation

(ai)

1 PN
′
i ← PNi, N

′
i ← ∅, ACi ← C;

2 while PN
′
i 6= ∅ do

3 Receive MSGj from agent aj ∈ PN
′
i;

4 foreach MSGPk =< PAY, k > in MSGj do

5 N
′
i ← N

′
i ∪ {ak};

6 Extract MSGCj =< CHL, j,C∗
j > from MSGj ;

7 ACi ← ACi\C
∗
j , PN′

i ← PN
′
i \ {aj};

8 if |ACi| ≥ di then
9 C

∗
i ← First(ACi, di), MSGPi ←< PAY, i >;

10 else C
∗
i ← ∅;

11 MSGCi ←< CHL, i,C∗
i >;

12 foreach ak ∈ N
′
i do

13 ACi|−k ← C;
14 foreach aj ∈ PNi do
15 Extract MSGRj,k =< RPY, j, k,Cj|−k > from MSGj ;
16 if MSGRj,k exists then ACi|−k ← ACi|−k \ Cj|−k;
17 else ACi|−k ← ACi|−k \ C

∗
j ;

18 if |ACi|−k| ≥ di then Ci|−k ← First(ACi|−k, di);
19 else Ci|−k ← ∅;
20 MSGRi ← MSGRi|| < RPY, i, k,Ci|−k >;
21 MSGPi ← MSGPi||MSGPk;

22 Send MSGi ← MSGCi||MSGPi||MSGRi to Ni;
23 FN

′
i ← FNi, pi ← 0;

24 while FN
′
i 6= ∅ do

25 Receive MSGj from agent aj ∈ FN
′
i;

26 FN
′
i ← FN

′
i \ {aj};

27 if C∗
i 6= ∅ then

28 Sort agents in FNi in decreasing order of bids as FN i;
29 foreach aj ∈ FN i do
30 Extract < RPY, j, i,Cj|−i > from MSGj ;
31 ACi ← ACi \ Cj|−i;
32 if |ACi| < di then pi ← bj × di; Break;

33 Return C
∗
i and pi;

We start from describing the distributed channel selection

algorithm based on the locally collected bidding information,

and then specify how to combine information needed for

payment calculation.

In the process of channel selection, each agent ai uses

channel selection message (MSGC) to inform neighbors of

her selected channel set C∗
i , in the format as

MSGCi =< CHL, i,C∗
i > .

As discussed in Section IV-A, the channel selection of one

agent is only affected by the selection of her preemptive neigh-

bors. Thus, agent ai first collects MSGCs from her preemptive

neighbors in PNi, and updates her available channel set ACi

by deactivating the channels that are already selected by her

preemptive neighbors (Lines 2 to 7). Then, if there are enough

channels left, she selects the first di channel(s) from ACi as

her own selected channel set

C
∗
i ← First(ACi, di).

If C∗
i 6= ∅, then ai is a winning agent (Lines 8 to 11).

The next step is to calculate each winning agent’s payment.

We employ the critical price as winning agent ai’s payment,

i.e., the minimum price for ai to win in the spectrum auction.

While an agent ai’s channel selection is affected by her

preemptive neighbors, her payment is determined by her

feedback neighbors. Consequently, to calculate ai’s payment,

we need to ask ai’s feedback neighbors to provide necessary

information, which is their channel selection if the agent ai
does not participate in the spectrum auction. Each winning

agent ai sends a payment determination request message

MSGPi =< PAY, i >

to her feedback neighbors (Line 9). Since ai’s feedback

neighbors’ channel selection can be affected by the agents

that do not have direct connections with ai, the payment

determination request message MSGPi needs to be further

forwarded by the agents (Line 21). However, the total number

of forwarding is bounded by the number of agents.

Upon receiving a payment determination request message

MSGPk, agent ai first checks whether there are sufficient

channels left, given her preemptive neighbors’ selection if

agent ak does not participate in the spectrum auction, i.e.,

ACi|−k = C−
⋃

j∈PNi

Cj|−k,

where Cj|−k denotes agent aj’s channel selection if agent ak
is absent from the auction (Lines 14 to 17). If |ACi|−k| ≥ di,

agent ai sets Ci|−k ← First(ACi|−k, di); otherwise, Ci|−k ←
∅ (Line 18 and 19). The agent ai encapsulates this selection

into MSGRi (Line 20), i.e.,

MSGRi ← MSGRi|| < RPY, i, k,Ci|−k > .

Noting that sending the three different kinds of messages

(i.e., MSGCi, MSGPi, and MSGRi) separately may introduce

extra overhead for MAC layer coordination, we combine all

of these three kinds of messages together

MSGi ← MSGCi||MSGPi||MSGRi,

and utilize the broadcast of the wireless communication media

to send the integrated messages in a single shot (Line 22).

After collecting replies from all her feedback neighbors

(Line 24 to 26), agent ai can calculate her payment, if she

is a winning agent. Here, she sorts her feedback neighbors in

a decreasing order of bids as FN i (Line 28), and then follows

the order to determine her critical price bj , if it exists (Lines 29

to 32). The payment is pi ← bj × di (Line 32).

Toy Example: Fig. 3 shows a toy example for channel

selection and payment calculation. We consider four agents

A = {a1, a2, a3, a4}, and 2 channels C = {c1, c2} for

allocation. For clarity, we assume that each of the agents

demands a single channel.

Each agent keeps a local ranking of agents (e.g., a1 gets

a3 ≻ a1 ≻ a4, and a3 gets a3 ≻ a2 ≻ a1 > a4) after the

bid exchange phase. Based on the ranking, agent sequentially

selects one channel within her neighborhood. For agent a3, she
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MSGB < BID, 1, 7, 1 > < BID, 2, 8, 1 > < BID, 3, 9, 1 > < BID, 4, 6, 1 >
Ranking a3 ≻ a1 ≻ a4 a3 ≻ a2 ≻ a4 a3 ≻ a2 ≻ a1 ≻ a4 a3 ≻ a2 ≻ a1 ≻ a4
MSGC < CHL, 1, {c2} > < CHL, 2, {c2} > < CHL, 3, {c1} > < CHL, 4,∅ >
MSGP < PAY, 3 >< PAY, 1 > < PAY, 3 >< PAY, 2 > < PAY, 3 > < PAY, 3 >< PAY, 1 >< PAY, 2 >

MSGR < RPY, 1, 3, {c1} > < RPY, 2, 3, {c1} >
< RPY, 4, 3, {c2} >< RPY, 4, 2,∅ >

< RPY, 4, 1,∅ >
TABLE I

MESSAGES TRANSMITTED IN THE NETWORK.

does not need to consider any preemptive selections, since she

ranks the highest in her neighborhood. So she selects a channel

c1, broadcasts her message MSG3 = MSGC3||MSGP3, and

waits for feedback neighbors’ replies to calculate her payment.

Upon receiving MSG3, agents a1 and a2 can run Algorithm 3

concurrently, since they are out of conflict. Agent a1 updates

her available channel set, selects a channel c2, selects a pay-

ment determining channel c1 assuming that a3 is absent, and

broadcasts her message MSG1 = MSGC1||MSGP1||MSGR1.

Agent a2 runs the same process. Finally, agent a4 collects

messages from all her preemptive neighbors and responds

her own message MSG4. Thereafter, winning agents extract

feedback messages to find critical price and calculate payment

(i.e., p1 = 0, p2 = 0, p3 = 6). Table I lists the content of

corresponding messages.

3) Consistency Check: To guarantee faithfulness, the con-

sistency of the communication and computation should be

checked. Note that each message sent in the spectrum auction

has at least two copies (i.e., one at the sender and the other at

the receiver) in the network. We require each agent to submit

the messages she sent and received to the CCS, when clearing

a transaction. After collecting all the messages, the CCS

can check the messages, authorize the channel allocation and

collect the payment. If a mismatch is detected, the involved

agents have to pay a penalty which is higher than the largest

possible utility one can gain by cheating. The CCS does not

always need to have a reliable communication channel with

each agent, or participate in the spectrum auction process.

The CCS just needs to check the consistency and clear the

transaction when a connection is available.

C. Mechanism Analysis

In this subsection, we show that FAITH meets the design

requirements for distributed mechanism, especially in terms of

network complexity and faithfulness.

1) Network Complexity: Feigenbaum et al. [9] proposed

the concept of network complexity with respect to five metrics

to measure the complexity of a distributed algorithm executed

over an interconnected network G = (V,E), where V = A

and E contains all the communication links among the agents

in A. Here we demonstrate the network complexity of FAITH

in the following five metrics.

• Total number of messages sent over G: Every agent broad-

casts two messages – one for bid exchange, and the other

for integrated channel selection and payment calculation –

resulting in 4|E| messages.

• Maximum number of messages sent over any link in G:

There are 4 messages on each link due to mutual message

sending in the two phases.

• Maximum size of a message: In the worst case, the agent

with the lowest bid may inherit all the payment determina-

tion request messages from her preemptive neighbors (i.e.,

the agent that ranks lowest in a ring topology will extract

all other agents’ payment determination request messages

when there are more than one channels being auctioned),

which will result in a merged MSG with 2|V| sub-messages

(i.e., 1 for MSGC, |V| for MSGP, and |V| − 1 for MSGR).

Since maximum length of each sub-message is a constant

c-byte, the maximum size of a message is 2c|V|.
• Local computation overhead: The toughest part throughout

the mechanism is the payment determining channel reselec-

tion, which takes O(δ|V|) time in the worst case, where δ

is the maximum degree of the network.

• Storage overhead at each node: Every agent is required at

most O(δ|V|) space to store propagated messages and local

outcome in the worst case.

2) Faithfulness: Given a centralized mechanism which is

truthful, we can prove that a distributed mechanism is faithful

by combining the other two properties: strong communication

compatibility (strong-CC) and strong algorithm compatibility

(strong-AC) [10]. Here the term of “strong” demonstrates

that the three aspects of compatibility are independent, that

is, no agent can get higher utility by deviating from the

intended information-revelation/message-passing/computation

strategy, whatever her other two actions are, when other agents

follow the intended strategies. We assume that, for each agent,



a complete implementation of the auction is much preferable

than dropping out without any affirmed outcome.

In FAITH, the intended strategy for each agent is to report

bidding information truthfully, pass messages correctly, and

compute channel selection, reselection and payment correctly.

A rational agent ai may deviate from the following aspects to

increase her utility:

• Misreport: Report false bidding information < bi, di >.

• Miscommunication: Drop or change neighbors’ messages,

i.e., MSGBj and MSGj , or withhold her own messages.

• Miscalculation: Divide neighbors into wrong sets, determine

channel (re)selection C
∗
i , C∗

i|−k or payment pi incorrectly.

Theorem 2. FAITH is a faithful distributed implementation of

the critical price-based spectrum allocation mechanism.

Proof. (Sketch) To prove this theorem, we show that FAITH

satisfies centralized truthfulness, strong-CC and strong-AC.

• The corresponding centralized spectrum auction is demon-

strated to be truthful in [7].

• FAITH satisfies strong-CC. Based on the redundant mes-

sages and “catch and punish” scheme, the CCS can detect

communication deviation. Agent ai will not drop or change

neighbor aj’s messages, since they are originally generated

and kept by agent aj , and any mismatch will be caught and

punished in consistency check. Agent ai has no incentive to

withhold her messages and block the auction. Thus, agent

ai would follow the intended message-passing strategy.

• FAITH satisfies strong-AC. Agent ai divides her neigh-

bors into two sets with different priorities. A unilateral

miscalculation will breach determination order and cause

communication chaos. Also, miscalculation can be detected

by the CCS in consistency check. For example, in Fig. 3,

based on MSGB1 and MSGB3, both a1 and a3 should rank

a3 ≻ a1. Through consistency check, the CCS can guide the

calculation to be correctly done. Agent ai selects (reselects)

channel sets based on her preemptive neighbors’ selections

Cj (Cj|−k), and calculates payment based on her feedback

neighbors’ selections Cj|−i. All the necessary information is

contained in MSGj and sent to the CCS. Since any cheating

will be caught and punished, agent ai has no incentive to

deviate from the intended computation strategy.

According to the specification in [10], FAITH is a faithful

distributed implementation of the critical price-based spectrum

allocation mechanism.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of FAITH

on allocation efficiency and transmission overhead. Although

the distributed VCG can achieve optimal social welfare, it

is impractical in large scale scenarios, and thus we do not

evaluate its performance here. We generate agents randomly

in a square area of 2500m×2500m, and apply a distance-based

interference model [7], [15] to form the conflict graph. In our

setting, any two agents within 250m will conflict with each

other and thus cannot use the same channel simultaneously.
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Fig. 4. Social Welfare of FAITH vs. NEA.
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Fig. 5. Transmission Overhead of FAITH.

The number of agents ranges from 100 to 300, and the number

of channels ranges from 1 to 40. Without loss of generality,

we uniformly distribute the bids of agents in (0, 1], and the

channel demands in {1, 2, 3, 4, 5}. The results are averaged

over 1000 runs.

A. Allocation Efficiency

We evaluate the allocation efficiency of FAITH in terms

of social welfare, and compare it with a distributed Nash

equilibrium based channel allocation algorithm [24] (denoted



by NEA in our evaluation). Fig. 4 shows the results.

We observe that social welfare of both algorithms grows

with the number of channels and finally reaches saturation,

where every agent meets her demand. Besides, FAITH outper-

forms NEA with much higher social welfare before the satura-

tion, since FAITH considers agents’priorities in the allocation,

while NEA allows the agents to compete for channels in an

arbitrary way. Meanwhile, due to the intensified competition,

there is a lag of saturation in multi-channel demand when

compared with single-channel demand (e.g., FAITH saturates

at 8 channels for 300 agents with single-channel demand,

while 30 channels are required for multi-channel demand).

B. Transmission Overhead

We also measure FAITH’s per-agent transmission overhead,

which is defined as the total size of messages each agent gen-

erates. Fig. 5 shows the cumulative distribution of transmission

overhead in bytes, where “n-m-S/M” denotes that n agents bid

for m channels with single(S)/multi(M)-channel demand.

According to Fig. 5(a), we observe that the transmission

overhead increases along with the number of channels until

the allocation saturates (e.g., about 90% of agents transmit

no more than 40 bytes in “300-4-M”, while the percentage

is only 67% in “300-8-M”, and 45% in “300-12-M”). This

is because that more channels will result in more winners

and thus more messages are generated for channel reselec-

tion and payment determination. However, the transmission

overhead remains stable after saturation (e.g., the coincident

distribution for “300-8-S” and “300-12-S”). Fig. 5(b) present

the transmission overhead with varying number of agents. The

similar cumulative distribution indicates that FAITH is scalable

in distributed scenarios.

VI. RELATED WORK

Various spectrum auction mechanisms have been proposed

to improve spectrum utilization and allocation fairness over

rational agents. VERITAS [7] and SMALL [6] are single-

sided truthful auctions. TRUST [8] considers double auction.

Al-Ayyoub et al. [2] proposed a truthful spectrum auction

with guaranteed expected revenue. Dong et al. [3] studied

combinatorial auction. TAHES [4] addresses heterogeneous

spectrum in a double auction. SPRING [5] is strategy-proof

and privacy preserving. All of these mechanisms are central-

ized. In contrast, we consider distributed mechanism design.

Feigenbaum et al. [25] initiated the study of distributed

algorithmic mechanism design (DAMD) on multicast trans-

mission, and articulated the concept of network complexity

to measure the computation efficiency for distributed models.

Later, the agenda was extended to lowest-cost interdomain

routing [26]. Shneidman and Parks [10], [14] studied players’

strategy space in distributed scenarios, introduced the notions

of communication compatibility and algorithm compatibility,

and proposed general principles to guide distributed mecha-

nism design. Yet, no studies have been proposed for wire-

less spectrum allocation, which requires further consideration

about the spatial reusability of spectrum.

VII. CONCLUSION

In this paper, we have modeled the problem of wireless

spectrum allocation as a distributed auction, and have pro-

posed two faithful distributed auction mechanisms, namely

distributed VCG and FAITH. We have implemented FAITH,

and have analyzed its economic property and network com-

plexity. Compared with an existing Nash equilibrium based

approach, FAITH can achieve higher social welfare with low

communication overhead.
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