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ABSTRACT

In crowdsensing, appropriate rewards are always expected to
compensate the participants for their consumptions of phys-
ical resources and involvements of manual efforts. While
continuous low quality sensing data could do harm to the
availability and preciseness of crowdsensing based services,
few existing incentive mechanisms have ever addressed the
issue of sensing data’s quality. The design of quality based
incentive mechanism is motivated by its potential to avoid
inefficient sensing and unnecessary rewards. In this paper,
we incorporate the consideration of data quality into the de-
sign of incentive mechanism for crowdsensing, and propose
to pay the participants as how well they do, to motivate
the rational participants to perform data sensing efficiently.
This mechanism estimates the quality of sensing data, and
offers each participant a reward based on her effective con-
tribution. We also implement the mechanism and evaluate
the improvements in terms of quality of service and profit
of service provider. The evaluation results show that our
mechanism achieves superior performance when compared
to the uniform pricing scheme.
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1. INTRODUCTION
Crowdsensing is a new paradigm of applications that en-

ables the ubiquitous mobile devices with enhanced sensing
capabilities to collect and to share local information toward-
s a common goal [5, 12]. In recent years, a wide variety
of applications have been developed to realize the poten-
tial of crowdsensing throughout everyday life, such as envi-
ronmental quality monitoring [2, 3], noise pollution assess-
ment [16, 24], road and traffic condition monitoring [19,31],
road-side parking statistics [18, 21], and indoor localization
[23,33]. However, the success of crowdsensing based services
critically depends on sufficient and reliable data contribu-
tions from individual participants.

Sensing, processing, and transmitting data in crowdsens-
ing applications requires manual efforts and physical resources.
Therefore, appropriate rewards are always expected to com-
pensate the owners of task-taking mobile devices. These
owners, or say participants in the literature of crowdsensing,
are commonly assumed to be rational, and would not make
contributions unless there are sufficient incentives. Although
researchers have proposed a number of incentive mechanisms
for participation in crowdsensing [9, 11, 13, 15, 32, 36, 39, 40],
they have not fully exploited the connection between quality
of sensing data and rewards for contributions.

Sensing data of high quality, based on which the crowd-
sensing service provider aggregates and extracts informa-
tion for accurate decision making and attentive service pro-
viding, is fundamentally important. In crowdsensing, qual-
ity of sensing data can be affected by the characteristics
of mobile sensors, the clarity of task instructions, as well
as the expertise and willingness of individual participants
[14, 20, 25]. Particularly, participants with different spatial-
temporal contexts and personal effort levels are likely to
submit sensing data of diverse quality. Furthermore, ra-
tional participants tend to strategically minimize their ef-
forts, while doing the sensing tasks, and thus may degrade
the quality of sensing data. For example, careless or indif-
ferent submissions are always found in crowdsensing based
noise monitoring applications. When asked for environmen-
tal sound heard of neighborhood, a participant may perform
the sensing tasks through a mobile device placed inside her
pocket, rather than carefully taking out the device to sense
accurately. Such a low quality submission would invalidate
the estimation of noise pollution.



Continuous low quality sensing data undoubtedly do har-
m to the availability and preciseness of crowdsensing based
services. However, to the best of our knowledge, few ex-
isting works have taken the observation of data quality in-
to consideration, when designing incentive mechanisms for
crowdsensing. It is very challenging to design quality based
incentive mechanisms for crowdsensing.
Most of all, it is technically difficult to estimate the quality

of sensing data without any prior knowledge of the sensing
behavior of individual participants or the ground truth of
targeted contexts. Subsequent quality verification would re-
quire significant investments in deploying particular infras-
tructures to do on-site sensing and ground truth collecting,
like Model 831-NMS permanent noise monitoring system [4].
Lacking in flexibility and scalability, the deployment of tra-
ditional static sensing infrastructures, in turn, negates the
necessity and benefits of crowdsensing.
Second, it is challenging to design incentive mechanism-

s that achieve both individual rationality and profit maxi-
mization. Here, individual rationality means that a partici-
pant should be rewarded no less than her sensing cost, and
the profit of service provider is the differences between the
value of crowdsensing based services and the total rewards to
participants. Deliberate incentive mechanisms are required
to motivate effective data contributions from rational par-
ticipants, and to maintain a robust, profitable market for
crowdsensing service provider.
Third, it is nontrivial to bridge the gap between quality of

sensing data and rewards for contributions. Participants of
crowdsensing, who perform the sensing tasks with heteroge-
neous physical resources and manual efforts, and therefore
submit sensing data of diverse quality, may require appro-
priate rewards according to their contributions. While tra-
ditional uniform pricing scheme is unfair, the Pay-as-Bid
pricing method used in most of the auction based incentive
mechanisms is somehow troublesome for participants and in-
dulgent of careless behavior. Both of these existing solutions
ignore the quality issue, and thus are unlikely to encourage
long-term, effective contributions.
In this paper, we incorporate the consideration of data

quality into the design of incentive mechanism for crwod-
sensing, and propose to pay the rational participants as how
well they do, to motivate efficient crowdsensing.
Our main contributions are listed as follows.

• To the best of our knowledge, we are the first to design
a quality based incentive mechanism for crowdsensing
that directly motivates individual participants to con-
tribute high quality sensing data.

• Second, we extend the well-known Expectation Maxi-
mization algorithm that combines maximum likelihood
estimation and Bayesian inference to estimate the qual-
ity of sensing data, and further apply the classical In-
formation Theory to measure the effective contribu-
tion of sensing data. Based on the estimated quality
and contribution, we can determine fair and proper
rewards to the participants. The proposed incentive
mechanism achieves individual rationality and profit
maximization.

• Finally, we implement the incentive mechanism and
extensively evaluate its performance. Our evaluation
results show that it achieves superior performance in
terms of quality assurance and profit management, when
compared to the uniform pricing based scheme.

The rest of the paper is organized as follows. We briefly
review related work in Section 2 and present technical pre-
liminaries in Section 3. The detailed design of our quality
based incentive mechanism is presented in Section 4. In Sec-
tion 5, we evaluate our incentive mechanism and show the
results. Finally, we conclude this paper in Section 6.

2. RELATED WORK
The problem of data quality has been widely studied in

organizational databases and information systems [7, 29],
mainly focusing on quality category, attribute and contex-
tual pattern from a perspective of data consumer. Sachi-
dananda et al. [27] surveyed building blocks and existing
approaches related to quality of information in wireless sen-
sor networks.

For the paradigm of crowdsensing, Reddy et al. [26] de-
veloped a recruitment framework to identify and select well-
suited participants to achieve high utility within a budget.
Three stages are introduced, including qualifier, assessment,
and progress review. Though reputation system based on
performance has been built, this work focuses on the record
of participation likelihood (whether the participant would
take a sensing task when given a chance). In addition, it
shows little consideration about incentives. On the other
hand, although various empirical experiments [17,20,25,35]
demonstrate that financial and social incentives do have an
impact on the performance of participants, such as engage-
ment, compliance and quality, they fail to generalize an in-
centive model to adaptively guide the participants’ behavior.

There are extensive researches targeting the incentive mech-
anism design for crowdsensing. Lee and Hoh [13] proposed
a reverse auction based dynamic pricing scheme to moti-
vate participants to sell their sensing data with claimed bids.
Yang et al. [32] considered a platform-centric incentive mod-
el, where the reward is proportionally shared by participants
in the a Stackelberg game, and a user-centric incentive mod-
el, where participants in the auction bid for tasks and get
paid no lower than the submitted bids. Koutsopoulos [11]
designed an incentive mechanism to determine participation
level and payment allocation to minimize platform’s com-
pensation cost with guaranteed service quality. Zhang et

al. [37] and Zhao et al. [40] suggested online incentive mecha-
nisms to flexibly recruit participants who appear opportunis-
tically in the phenomena of interests. Luo et al. [15] studied
an incentive mechanism based on all-pay auction with real-
istic constraints such as information asymmetry, population
uncertainty, and risk aversion. Kawajiri et al. [10] deployed a
crowdsensing based wireless indoor localization system, and
steered participants to cover sufficient locations to improve
the quality of service. There is no skill variance and device
variance in their system. In general, these existing incentive
mechanisms either have not considered the quality of sensing
data or have addressed the incentive concerns and quality
issues separately. Moreover, few of them have investigated
the method to estimate the quality of sensing data.

In contrast, we systemically consider the participants’ will-
ingness to take a sufficient amount of efforts in crowdsensing,
and bridge the gap between quality of sensing data and re-
wards for contributions, by providing a quality based incen-
tive mechanism. The quality estimation method applied in
this paper is originally introduced by Dawid and Skene [6],
where the expectation maximization (EM) algorithm is used
to obtain maximum likelihood estimates of observers’ error



service subscriber

2-1. query

2-2. service

service provider

quality   profit

budget coverage

1-1. sensing task

1-2. reserve price

1-3. reward

1-4. sensing data

participants

embedded

sensors

Figure 1: A general crowdsensing model.

rates and to infer the true response of patients. Wang and
Ipeirotis [30] applied EM algorithm to estimate the quality
of crowdsourced labeling workers. Zhang et al. [38] proposed
to combine spectral methods and EM algorithm to address
the problem of crowdsourced multi-class labeling with an
optimal convergence rate up to a logarithmic factor. Be-
yond quality estimation, we also quantify the contribution
of sensing data via information theory, and determine fair
and proper rewards to participants.

3. PRELIMINARIES
In this section, we present the model of quality based

crowdsensing, and key techniques for quality estimation.

3.1 Crowdsensing Model
As illustrated by Figure 1, there are three major compo-

nents in the crowdsensing system, i.e., service subscribers
who request services, a service provider who conducts the
crowdsensing campaign and provides services, and a crowd
of participants who submit sensing data to support the ser-
vices. The crowdsensing process (the right part) can be dis-
cribed as follows. First, the service provider releases a set T
of sensing tasks (e.g., noise sensing on campus at 10:00 am)
with an incentive announcement and a quality requiremen-
t (e.g., an error threshold). In the phenomena of interest,
there is a set A = {a1, a2, . . . , an} of participants, with sen-
sors embedded in their mobile devices. Each participant
ak ∈ A bears a private reserve price/sensing cost ck (i.e., a
monetary value for her consumptions of physical resources
and involvements of manual efforts), and thus expects a re-
ward for her contribution. Without sufficient rewards, the
participants may not undertake the sensing tasks. The ser-
vice provider estimates the quality qk of sensing data from
each participant ak. By taking the profile of the partic-
ipants’ data quality and sensing costs into consideration,
she selects a subset W ⊆ A of participants to perform each
sensing task, and rewards each ak ∈ W a certain amount of
reward rk according to her effective contribution. After col-
lecting the sensing data for some tasks, the service provider
updates quality estimation qk for each ak ∈ W to guide
the next round of recruitment (the right part), and extracts
information to provide services (the left part).
We consider a general class of crowdsensing applications,

in which the availability and preciseness of services signifi-

cantly depends on the quality of sensing data, e.g., urban
noise pollution monitoring, which measures ambient noise
pollution based on sensing data collected from mobile de-
vices. For each piece of sensing data with an error below
the specified threshold, the service provider gains a value
V (e.g., the subscription fee from service subscribers). For
simplicity, we assume that V is fixed. The objective of the
service provider is to maximize her own profit, by providing
services with guaranteed quality, and recruiting participants
with proper rewards. The profit is defined as

Profit ,
∑

ak∈W

(V − rk).

In this paper, we focus on the data quality that is specif-
ically affected by participants’ effort levels for sensing, and
aim at designing incentive mechanisms for the service provider
to stimulate high quality sensing and long-term, effective
contributions.

3.2 Quality Estimation via EM
For crowdsensing, e.g., urban noise sensing, it is reason-

able to calibrate the sensing data, to tolerate the inherent
uncertainty of mobile devices. Here, we divide the read-
ing of sensing data into discrete intervals, and suggest the
service provider to deliver a certain interval to the service
subscribers, rather than an accurate reading, to mitigate the
impact of device variance and device error. The discrete in-
tervals are denoted as a set D = {d1, d2, . . . , dm}, where each
interval spans over a range of decibels, and the granularity of
interval division can be determined by the tradeoff between
accuracy and complexity.

Regarding the quality of sensing data as a result of the
effort levels, we estimate “effort matrix” ek for each par-
ticipant ak, and map this effort matrix into a scalar qual-
ity value through function qk = g(ek). Here, the effort
matrix ek is an m × m matrix, with element ekij ∈ [0, 1],
i = 1, . . . ,m, j = 1, . . . ,m, indicating the probability that
participant ak submits a piece of sensing data in interval
dj while the true reading is in interval di. Particularly,
{ekii|i = 1, . . . ,m} contains the probabilities that partici-
pant ak obediently performs outside-pocket sensing for each
of the m possible cases. Furthermore, the conditional prob-
abilities satisfy

∑
j
ekij = 1.



We note that, the effort matrix can be measured when we
have ground truth for all spatial-temporal contexts. Howev-
er, for crowdsensing, the true reading, or even the interval,
cannot be ascertained in most cases, making the direct veri-
fication of data quality and the discernment of effort matrix
challenging. In this paper, we resort to the well-known ex-
pectation maximization (EM) algorithm [6] to estimate each
participant’s effort matrix.
The EM algorithm [6] is an iterative method for finding

the Maximum Likelihood Estimation (MLE) of the parame-
ters (e.g., the effort matrix for each participant, and the true
noise interval for each task), when there is missing data (e.g.,
the indicators to tell right or wrong for sensing data) that
precludes the straightforward estimation for the parameter-
s. Here, MLE calculates the best estimation for parameters
that maximizes the (log-)likelihood of the observations (e.g.,
the submitted sensing data), and converges in probability to
the true value of the unknown parameters when the number
of observations is sufficiently large.
Given a set S of observed sensing data, a set P of missing

true interval indicators, a set E of unknown effort matrices,
and the density function f , the likelihood of unknown E is

L(E;P, S) = f(P, S|E).

To find the MLE of E, EM algorithm iteratively runs the

following two steps until convergence (Supposing that Êt is
the current value of E after t iterations).
E-step calculates the expected value of likelihood func-

tion, with respect to the conditional distribution of P given
observation S under the current estimation of E,

Q(E|Êt) = E
P |S,Êt [L(E;P, S)].

M-step seeks the estimation Ê that maximizes the ex-
pectation function,

Êt+1 = argmax
E

Q(E|Êt).

Inspired by [6], we extend the algorithm to estimate the
true interval indicators and participants’ effort matrices, by
iterating the following two steps until convergence: 1) es-
timate the effort matrix and noise interval distribution via
maximum likelihood estimation, based on the estimated true
interval indicators; and 2) calculate new estimation of true
interval indicators, according to the estimated effort matri-
ces and noise interval distribution.
The converged estimation of participant’s effort matrix

indicates the quality of sensing data, while the noise interval
distribution is suggestive of the noise pollution level.

4. QUALITY BASED INCENTIVE
In this section, we detail the design of our quality based in-

centive mechanism for crowdsensing. To pay each individual
participant ak as how well she does in sensing, we estimate
her effort matrix ek, calculate her quality qk of sensing data,
quantify her effective contribution cm(qk), and offer a proper
reward rk. Taking the quality of sensing data into consid-
eration, our incentive mechanism can encourage long-term,
effective contribution for crowdsensing based services.

4.1 A Simple Case
We first regard all of the submitted sensing data as qual-

ified, and present a simple pricing scheme. We assume that

Table 1: Key notations

Notation Definition
T Set of sensing tasks
A Set of participants
D Set of discrete noise intervals
At Set of participants who complete task t ∈ T

T
k Set of tasks that ak ∈ A performs
S Set of observed sensing data
P Set of missing true noise interval indicators
E Set of unknown effort matrices

L(E;P, S) Likelihood function of E
ek Effort matrix of ak

ekij Probability that ak submits data in inter-
val dj while the true interval is di

Π Noise interval distribution
pt True noise interval indicator for task t
pti Probability of task t with true noise inter-

val being di
dkt Noise interval that ak’s sensing data for

task t falls into
I(dkt = dj) Indicator function for the event dkt = dj

qk Quality of ak’s sensing data
cm(qk) Effective contribution of sensing data of es-

timated quality qk
ck Reserve price/sensing cost of ak

rk Reward to ak for her contribution
V Value gained from qualified sensing data
r∗ Optimal quality based reward
ru Optimal uniform reward

the sensing cost for all of the participants follows a proba-
bility distribution, with a probability distribution function
f(ck), and a cumulative distribution function F (ck).

A rational participant ak will not do a given sensing task
unless she gets a reward r ≥ ck. Therefore, the profit of
service provider, which is defined as the difference between
value V gained from the sensing data, and the reward r to
participant ak, where V ≥ r, is formulated as

Profit(ck, r) =

{
0, r < ck,

V − r, r ≥ ck.

While the distribution of ck is independent of value V and
reward r, the expected profit can be calculated as

Profit(r) =

∫ ∞

0

Profit(ck, r)f(ck)dck

=

∫ r

0

(V − r)f(ck)dck = F (r)(V − r).

Therefore, the service provider can maximize her profit by
taking the first derivative of the function Profit(r), solving
the following equation, and getting the optimal reward,

r∗ = V −
F (r∗)

f(r∗)
.

4.2 Quality Estimation
In practice, due to their various effort levels, different par-

ticipants may submit sensing data of diverse quality. In this
subsection, we extend the Estimation Maximization algo-
rithm to estimate the effort matrix ek for each participant



ak, and then estimate the quality of her sensing data as
qk = g(ek).
Specifically, we denote the set of participants that submit

sensing data to task t as At ⊆ A, and the set of tasks that
participant ak performs as T

k ⊆ T. For task t ∈ T
k, the

true noise interval is denoted as d0t , while the interval into
which participant ak’s sensing data falls is denoted as dkt .
An indicator function I(dkt = dj) (i.e., I(d

k
t = dj) = 1 when

event dkt = dj is true; otherwise, I(dkt = dj) = 0) is applied
to describe the submission of sensing data.
We assume that the effort levels of participants are inde-

pendent, and do not change for a period of time. So that
we can periodically learn the effort matrix ek for each par-
ticipant ak, and put this knowledge into practice. Without
the true interval indicators, i.e., pt = {pti|i = 1, . . . ,m}
for each task t (pti = 1 if d0t = di for sure) is unavailable,
we resort to the EM algorithm that combines Maximum
likelihood estimation and Bayesian inference to iteratively
estimate the unknown effort matrix ek and noise interval
distribution Π = {πi|i = 1, . . . ,m}.
The pseudo-code of this expectation maximization algo-

rithm is shown in Algorithm 1, which runs as follows.
(1) Initialization: For each task t, the probability distri-

bution of true noise interval indicator pt is initialized as:

pti = p(d0t = di) =

∑
ai∈At

I(dkt = di)

|At|
.

(2) Estimation of effort matrix and noise interval distri-
bution: Given the likelihood function

L(E;P, S) = f(P, S|E),

and

L(E;S) = f(S|E) =
∑

P

f(P, S|E),

where E = {ek|ak ∈ A}, P = {pt|t ∈ T}, and S = {dkt |t ∈
T, ak ∈ At}, the maximum likelihood estimate of E makes
the observation S most likely to happen.
We note that the effort matrix ek for each participant

ak follows the Multinomial Distribution. When participant
ak performs nk

i independent tasks with true interval di, her
sensing data for these tasks falls into interval dj with prob-
ability ekij , where ekij ≥ 0 and

∑
j
ekij = 1, j = 1, . . . ,m. Let

nk
i1, . . . , n

k
im be the number of submissions corresponding to

interval d1, . . . , dm, respectively. Then we have
∑

j
nk
ij = nk

i ,

and the likelihood function of ek
i ,

f(nk
i1, . . . , n

k
im|eki1, . . . , e

k
im) =

nk
i !∏
nk
ij !

∏
(ekij)

nk
ij .

Taking the log-likelihood, Lagrange multipliers, and deriva-
tives, we get the most natural estimates,

êkij =
nk
ij

nk
i

=

∑
t∈Tk ptiI(d

k
t = dj)∑

t∈Tk pti
, j = 1, . . . ,m.

The noise interval distribution is estimated as

π̂i =

∑
t∈T

pti

|T|
, i = 1, . . . ,m.

(3) Estimation of true noise interval indicator: Given the
sensing data S, the effort matrix E, and the noise interval
distribution Π, we apply the Bayesian inference to estimate

Algorithm 1: Effort Matrix Estimation

Input: A set S = {dkt |t ∈ T, ak ∈ At} of observations.
Output: Estimation of effort matrix E, marginal

distribution of noise interval Π, and posterior
estimation of true noise interval indicators P .

// Initialization of True Noise Interval Indicator
1 foreach t ∈ T do

2 cnt← 0; cnt← 0;
3 foreach ak ∈ At do

4 i← dkt ; cnti ← cnti + 1; cnt← cnt+ 1;

5 foreach di ∈ D do

6 pti ← cnti/cnt;

7 while not converged do

// Estimation of Effort Matrix
8 foreach ak ∈ A do

9 cnt← 0; ek ← 0;

10 foreach t ∈ T
k do

11 j ← dkt ;
12 foreach di ∈ D do

13 ekij ← ekij + pti;

14 cnti ← cnti + pti;

15 foreach di ∈ D do

16 foreach dj ∈ D do

17 ekij ← ekij/cnti;

// Estimation of Noise Interval Distribution
18 foreach di ∈ D do

19 πi ← 0;
20 foreach t ∈ T do

21 πi ← πi + pti;

22 πi ← πi/|T|;

// Estimation of True Noise Interval Indicator
23 foreach t ∈ T do

24 smp← 0; pt ← 1;
25 foreach di ∈ D do

26 foreach ak ∈ At do

27 j ← dkt ;

28 pti ← ptie
k
ij ;

29 smp← smp+ πip
t
i;

30 foreach di ∈ D do

31 pti ← πip
t
i/smp;

32 Return E = {ek|ak ∈ A},Π = {πi|i = 1, . . . ,m},

P = {pt|t ∈ T};

the true noise interval indicator P . Considering the n in-
dependent observations {S1, . . . , Sn} of sensing data from
individual participants, where Si = {dit|t ∈ T}, i = 1, . . . ,m,
we have

p(P |S) =
p(P )p(S|P )

p(S)
=

p(P )p(S1|P ) . . . p(Sn|P )

p(S)
.

When all terms not involving the true noise interval indica-
tor are absorbed into the proportionality sign, we calculate
the distribution of true noise interval indicator according to

pti =
πi

∏
ak∈At

∏
j
(ekij)

I(dkt =dj)

∑
q
πq

∏
ak∈At

∏
j
(ekqj)

I(dkt =dj)
, i = 1, . . . ,m.

(4) Convergence: We iterate step 2− 3 until the two esti-

mates converge, i.e., |Êt+1−Êt|<ε, |P̂ t+1−P̂ t|<η, ε>0, η>0.



For each iteration (the while loop), the computation com-
plexity is polynomial as O(|A||T||D|).
We claim that the EM algorithm increases the likelihood

function in each iteration, and finally converges to a stable
estimation. To circumvent the problem of getting trapped
in a local optimum, we try different initializations for several
executions of the algorithm. Although it is hard to provide
theoretical guarantee for its performance, the EM algorithm
has been widely used, and a provably optimal convergence
rate up to a logarithmic factor has been shown in [38].
With the estimation for effort matrix ek, we can get the

quality of ak’s sensing data through the mapping function.
For simplicity, we focus on pure obedience, and set qk =
g(ek) =

∑
i
ekii/m. With the estimation for distribution of

true noise interval indicator pt = {pt1, p
t
2, . . . , p

t
m} for task

t, the interval d∗i to be delivered is the one with maximum
possibility, i.e., d∗i = argmax

i

pti.

4.3 Contribution Quantification
Various analyses and experiments have confirmed that ex-

pert work can be accomplished by the local crowd, even
if they are lack of expert knowledge. However, the con-
tribution of each individual participant remains unknown.
Here, inspired by ideas in Information Theory and Shan-
non’s Channel Coding Theorem [28, 34], we quantify the
participants’ contributions through information uncertain-
ty reduction.
We regard the right part of crowdsensing system (Fig-

ure 1) as a signal transmission system (Figure 2), where the
input signal X is the sensing data provided by the partici-
pants, and correspondingly, the output Y is the information
that service provider extracts from the sensing data. Trans-
mitted through the channel, an input signal may be distort-
ed in a random way depending on the channel condition,
and thus the output signal may be different from the input
signal. Here, the quality qk ∈ [0, 1] of the sensing data is
expressed by a noise variable Z (independent of X) on the
transmission channel, where Pr(z = 0) = qk indicates that
the output signal is equal to the input signal with probabili-
ty qk, and Pr(z = 1) = 1− qk indicates that an error occurs
with probability 1− qk.

 

perfect 

sensing data

X

quality  

restriction

Z

received 

information

Y

Figure 2: A discrete channel (α,Z), where Y = α(X,Z).

We assume that, in the signal transmission system, the in-
put signal is perfect but interfered by the noisy channel with
probability 1 − qk. Thus, the output signal is equivalent to
information extracted from sensing data of quality qk. Sim-
ilar to the capacity of a noisy channel [34], the contribution

of the sensing data can be expressed as mutual information,

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑

x

p(x)H(Y |X = x)

= H(Y )−
∑

x

p(x)hb(qk)

= H(Y )− hb(qk),

where H(Y ) is entropy of Y , H(Y |X) is the conditional
entropy of Y given X, and hb(qk) is a binary entropy for the
binary random noise Z with distribution {qk, 1− qk}.

Intuitively, when no sensing data is submitted, all the m
optional intervals are equally likely to be observed with prob-
ability 1/m, making the uncertainty maximal at

H(Y ) = −
∑

m

(1/m) log(1/m) = log(m).

Given the sensing data, the information uncertainty is re-
duced to be

hb(qk) = −q log(qk)− (1− qk) log(1− qk).

Generally, if Z is not a binary random variable, but dis-
tributed with qk in the correct interval and equal probability
(1 − qk)/(m − 1) for each of the rest intervals, then the in-
formation uncertainty is calculated as

hm(qk)=−qklog(qk)−
∑

m−1

((1− qk)/(m− 1)) log((1− qk)/(m− 1)).

Therefore, the effective contribution of sensing data of
quality qk, can be formulated as

cm(qk)=log(m)+ qk log(qk)+(1− qk) log((1− qk)/(m−1)).

With the convention 0 log 0 = 0, sensing data of quality
qk = 1 will result in minimal uncertainty, hm(1) = 0, and
maximal contribution, cm(1) = log(m). Though a binary
channel which never makes errors and one always makes
errors are equally good for communication, we only consider
and reward sensing data of quality within the range [0.5, 1].

Practically, with the same volume, sensing data of high
quality carries larger amount of constructive information
than that of low quality. Specifically, the high quality data
contains intrinsic efficiency, while the low quality data need-
s extra information, functioning like error-correcting code
(ECC), to detect and/or correct errors without resubmis-
sion. In crowdsensing, such kind of error correction, is more
often conducted in the form of verification, such as recruit-
ing another group of participants or sensing another kind of
data (i.e., light signal to determine if the device is out of
pocket). Here, we elide the specific ECC and focus on its
cost (i.e., accounting for a part of the data volume), and
quantify the effective contribution of sensing data as the in-
formation uncertainty reduction.

4.4 Reward Distribution
In this subsection, we take a step further and reward the

participants proportionally to their quantified contributions,
i.e., r(qk) = rcm(qk), where r is a benchmark reward. Not-
ing that we can learn the distribution f(ck, e

k) asymptoti-
cally, we assume that the distribution is common knowledge.

We adjust parameters of the simple case. From partici-
pant ak with an effort matrix ek, the profit that the service
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Figure 3: Accuracy of noise pollution monitoring with different effort levels of participants. (a)General noise reading differences
between outside pocket sensing and inside pocket sensing; (b)-(f) Noise readings of ground truth (Node 1) and from the 10
participants (Node 2-11).
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Figure 4: Comparison of monitoring accuracy of different models.

provider gains from the sensing data is

Profit(ck, e
k, r)=

{
0, rcm(g(ek))<ck,

V − rcm(g(ek)), rcm(g(ek))≥ck.

Then, the quality-based optimal reward is determined by

r∗ = argmax
r

Profit(r)

= argmax
r

∫

e
k

∫ ∞

0

Profit(ck, e
k, r)f(ck, e

k)dckde
k.

For simple joint distribution f(ck, e
k) of sensing cost and

effort matrix, the optimal reward r∗ can be calculated by
solving the integral equation and taking the derivation of r.
However, for complex cases, greedy algorithms can find the
proper reward with approximate profit more efficiently.

5. EVALUATION RESULTS
In this section, we conduct simulations to evaluate perfor-

mance of our quality based incentive mechanism. We first
analyze the improvement in quality assurance. Then, we
compare our quality based reward mechanism to the unifor-
m pricing scheme, and illustrate the superior performance
in profit management.

5.1 Quality Assurance
We install NoiseTube mobile app [1] on Google Nexus 7,

and use the embedded acoustic sensor to measure noise in
a meeting room. We recruit 10 participants to take part in
the experiment, each of which carries a nexus and randomly
puts it into his/her pocket or on the table. The participants
are well told that accurate monitoring occurs when they put
out the nexuses and keep them undisturbed.

The basic experiment is to test whether the participants’
effort levels will effect the noise readings. As Figure 3(a)
shows, the noise reading from a muffled microphone inside
pocket is at least 5dBs lower than that of outside pocket
sensing. The sensing data submitted by participants, as
shown in Figure 3(b)-Figure 3(f), also presents such reading
differences, based on which we can roughly tell the effort
levels of participants, i.e., node 10 is sensing with the highest
effort level and submits almost perfect readings; node 7,
node 8, node 9 and node 11 are 85% accurate with high effort
levels at most of the time; node 2 and node 4 are helpful
with 70% accuracy; node 6 is careless with high accuracy at
first and then gradually slacks off; node 5 is indifferent with
half accuracy and the other half deviation intermittently;
and node 3 is sensing with the lowest effort level with all
readings lower than ground truth.
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Figure 5: Joint distribution of sensing cost and effort matrix.

Given the reading differences, we compare the quality as-
surance, i.e., the overall monitoring accuracy, as a collective
work from the crowd, in our quality measured model (QM),
traditional majority voting model (MV), and all and aver-
age model (AA). The difference is: QM excludes sensing da-
ta with low quality (i.e., with accuracy less than 50%) and
assigns quality-estimated data with different weights; MV
selects the most frequent noise interval at first, and then
calculates the noise reading averagely; and AA takes in all
submissions and figures out the average reading.
Results, as shown in Figure 4, indicate that QM outper-

forms the other two models, in monitoring the noise pollu-
tion more accurately (i.e., the readings keep closely to the

ground truth), and more robustly to the efforts fluctuation
of participants, especially when careless and indifferent par-
ticipants take up more than half of the whole population.
Furthermore, the MV model may direct the monitoring into
a fierce fluctuation when the noise interval is highly precise,
which is 5dBs per interval in our setting. Despite a similar
trend with QM, the AA model is more vulnerable to large
amount of low quality submissions.

5.2 Profit Management
To test the performance of our quality based incentive

mechanism in terms of profit management, we first generate
the sensing costs and effort matrices for participants, and
then compare the profit of our mechanism to that of the
uniform pricing scheme.

We draw vc and ve from a bivariate normal distribution,
(c, e) ∼ N (µ1, µ2, σ

2
1 , σ

2
2 , ρ), where µ1 = 2.0, µ2 = 0.75,

σ1 = 1.0, σ2 = 0.125, and ρ = 0.0 is set to indicate that
there is no correlation between sensing cost and effort ma-
trix (Figure 5(a)), or ρ = 0.8 for a strong positive correla-
tion (Figure 5(b)). According to the 68− 95− 99.7 rule/3σ
rule [22], the 95.45% confidence interval is µ ± 2σ, which
empirically states that about 95.45% data drawn from the
normal distribution lies within [0.0, 4.0] × [0.5, 1.0] in our
setting. Then, we transform vc and ve to ck and ek cor-
respondingly by setting ck = max(−0.5,min(vc, 4.5)) and
ekii = max(0.45,min(ve, 1.05)), i = 1, . . . ,m. Therefore,
the extreme data is excluded and the rest majority approxi-
mately follows the same normal distribution. Notably, other
forms of distribution are also experimentally possible, and
the exact joint distribution needs to be carefully estimated
in practical crowdsensing markets [8].

After getting the joint distribution, we compare the profit
of our quality based incentive mechanism and the uniform
pricing scheme, where the profit is defined as the difference
between the value gained from the sensing data and the re-
wards for contributions. We note that, the quality based
incentive mechanism gains a full value V from sensing data
by providing an error-bounded service, and offers each par-
ticipant a proper reward based on her effective contribution.
In the uniform pricing scheme, the sensing data is regard-
ed equally with the same quality, and the participants are
offered the same reward,

ru = max
ak∈At

ck.

However, the gained value is restricted by the actual qual-
ity qk of sensing data, i.e., vk = y(V, qk), which monotonous-
ly increases with quality qk.

For simplicity, we consider that there are |D| = 2 noise
intervals, and omit the subscript of e. Then, the effective
contribution is calculated as

cm(g(e)) = c2(e) = 1 + e log e+ (1− e) log(1− e).

Value function is set to be vk = V sin(cm(g(e)) × π/2),
which is concave with feasible cm ∈ [0, 1].

We select participants from sufficient crowd, in an increas-
ing order of cost/contribution ratio, and calculate the opti-
mal reward for the top proportion of them, ranging from
10% to 100%. The optimal reward, in our quality based
incentive mechanism, is determined by

r∗ = argmin
r

rcm(g(ek))− ck ≥ 0, ∀ak ∈ At.



Each participant ak will get a proper reward,

rk = r∗cm(g(ek)).

Results, as shown in Figure 6, indicate that our quality
based incentive mechanism overwhelmingly outperforms the
uniform pricing scheme, in both of the two distributions.
The quality based incentive mechanism complies with the
cost/contribution ratio to set the optimal reward in every
stage, and thus can fully leverage the power of participants
to complete the sensing tasks at a low cost, when compared
to the uniform pricing scheme. Moreover, with the guaran-
teed value of service, the quality based incentive mechanism,
with higher accuracy and less fluctuation in noise monitor-
ing, is more appealing to the service provider.
The results also suggest the proper fraction of partici-

pants that the service provider should try to recruit, which
is 80% for both schemes when sensing cost and effort ma-
trix has no correlation, and 80% and 70%, for our quality
based incentive mechanism and the uniform pricing scheme,
respectively, when the factors are positively correlated. It
is reasonable to see such a turning point in profit, from a
smooth rise to a fall, since there are always some partici-
pants with sensing costs higher than what they deserve to
be rewarded according to the their effective contributions,
i.e., with unreasonably high sensing costs for subpar con-
tributions. The x-axis ends with 970 (Figure 6(a)) and 940
(Figure 6(b)), respectively, since we have excluded extreme
data from the distribution.
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Figure 6: Comparison on profit of different pricing schemes.

6. CONCLUSION
In this paper, we have incorporated the consideration of

data quality into the design of incentive mechanism for crowd-
sensing. By applying the expectation maximization algo-
rithm and information theory, we have bridged the gap be-

tween quality of sensing data and proper reward for con-
tribution, and proposed the quality based incentive mecha-
nism, which achieves both individual rationality and profit
maximization. Our incentive mechanism estimates the ef-
fort matrix for each participant, calculates the quality of
sensing data, and offers a reward in accordance with each
effective contribution, aiming to motivate individual partic-
ipants with different sensing costs to place sufficient manual
efforts and submit high quality sensing data in crowdsens-
ing. We have also implemented part of the mechanism with
extensive experiments and simulations. Compared to the
existing uniform pricing scheme, our mechanism achieves
superior performance in profit management.
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