
On Designing Neighbor Discovery Protocols:
A Code-Based Approach

Tong Meng Fan Wu Guihai Chen
Shanghai Key Laboratory of Scalable Computing and Systems,

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

mengtong@sjtu.edu.cn; {fwu, gchen}@cs.sjtu.edu.cn

Abstract—In mobile wireless networks, the emerging
proximity-based applications have led to needs for highly
effective and energy-efficient neighbor discovery protocols.
However, existing works cannot realize the optimal worst-case
latency in symmetric case, and their performances with
asymmetric duty cycles can still be improved. In this work,
we investigate asynchronous neighbor discovery through a
code-based approach, including the symmetric and asymmetric
cases. We derive the tight worst-case latency bound in the case
of symmetric duty cycle. We design a novel class of symmetric
patterns called Diff-Codes, which is optimal when the Diff-Code
can be extended from a perfect difference set. We further
consider the asymmetric case, and design ADiff-Codes. To
evaluate (A)Diff-Codes, we conduct both simulations and testbed
experiments. Both simulation and experiment results show
that (A)Diff-Codes significantly outperform existing neighbor
discovery protocols in both the median case and worst-case.
Specifically, in symmetric case, the maximum worst-case
improvement is up to 50%; in both symmetric and asymmetric
cases, the median case gain is as high as 30%.

I. INTRODUCTION

Nowadays, the transfer of data between neighboring nodes

in mobile wireless networks has been increasingly indispensi-

ble owing to the rapid growth of diverse demands in people’s

everyday life. For instance, a college student may want to

discuss a math problem with other students in the library

using his/her tablet; a video game fan is likely to have a

car race on the smartphone with other people in a Starbucks

coffee shop. These motivate the appearance of proximity-

based applications. Although central servers can be employed,

proximity-based applications’ potential can be better exploited

providing the ability of discovering nearby mobile devices in

one’s wireless communication vicinity due to four reasons.

First, users can enjoy the convenience of local neighbor

discovery at any time, while the centralized service may be

unavailable duo to unexpected reasons. Second, a single neigh-

bor discovery protocol can benefit various applications, by

providing more flexibility than the centralized approach. Third,

communications between a central server and different mobile

This work was supported in part by the State Key Development Program
for Basic Research of China (Grant No. 2014CB340303, 2012CB316201),
in part by China NSF grant 61272443, 61133006, 61073152, and in part by
Shanghai Science and Technology fund 12PJ1404900 and 12ZR1414900. The
opinions, findings, conclusions, and recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of the funding
agencies or the government.

F. Wu is the corresponding author.

nodes may induce problems, such as excessive transmission

overheads, congestion, and unexpected reaction delay. Last but

not least, searching for nearby mobile devices locally is totally

free of charge.

Therefore, a distributed neighbor discovery protocol for

mobile wireless networks is highly needed in practice. Gener-

ally, there are three challenges in designing such a neighbor

discovery protocol.

• The first one is energy efficiency. Due to limited battery

power, a mobile node can only periodically turn on its

wireless interface with a certain duty cycle. In some

applications, nodes may agree on the same duty cycle

for fast neighbor discovery (symmetric case). However,

mobile nodes may need to adopt different duty cycles

independently, according to their remaining battery power

levels (asymmetric case). Therefore, both the symmetric

and asymmetric neighbor discovery should be considered.

• The second challenge is effectiveness, i.e., the neighbor

discovery protocol should not only guarantee successful

discovery between neighboring nodes, but also realize

a short latency at the same time. On one hand, the

probabilistic approach (e.g., Birthday Protocol [13]) in

static sensor networks does not meet this requirement,

because it fails to provide a worst-case discovery latency

bound, and thus leads to confusion between discovery

failure and non-existence of neighbors. On the other hand,

the discovery latency should be short enough, so that the

users will not lose patience before finding a neighbor,

and the interval when two mobile nodes are within each

other’s communication range can be captured.

• In an ideal case, neighboring nodes can discover each

other immediately if they turn to awake simultaneously

upon synchronized clocks. Without a central server, the

synchronization can be achieved through GPS [14]. Nev-

ertheless, it is too energy consuming for mobile devices.

Thus, how to deal with asynchronization is the third

challenge to the design of a neighbor discovery protocol.

We consider asynchronous deterministic neighbor discovery,

aiming at high energy efficiency as well as low discovery la-

tency. Most existing neighbor discovery protocols (e.g., Disco

[6], U-Connect [9]) cannot realize the optimal worst-case

latency provided in [20]. Furthermore, although Searchlight

[1] is approximate to the optimum as in [20] with symmetric

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 1689

duty cycle, its performance in the asymmetric case still need

to be improved.

In this work, through an in-depth study on the problem of

asynchronous neighbor discovery, we derive a tighter lower

bound of optimal worst-case latency (or duty cycle). Then,

we adopt a code-based formulation of the neighbor discovery

problem, and design Diff-Codes for the symmetric case, which

is optimal when the Diff-Code can be extended from a perfect

difference set. Furthermore, by considering the connection

between awake periods of two nodes, we extend Diff-Codes

to ADiff-Codes to deal with asymmetric neighbor discovery.

The detailed contributions of this work are listed as follows.

• We demonstrate the feasibility conditions of an asyn-

chronous neighbor discovery protocol, from the perspec-

tive of 0-1 code.

• We formulate the problem of asynchronous neighbor

discovery with symmetric duty cycle mathematically. By

the formulation, we derive the lower bound for optimal

worst-case latency, and design Diff-Codes. We show that

a Diff-Code is optimal when it can be extended from a

perfect difference set.

• We further investigate the feasibility conditions with

asymmetric duty cycles, and design ADiff-Codes, which

can be constructed as long as two pattern codes’ lengths

are relatively prime.

• To evaluate the performance of our designs, we not only

conduct comprehensive simulations, but also prototype

them using USRP-N210 testbed. Evaluation results show

that (A)Diff-Codes significantly reduce the discovery

latency in both the median case and worst-case. Specif-

ically, in symmetric case, the maximum improvement is

up to 50%; in both symmetric and asymmetric cases,

the median case gain is as high as 30%; and ADiff-

Codes outperform state-of-art protocols in more than 95%
situations.

The rest of the paper is organized as below. In Section

II, we briefly introduce the related works. In Section III,

we explain the system model. The feasibility conditions for

symmetric neighbor discovery are presented in Section IV.

Then in Section V, we propose the construction of Diff-

Codes. In Section VI, we extend to the asymmetric case, and

design ADiff-Codes. In Section VII, we provide the results

of simulations and testbed experiments. Finally, the paper is

concluded in Section VIII.

II. RELATED WORKS

The problem of neighbor discovery was initially studied

in static wireless sensor networks. Recently, it has also been

investigated in mobile wireless networks. Existing neighbor

discovery protocols generally fall into two categories, includ-

ing probabilistic protocols and deterministic protocols.

A. Probabilistic Protocols

McGlynn et al. [13] introduced a family of “birthday

protocols”, which forms the foundation of most probabilistic

neighbor discovery protocols. In birthday protocols, time is

slotted, and each node probabilistically determines the state

for each slot from transmitting, listening, and energy-saving,

independently. A node makes itself known by its neighbors

when it is the only transmitting node in its vicinity in a

slot. Based on [13], Keshavarzian and Uysal-Biyikoglu [10]

proposed a random protocol for link assessment. Vasudevan

et al. [18] reduced the probabilistic algorithm for neighbor

discovery to the Coupon Collector’s Problem. In [11], Khalili

et al. further realized the mechanism of channel status detec-

tion, and designed algorithms providing feedback of reception.

Additionally, Vasudevan et al. [17] discussed probabilistic

neighbor discovery with directional antennas. Later, Zeng et al.
[19] extended the solution to multipacket reception networks.

Birthday protocols support both symmetric and asymmetric

cases, and have satisfying median case performance. How-

ever, because of the lack of worst-case latency bound, these

probabilistic protocols inevitably incur the problem of long

tail. The discovery latency may be arbitrarily long, which

makes the probabilistic protocols unsuitable for mobile wire-

less networks. Therefore, deterministic approaches are usually

adopted for neighbor discovery by mobile devices.

B. Deterministic Protocols

A deterministic protocol establishes a pattern scheduling the

periodical operations of each node. A code-based protocol is

presented in [10] utilizing constant-weight codes [3], [5], but

it assumes synchronization among nodes. Moreover, Zheng et
al. [20] applied optimal block designs in the case of symmetric

duty cycle. The authors concluded that their approach reduces

to an NP-complete minimum vertex cover problem in asym-

metric case. Whereas we prove that the bound in [20] can be

further lowered. Besides, our designs fit for both symmetric

and asymmetric cases with low complexity.

In a class of quorum-based protocols [12], [16], a cycle

contains m2 consecutive slots, where m is a global parameter.

A node is either awake or sleeping in a slot. Both transmitting

and listening happen during awake slots, so that two neigh-

boring nodes discover each other when they are both awake.

These m2 intervals are arranged as an m×m matrix. Each node

picks a row and a column of slots, during which the node stays

awake. Such a protocol ensures that two different nodes will

have exactly two intersecting awake slots during each cycle.

However, quorum-based protocols are normally restricted to

the symmetric case. Although [12] allows the existence of two

different duty cycles, its application is still limited.

Another important type of deterministic protocols that can

handle both the symmetric and asymmetric cases is the prime-

based protocol (e.g., Disco [6] and U-Connect [9]). In Disco,

each node chooses a pair of prime numbers (p1, p2), and turns

awake only at multiples of p1 and p2. U-Connect uses only one

prime number p. Each node wakes up at p’s multiples, as well

as p+1
2 slots every p2 slots. Although prime-based protocols

improve the worst-case latency bound, they underperform

birthday protocols in the median case. In response to that,

Bakht et al. [1] leveraged the regular relationship between the

patterns of two nodes, and designed Searchlight. Compared

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1690

with previous protocols, Searchlight [1] performs much better

in symmetric case, but it needs to be improved in the case

of asymmetric duty cycles. By contrast, our designs in this

work are superior to existing neighbor discovery protocols

regardless of duty cycle symmetry.

III. SYSTEM MODEL

We focus on deterministic asynchronous neighbor discovery

for mobile wireless networks. Similar as existing works (e.g.,
[1], [6], [9]), we assume that time is divided into equal-

size slots. Owing to restricted energy budget, each node (i.e.,
a mobile device) performs duty-cycled operations. That is,

it sleeps during most slots, while turning awake during a

few remaining slots, which are called active slots. To be

specific, in an active slot, a node transmits beacons at the

beginning and the end, respectively, and listens for other

nodes’ transmissions in between. While in a sleeping slot, a

node does not send or receive, and consumes negligible energy.

Thus, two neighboring nodes can discover each other when

their active slots overlaps. Moreover, the neighbor discovery

problem involves two cases: the symmetric case, where all

the nodes have the same duty cycle, and the asymmetric case,

where different duty cycles are adopted.

In deterministic neighbor discovery, there is an established

active-sleep pattern scheduling a node to alternate its state peri-

odically between active and sleeping. We formulate the active-

sleep pattern as a 0-1 code. A pattern code C = c0c1 · · · cn−1

determines an active-sleep pattern containing n slots in a cycle.

Specifically, bit ci corresponds to the slot whose index is i,1

i.e., slot i is an active slot if ci = 1; otherwise, ci = 0. The

weight of code C with length n equals the number of active

slots in a cycle. This is to say, the duty cycle is decided by

the length and the weight of pattern code C.

Fig. 1. Example: the slot offset between two nodes

In asynchronous neighbor discovery, there is an offset

between a pair of neighboring nodes’ active-sleep patterns.

In the case of symmetric duty cycle, we define slot offset dAB

between node A and node B as the interval in unit of slot

between slot 0’s in their common pattern. The value of dAB is

not necessarily an integer. Assume code C is of length n. Then

a slot offset dAB is equivalent to dBA = n−dAB. For clarity, we

take the slot offset to be min(dAB, dBA), which is bounded by
n
2 . Referring to an example in Fig. 1, given symmetric pattern

code “1010001”, slot offset dAB is 3, while dAC equals 2.5.

1All the slot indices in this paper are taken module n. We omit “mod n”
for concise representation.

Moreover, we define the cyclic shift, C(j), of pattern code

C, to compensate for slot offsets between neighboring nodes,

where j is in unit of slot. For an integer j, C(j) is calculated

by cyclically shifting C right by j bits. For example, in Fig. 2,

where active slots are in gray, cyclic right shift of 10100101
by 3 is 10110100.

Fig. 2. Examples on Cyclic Shifts of a Pattern Code

Additionally, we relax the value of c(j)
i to a closed interval

[0, 1], to address the case of partial shift. Thus, c(j)
i denotes

the active proportion of the node in slot i regarding the shifted

code C(j). After the cyclic shift by a non-integer j, the value

of c(j)
i is determined by both c(0)i−�j� and c(0)i−�j�. For instance,

in Fig. 2, the result of cyclic right shift of C by 1.3 slots is

(0.7)1(0.3)(0.7)(0.3)0(0.7)(0.3). In the following, we define

two operators denoted by � and ⊕ in (1) and (2), for the

definition convenience of partial cyclic shift as Equation (3).

a � C = (a · ci)i=0,1,··· ,n−1 , (1)

C ⊕ C′ = (min(ci + c′i , 1))i=0,1,··· ,n−1 , (2)

C(j) =
[
(1 + �j� − j)� C(�j�)

]
⊕
[
(j − �j�)� C(�j�)

]
. (3)

All of our designs are based on non-alignment of active slot

boundaries. However, although quite rare, perfect slot align-

ment cannot be ignored. Therefore, like [1], we implement

overflowed active slots to realize active slot non-alignment.

As depicted in Fig. 3(a), an active slot is made either to start

a little bit earlier (which we adopt in this work) or to end

later. As a result, the width of an active slot is increased

by δ, while the preceding (or succeeding) slot is shortened

correspondingly. With such an overflowing scheme, adjacent

active slots of two nodes can overlap even in the case of perfect

slot alignment (as in Fig. 3(b)).

(a) Overflowing Schemes (b) Active Slot Non-Alignment

Fig. 3. Overflowed Active Slots

What’s more, utilizing the operator � as in (4), we define

C(j) in Equation (5) to indicate the actual active proportion

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1691

of the node in each slot after cyclic shift by j, integrating the

overflowed active slots.

a � b = max(a − b, 0), (4)

C(j) = C(j) ⊕
[
(δ � (j − �j�))� C(�j�−1)

]
⊕
[
δ � C(�j�−1)

]
.

(5)

IV. PATTERN FEASIBILITY VALIDATION IN

SYMMETRIC NEIGHBOR DISCOVERY

In this section, we demonstrate the feasibility conditions for

the active-sleep pattern code in the case of symmetric duty

cycle.

If a pair of nodes has a slot offset d, slot 0 of one node will

coincide in time with both slot �d� and �d� of the other node.

It leads to the following lemma.

Lemma 1. Two neighboring nodes use the same pattern code
C, and their slot offset is d. They can discover each other if
and only if the following condition is satisfied,

∃i ∈ N, ci(0) + ci(d) > 1. (6)

According to Lemma 1, there is the following corollary,

which is the basis of symmetric pattern feasibility condition.

Corollary 1. A pattern code C of length n schedules the
operations of two neighboring nodes. If there exists an integer
i and an integer j ≤ �n

2 � such that c(0)i = c
(j)
i = 1, the two

nodes can discover each other as long as their slot offset d
takes its value from the closed interval [j − 1, j + 1].

Proof: According to the given conditions, ci(0)+ ci(j) =
2. In addition, with overflowed active slots, the following

relation holds,

d ∈ [j − 1, j + 1] ⇒ ci(0) + ci(d) ≥ 1 + δ.

The above situation is also demonstrated in Fig. 4. By Lemma

1, the pattern is feasible for any d ∈ [j − 1, j + 1].

Fig. 4. Two Aligned Active Slots Cover a Range of Slot Offsets

Furthermore, when random slot offset is considered, works

on quorum-systems (e.g., [8]) focus on such feasibility that a

pattern should suffice the condition in Corollary 1 for any

integer i. However, when active slots are overflowed, the

constraint for a feasible pattern can be relaxed.

Theorem 1. A feasible pattern code C for symmetric neighbor
discovery should satisfy that,

∃i, (c
(0)
i + c

(j)
i = 2) ∨ (c

(0)
i + c

(j+1)
i = 2) = TRUE, (7)

where j ∈ {0, 1, · · · , ⌊n
2

⌋}.

Proof: Assume pattern code C is feasible, but there exists

an integer slot offset d dissatisfying (7). Then code C should

be feasible under the slot offset of d − 1
2 . By lemma 1, there

should be an integer i satisfying the inequality,

ci(0) +
1

2
(ci(d) + ci+1(d)) > 1.

Clearly, ci(0) equals either 1 or δ. The case of ci(0) = δ

leads to c(0)i+1 = c(d)
i+1 = 1, which indicates that d satisfies (7).

On the other hand, when ci(0) = 1, then either ci(d) or ci+1(d)
equals 1. If so, d satisfies condition (7), as well. Therefore,

the above assumption always produces contradiction, which

proves the correctness of the theorem.

Specifically, an algorithm for feasibility validation can be

built from Theorem 1. It examines all the possible integer slot

offsets with condition (7), yielding the complexity of O(n2).

V. SYMMETRIC PATTERN CODE CONSTRUCTION

In this section, we formulate the design of symmetric active-

sleep patterns into a code construction problem, aiming to

minimize the code weight for a given code length. We derive

the lower bound for the formulation, which breaks through the

generally accepted result presented in [20]. We also propose

a novel class of active-sleep patterns called Diff-Codes, and

analyze its theoretical performance. The construction of Diff-

Codes takes advantage of perfect difference sets [2], [15], and

guarantees optimality when the Diff-Code is extended from a

perfect difference set. Last, for comprehensiveness, we provide

a heuristic algorithm for seeking the Diff-Code with a target

duty cycle.

A. Problem Formulation

The definition of the code construction problem is as

follows: for a given n, construct a 0-1 code C of length n with

as few 1-bits as possible, while ensuring that C is feasible for

symmetric neighbor discovery. According to condition (7) in

Theorem 1, the mathematical formulation is as below.

Objective:

Minimize w =
n−1∑
i=0

ci, (8)

Subject to:
n−1∑
i=0

ci(ci+j + ci+j+1) ≥ 1, ∀j ∈ {0, 1, · · · ,
⌊n
2

⌋
}, (9)

ci ∈ {0, 1}, ∀i ∈ {0, 1, · · · , n − 1}. (10)

The lower bound of the above primal problem can be

calculated via the Lagrange dual problem [4] by relaxing

constraint (10). We first define the Lagrangian L,

L(c,λ,ω,ν) = (1 + ω − ν)Tc + 1Tλ− 1Tω

−
� n
2 �∑

j=0

λj
[
cT(Aj + Aj+1)c

]
, (11)

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1692

where the element of matrix Aj = (akl)n×n is defined as below.2

akl|Aj =

{
1, if k = l + j or k = l + j − n;

0, otherwise.
(12)

Then Theorem 2 gives the optimal solutions to both the

above Lagrange dual problem and the relaxed primal problem.

Its proof implements the KKT optimality conditions (referring

to [4] for the details).

Theorem 2. An optimal solution to the relaxed problem of
formulation (8) is c∗ = (1√

2n
)n×1, corresponding to the

objective function value of
√

n
2 ; an optimal solution to the

dual problem satisfies that
∑�n

2 �
j=0 λ

∗
j =

√
2n
4 and ω∗

i = ν∗i = 0.

Proof: First of all, we prove the strong duality. On one

hand, when c∗i = 1√
2n

, both constraint (9) and (10) are

satisfied. Hence, c∗ is feasible for the primal problem and the

objective can be calculated to be
√ n

2 . On the other hand, the

non-negative solution (λ∗,ω∗,ν∗) is feasible for the Lagrange

dual problem. Specifically, c∗ leads to equality in constraint

(9), which yields the following equation,

� n
2 �∑

j=0

λ∗
j

[
1−

n−1∑
i=0

c∗i · (c∗i+j + c∗i+j+1)

]
= 0. (13)

Next, with (λ∗,ω∗,ν∗), the differential of Lagrangian L is,

∇cL(c,λ∗,ω∗,ν∗)
= (1 + ω∗ − ν∗)−

� n
2 �∑

j=0

λ∗
j (Aj + An−j + Aj+1 + An−j−1)

Tc

= 1 − (
4
∑

λj√
2n

)n×1 = 0, (14)

which determines the objective g(λ∗,ω∗,ν∗) =
√ n

2 . There-

fore, with c∗ and (λ∗,ω∗,ν∗), the solution to the relaxed

primal problem equals to that of Lagrange dual problem. The

strong duality holds.

Second, the feasibility of c∗ and (λ∗,ω∗,ν∗), and equation

(13) and (14) together satisfy the KKT conditions. That verifies

the optimality of c∗ and (λ∗,ω∗,ν∗).
Theorem 2 indicates that a symmetric active-sleep pattern

with a cycle length of n slots should have at least
√ n

2 active

slots each cycle. This lower bound is tighter than the bound

of
√
n provided by Zheng et al. [20], because we exploit

the power of active slot non-alignment in the asynchronous

case. Consequently, compared with the active-sleep patterns

in [20], which is identical with perfect difference sets, we

achieve much better patterns.

B. Asymptotically Optimal Pattern via Perfect Difference Set

Referring to the pattern feasibility in Section IV, and the

definition below, an (n,w, 1)-perfect difference set [2], [15]

2The notation “mod n” is omitted. The same with the following corollaries.

already corresponds to a feasible symmetric pattern code of

length n and weight w.3

Definition 1. An (n,w, λ)-difference set contains w elements.
It is a subset of Zn = {0, 1, · · · , n−1}, and each d ∈ Zn\{0}
appears exactly λ times as the difference of two distinct
elements from it under module n. Specifically, a difference set
with λ = 1 is called a perfect difference set.

However, being a perfect difference set is a stricter con-

straint than condition (7) in Theorem 1. For example, a pattern

code C = 10100010000000 can be verified to be feasible,

although it does not correspond to a difference set. To this

end, we propose to double the length of a perfect difference

set while maintaining its weight. The details can be described

as below: an active slot is extended to two consecutive slots

including one active slot followed by another sleeping slot; a

sleeping slot is extended to two successive sleeping slots.

Assume pattern code C′ is extended from C whose D(C(0))
is a perfect different set. Then C′ can be verified to satisfy

Theorem 1. In fact, such a pattern code C′ is the best integer

solution to our formulated problem, which is meanwhile

approximate to the lower bound given by Theorem 2.

Theorem 3. Pattern code C ′ of length 2n and weight w, which
is resulted from extending a perfect difference set with length
n and weight w as shown above, is the optimal integer solution
to the code construction problem under code length 2n.

Proof: Because C′ is extended from a perfect difference

set, its length 2n is even, and satisfies that w(w − 1) + 1 = n.

Apparently, n is odd.

For pattern code C′(0), the total number of distinct active

slot pairs is 1
2w(w − 1). By Theorem 1, for any pattern code

of length 2n, the weight w should satisfy the inequality,

1

2
· w(w − 1) ≥

⌊n
2

⌋
=

n
2
− 1

2
. (15)

Considering that the length and weight of C′ lead to equality

in (15), its optimality is verified.

Nevertheless, a perfect difference set requires specific value

of its length and weight [7]. When ps ≤ 1600, where p is

a prime number and s is a positive integer, there only exists

such form of perfect difference sets that w = ps + 1. Thus,

as w approaches 1600, the worst-case discovery latency (i.e.,
the code length) of the extended pattern code C′ will be

bounded by 2n, with a magnitude of as high as 106 slots.

That is unbearable for realistic applications. Hence a practical

symmetric active-sleep pattern should be based on such a

perfect difference set that w = ps + 1.

C. Diff-Code Construction

Although doubling the length of a perfect difference set can

generate the optimal schedule, it’s only suitable for specific

3An active-sleep pattern code C = c0c1 · · · cn−1 with length n and weight

w is equivalent to a set D(C(0)) = {i | c(0)i = 1} composed of the indices
of w active slots in a cycle.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1693

code lengths. Therefore, we present the construction of Diff-

Codes for any target code length in Algorithm 1. The core

idea is to make use of the optimal code with similar length.

The first step (lines 1-6) in the algorithm is to build an

initial, but not necessarily feasible code C of the target length

n. The active slots in C(0) are determined by the optimal Diff-

Code C(0)
1 , whose length n1 is the largest among all the optimal

Diff-Codes shorter than n. An intuitive method of initializing

C(0) is to assign slot i active as long as slot i is active in C(0)
1 .

However, we notice that for i1 < i2 < n1, such that the i1th

and i2th slots are active in both C(0) and C(0)
1 , if i2−i1 ≤ � n1

2 �,

code C and C1 will both be feasible under the slot offset of

i2− i1. Otherwise, C1 will satisfy the slot offset of i1− i2+n1,

while C is not necessarily feasible under the same slot offset.

Therefore, the active slots of C(0) are initialized as below: for

any two active slots i1 and i2 in C(0)
1 (i1 < i2), they are made

active in C(0), only if i2 − i1 ≤ � n1
2 �.

Algorithm 1: Diff-Codes Construction

Input: An optimal code C1 of length n1.

Output: The Diff-Code C of length n (n > n1).
1 D(C(0)) ← Ø;

2 foreach i1, i2 ∈ D(C(0)
1), i1 < i2 do

3 if i2 − i1 ≤ ⌊
n1
2

⌋
then

4 D(C(0)) ← D(C(0)) ∪ {i1, i2};

5 end
6 end
7 Q ← {i | 1 ≤ i ≤ � n

2�, i ∈ N+};

8 foreach i1, i2 ∈ D(C(0)), i1 < i2 do
9 tmp ← i2 − i1;

10 Q ← Q\{tmp − 1, tmp};

11 end
12 while Q �= Ø do
13 next, α ← −1;

14 foreach i1 (mod n) �∈ D(C(0)) do
15 Si1 ← Ø;

16 foreach i2 ∈ D(C(0)) do
17 tmp ← (i1 − i2) mod n;

18 tmp ← min(tmp, n − tmp);
19 Si1 ← Si1 ∪ (Q ∩ {tmp − 1, tmp});
20 end
21 if |Si1 | > α then
22 α ← |Si1 |; next ← i1;

23 end
24 end
25 D(C(0)) ← D(C(0)) ∪ {next};

26 Q ← Q\Snext;

27 end
28 return C;

In the next step, we complete the construction greedily.

According to C(0), we determine the set Q of all the unsatisfied

integer slot offsets, i.e., slot offsets under which the condition

(7) in Theorem 1 is not satisfied (lines 7-11). Algorithm 1 then

iteratively assigns the most energy-efficient slots to be active

(lines 12-27). By energy-efficiency, we mean the increment in

the number of satisfied integer slot offsets after the assignment.

The algorithm will return until C is a feasible Diff-Code.

The number of iterations is less than the code weight. In each

iteration, the algorithm traverses at most n sleeping slots, and

calculates their index offsets to those already assigned active

slots, which is bounded by the code weight. Considering that

the code weight is also smaller than n, Algorithm 1 induces

the time complexity of O(n3).
In addition, there may exist more than one perfect difference

set with identical length and weight. As a result, the perfor-

mance of a Diff-Code is related to which perfect difference set

is chosen for construction. According to previous explanation,

we prefer such element pairs (i1, i2) (i1 < i2) that i2− i1 is at

most half the set length, which we denote as offset preserving
pair. Hence, we need to determine the perfect difference set

containing the most offset preserving pairs for each length.

To achieve that, we implement the multiplier property, i.e.,
multiplying each of the elements of an (n, w, 1)-perfect

difference set D by p also generates a perfect difference set, as

long as p is relatively prime to n. To be detailed, we multiply

D by prime divisors of n, conduct cyclic shift after each

multiplication, and choose the set containing the most offset

preserving active slot pairs for Diff-Codes construction. To

avoid excessive computations, we only pick p from numbers

that are smaller than 50. The evaluation results show that the

above processing can achieve superior performance.

D. Theoretical Analysis

By fixing the code length to be n, we show the theoretical

bound of Diff-Codes’ duty cycle. An optimal pattern code

directly extended from a perfect difference set with weight

w will satisfy 2 [w(w − 1) + 1] = n. Thus, the weight w
of a Diff-Code with length n is at least 1+

√
2n−3
2 , which is

approximately the lower bound of
√ n

2 in Theorem 2 when

n is fairly large. Because an active slot is overflowed by δ,

the corresponding lower bound of duty cycle is (1 + δ) 1√
2n

.

On the other hand, an optimal Diff-Code whose duty cycle

c = (1+δ)w
2[w(w−1)+1] ≈ 1+δ

2w yields that n ≈ (1+δ)2

2c2 for a large w.

Therefore, a Diff-Code should contain at least
(1+δ)2

2c2 bits to

realize a duty cycle of c.

Duty Cycle
(worst-case latency n)

Worst-Case Latency
(duty cycle c)

Disco 2√
n

4
c2

U-Connect 3
2
√

n
9

4c2

Searchlight-S (1 + δ) 1√
n

(1+δ)2

c2

Optimal Diff-Code (1 + δ) 1√
2n

(1+δ)2

2c2

TABLE I
WORST-CASE BOUNDS COMPARISONS

In Table I, we compare Diff-Codes with existing protocols,

e.g., Disco [6], U-Connect [9] and Searchlight [1], where

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1694

Searchlight-S is the stripped version of Searchlight in [1]. The

table indicates that in the best cases, Diff-Codes can improve

the worst-case latency bound by as high as 50% compared

with Searchlight-S. As for Disco, the reduction of the worst-

case latency is more than 80%. What’s more, any Diff-Code

constructed by Algorithm 1, even not optimal, can outperform

other protocols, as presented in Section VII.

VI. ASYMMETRIC PATTERN CODES DESIGN

We further extend Diff-Codes for symmetric neighbor dis-

covery to ADiff-Codes that deal with the asymmetric case.

We begin with the asymmetric feasibility conditions, and then

present the design of ADiff-Codes.

A. Feasibility Conditions in Asymmetric Case

In symmetric case, the slot offset is bounded by n
2 , where n

is the length of the symmetric pattern code. Nevertheless, with

asymmetric duty cycles, two neighboring nodes, who conform

to pattern code C1 of length n1 and pattern code C2 of length

n2, will have their slot offset up to min(n1, n2). This is because

the slot offset of d and n−d are equivalent in symmetric case,

but with duty cycle asymmetry, slot offset d is different from

n1−d or n2−d. Then referring to Theorem 1, we can illustrate

the condition for feasibility of asymmetric pattern codes as

below. The proof of Theorem 4 is straightforward providing

Theorem 1, and thus is omitted due to limited space.

Theorem 4. Assume that there are two neighboring nodes
A and B. Node A uses pattern code C1 of length n1, while
B operates with C2 of length n2, where n1 ≤ n2. They can
discover each other in all the cases if the following condition
is satisfied,

∃i, (c
(0)
1i + c

(j)
2i = 2) ∨ (c

(0)
1i + c

(j+1)
2i = 2) = TRUE, (16)

where j ∈ {0, 1, · · · , n1 − 1}, and i < lcm(n1, n2). We note
again that (mod n1) and (mod n2) are omitted for clarity.

B. ADiff-Codes Construction

A series of ADiff-Codes contains several pattern codes.

Each of these patterns is feasible in symmetric case, and any

two of them guarantee asymmetric feasibility. By Theorem 4,

ADiff-Codes series can be constructed on basis of symmetric

Diff-Codes with a similar greedy algorithm as Algorithm 1.

However, inspired by the theorem as below, we present a more

elegant method in this work.

Theorem 5. There are two distinct Diff-Codes, say, C1 with
length n1 and C2 with length n2 (n1 < n2). If n1 and
n2 are relatively prime, the two Diff-Codes are feasible for
asymmetric neighbor discovery.

We do not provide its proof due to limited space, which

implements the fact that under module n, if we multiply each

element in the set Zn = {0, 1, · · · , n − 1} by q, the resulted

set, denoted by qZn, is identical with Zn itself, as long as q is

relatively prime to n. By the above theorem, it’s intuitive to

construct an ADiff-Codes series. The only task is to select a set

of numbers (e.g., n1, n2, · · ·), any two of which are relatively

prime. Then the ADiff-Codes series will contain all the Diff-

Codes with corresponding lengths.

VII. EVALUATION

We not only conducted comprehensive simulations, but also

prototyped our designs on USRP-N210 testbed, to evaluate

the discovery latencies with various specific symmetric and

asymmetric pattern codes. The discovery latency is the number

of slots for two neighboring nodes to discover each other since

they enter each other’s transmission range. For comparison, we

used deterministic protocols, including Disco [6], U-Connect

[9], and Searchlight-S [1], and a probabilistic protocol, Birth-

day [13].We first present how the worst-case latency bound

changes with the symmetric duty cycle for various deter-

ministic neighbor discovery protocols. Then, we compare the

discovery latencies of different neighbor discovery protocols.

Suppose there are two nodes A and B with cycle length

of nA and nB, respectively. Node A may be in any slot from

index 0 to nA − 1, at the instant it enters B’s transmission

range. The case is similar for node B. Thus, there are overall

nAnB different combinations of the two nodes’ slot indices at

the beginning of the discovery process. In the simulations,

to get the cumulative distribution function (CDF) of discovery

latencies of a deterministic pattern, we traverse all the possible

initial combinations, and determine the discovery latency for

each case. To achieve the worst-case latency bound, we set

the slot boundaries of different nodes to be perfectly aligned

for Disco and U-Connect, and set an interleaving of a half

slot width for Searchlight-S and (A)Diff-Codes. In addition,

the CDFs of Birthday protocol in simulations are calculated

by the expression of discovery latency and possibility in [13].

In the testbed experiments, we randomly generate the initial

indices of two USRP-N210 nodes, and compute the CDF over

200 runs.

A. Worst-Case Latency Bound of Symmetric Neighbor Discov-
ery

0

5

10

15

1.5 2.0 2.5 3.0 3.5 4.0

W
or

st
-C

as
e

L
at

en
cy

 B
ou

nd
 (

10
3 S

lo
ts

)

Duty Cycle (%)

Optimal Diff-Codes
Diff-Codes

Disco
U-Connect

Searchlight-S

Fig. 5. Worst-Case Latency Bound vs. Duty Cycle

Fig. 5 demonstrates the worst-case latency bound restricted

by duty cycle of various protocols. Noting that there may

exist more than one pattern yielding the same duty cycle for

Disco and Diff-Codes. We use adjacent prime numbers to

generate Disco patterns, in which case Disco achieves better

symmetric case performance. As for Diff-Codes, we select the

pattern with the smallest worst-case bound regarding to each

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1695

duty cycle. We observe that Diff-Codes achieve tremendously

tighter worst-case latency bounds compared with the other

protocols.

20

40

60

80

100

1.5 2.0 2.5 3.0 3.5 4.0

R
ed

uc
tio

n
of

 W
or

st
-C

as
e

 L
at

en
cy

 B
ou

nd
 (

%
)

Duty Cycle (%)

Disco
U-Connect

Searchlight-S

Fig. 6. Reduction of Worst-Case Latency Bound vs. Duty Cycle

Fig. 6 shows the improvements of worst-case latency bound

achieved by Diff-Codes compared with the other protocols.

Compared with Searchlight-S, with the same symmetric duty

cycle, Diff-Codes can lower the worst-case latency bound by

more than 20% in most cases, and the maximum reduction

is as high as 50%. The average worst-case latency bound

reduction of Diff-Codes over Searchlight-S, U-Connect, and

Disco are 23.9%, 65.7%, and 80.8%, respectively. The above

numerical results verify the effectiveness of Diff-Codes.

B. Discovery Latencies in Symmetric Case

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

Fr
ac

tio
n

Latency of Discovery (Slots)

Diff-Code(14/280)
Diff-Code(16/320)

Disco(37-43)
U-Connect(31)
Searchlight(40)

Birthday(5%)

Fig. 7. CDF of Discovery Latencies for Symmetric Duty Cycle 5%

In this set of simulations, we set the duty cycle at 5%,

and compare the performance of two different Diff-Codes

with existing protocols. We set the cycle lengths of the two

Diff-Codes at 280 and 320, the pair of primes in Disco at

(37, 43), the prime of U-Connect at 31, the probing period of

Searchlight-S at 40 slots, and the active probability of Birthday

protocol at 5%. From the cumulative distribution of discovery

latencies (Fig. 7), we can see that Diff-Codes perform the

best in both the median case and worst-case. Specifically,

both of the two evaluated Diff-Codes realize a median gain

of 30% over Searchlight-S; the minimum worst-case latency

of Diff-Codes is 280 slots, which is also 30% less than that

of Searchlight-S.

C. Discovery Latencies in Asymmetric Case

In the set of simulations for the asymmetric case, we

consider two different scenarios. In one of the scenarios, the

asymmetric duty cycles are set at 10% and 1%, while in

the other scenario, the asymmetric duty cycle are set at 5%
and 1%. We compare multiple setups of ADiff-Codes with

the existing asymmetric neighbor discovery protocols. The

parameters of the evaluated protocols are shown in Fig. 8 and

Fig. 9.

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000 3500

C
um

ul
at

iv
e

Fr
ac

tio
n

Latency of Discovery (Slots)

ADiff-Codes(7/69,48/4514)
ADiff-Codes(8/81,48/4514)
ADiff-Codes(7/69,75/7068)

Disco(17-23,191-211)
U-Connect(15,151)

Searchlight-S(20,200)
Birthday(10%,1%)

Fig. 8. CDF of Discovery Latencies for Asymmetric Duty Cycles 10%-1%

0.0

0.2

0.4

0.6

0.8

1.0

 0 1000 2000 3000 4000 5000 6000 7000

C
um

ul
at

iv
e

Fr
ac

tio
n

Latency of Discovery (Slots)

ADiff-Codes(15/297,48/4514)
ADiff-Codes(18/355,48/4514)
ADiff-Codes(15/297,75/7068)

Disco(37-43,191-211)
U-Connect(31,151)

Searchlight-S(40,200)
Birthday(5%,1%)

Fig. 9. CDF of Discovery Latencies for Asymmetric Duty Cycles 5%-1%

Fig. 8 shows the evaluation results for the first scenario, in

which the asymmetric duty cycles are set to 10% and 1%. All

the three simulated ADiff-Codes realize an improvement of

about 20% in the median case compared with Searchlight-S,

and outperform the other protocols before the 95-th percentile.

Furthermore, Birthday protocol shows a long tail of discovery

latencies. Fig. 9 shows the evaluation results for the second

scenario, where the evaluated asymmetric duty cycles are 5%
and 1%. In the figure, all the three ADiff-Codes reduce the

median case latency by around 30% over Searchlight-S, and

accomplish the discovery faster than other protocols in more

than 99% of times.

Furthermore, by comparing the performance of the ADiff-

Codes with different setups, we can observe that ADiff-Codes

can achieve a relatively stable discovery latency, despite of the

combination of duty cycles.

D. Experiment Results

To examine the performance of (A)Diff-Codes in practice,

we have prototyped our designs as well as other existing proto-

cols using Ettus USRP-N210 testbed. The discovery latencies

are measured by a pre-specified node in each discovering pair.

For symmetric neighbor discovery, the duty cycle is set at 5%,

while for the asymmetric case, the duty cycles are set at 5%
and 1%. We note that as in [1], we implemented stripped U-

Connect.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1696

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

Fr
ac

tio
n

Latency of Discovery (Slots)

Diff-Code(14/280)
Diff-Code(16/320)

Disco(37-43)
U-Connect(31)

Searchlight-S(40)
Birthday(5%)

Fig. 10. Implementation: CDF of Discovery Latencies for Symmetric Duty
Cycle 5%

Fig. 10 shows the experiment results for the symmetric case.

The setups of all the protocols are the same as those in the

simulations. The overall trends of CDFs in the figure turn

out to cord with the simulation results (Fig. 7). The two Diff-

Codes both perform apparently better than the other protocols.

The improvement of latency in the median case is 27.7%,

which is approximate to the simulation result of 30%.

0.0

0.2

0.4

0.6

0.8

1.0

 0 1000 2000 3000 4000 5000 6000 7000

C
um

ul
at

iv
e

Fr
ac

tio
n

Latency of Discovery (Slots)

ADiff-Codes(15/297,48/4514)
ADiff-Codes(18/355,48/4514)
ADiff-Codes(15/297,75/7068)

Disco(37-43,191-211)
U-Connect(31,151)

Searchlight-S(40,200)
Birthday(5%,1%)

Fig. 11. Implementation: CDF of Discovery Latencies for Asymmetric Duty
Cycles 5%-1%

With asymmetric duty cycles set at 5% and 1%, ADiff-

Codes perform the best in a majority of cases. As illustrated

in Fig. 11, the maximum gain in the median case reaches

20% compared with Searchlight-S, the worst ADiff-Codes are

superior to U-Connect before the 88-th percentile. Fig. 11 also

shows that Disco’s performance is closed to ADiff-Codes. In

contrary, in the simulations, when the asymmetric duty cycles

are set at 5% and 1%, Disco has the largest latency in both

the median case and worst-case. This is because the worst-case

bound of Disco appears only when slot boundaries are aligned.

However, the asynchronous USRP-N210 nodes always lead to

slot non-alignment in experiments. Therefore, Disco performs

much better in the experiments than in the simulations. Such

a phenomenon was also observed and discussed in [1].

VIII. CONCLUSION

In this paper, we have presented a systematic study of de-

signing highly effective and energy-efficient neighbor discov-

ery protocols in mobile wireless networks. We have designed

Diff-Codes for the case of symmetric duty cycle, and extended

it to ADiff-Codes to deal with the asymmetric case. We have

derived a tighter lower bound for the worst-case latency, by

exploiting active slot non-alignment. Both of our simulation,

and experiment results have shown that (A)Diff-Codes can

achieve significantly better performance compared with state-

of-art neighbor discovery protocols. Specifically, Diff-Codes

can reduce the worst-case latency by up to 50%, and achieve a

median gain of 30%; while ADiff-Codes are also 30% better in

the median case, and outperform existing neighbor discovery

protocols in more than 95% simulations and experiments.

REFERENCES

[1] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: won’t you be
my neighbor?” in MOBICOM, 2012.

[2] L. D. Baumert, Cyclic difference sets. Springer-Verlag New York, 1971.
[3] S. Bitan and T. Etzion, “Constructions for optimal constant weight

cyclically permutable codes and difference families,” IEEE Transactions
on Information Theory, vol. 41, no. 1, pp. 77–87, 1995.

[4] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[5] F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes:
Design, analysis, and applications,” IEEE Transactions on Information
Theory, vol. 35, no. 3, pp. 595–604, 1989.

[6] P. Dutta and D. E. Culler, “Practical asynchronous neighbor discovery
and rendezvous for mobile sensing applications,” in SenSys, 2008.

[7] T. Evans and H. Mann, “On simple difference sets,” Sankhyā: The Indian
Journal of Statistics, vol. 11, pp. 357–364, 1951.

[8] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H. Lai, “Quorum-based
asynchronous power-saving protocols for ieee 802.11 ad hoc networks,”
Mobile Networks and Applications, vol. 10, no. 1-2, pp. 169–181, 2005.

[9] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-connect: a low-
latency energy-efficient asynchronous neighbor discovery protocol,” in
IPSN, 2010.

[10] A. Keshavarzian and E. Uysal-Biyikoglu, “Energy-efficient link assess-
ment in wireless sensor networks,” in INFOCOM, 2004.

[11] R. Khalili, D. Goeckel, D. F. Towsley, and A. Swami, “Neighbor
discovery with reception status feedback to transmitters,” in INFOCOM,
2010.

[12] S. Lai, B. Ravindran, and H. Cho, “Heterogenous quorum-based wake-
up scheduling in wireless sensor networks,” IEEE Transactions on
Computers, vol. 59, no. 11, pp. 1562–1575, 2010.

[13] M. J. McGlynn and S. A. Borbash, “Birthday protocols for low en-
ergy deployment and flexible neighbor discovery in ad hoc wireless
networks,” in MobiHoc, 2001.

[14] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive gps-
based positioning for smartphones,” in MobiSys, 2010.

[15] J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Transactions of the American Mathematical Society,
vol. 43, no. 3, pp. 377–385, 1938.

[16] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols for
ieee 802.11-based multi-hop ad hoc networks,” in INFOCOM, 2002.

[17] S. Vasudevan, J. F. Kurose, and D. F. Towsley, “On neighbor discovery
in wireless networks with directional antennas,” in INFOCOM, 2005.

[18] S. Vasudevan, D. F. Towsley, D. Goeckel, and R. Khalili, “Neighbor
discovery in wireless networks and the coupon collector’s problem,” in
MOBICOM, 2009.

[19] W. Zeng, S. Vasudevan, X. Chen, B. Wang, A. Russell, and W. Wei,
“Neighbor discovery in wireless networks with multipacket reception,”
in MobiHoc, 2011.

[20] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad hoc
networks,” in MobiHoc, 2003.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1697

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

